1
|
Cybulski M, Zaremba-Czogalla M, Trzaskowski B, Kubiszewski M, Tobiasz J, Jaromin A, Krzeczyński P, Gubernator J, Michalak O. The conjugates of 5'-deoxy-5-fluorocytidine and hydroxycinnamic acids - synthesis, anti-pancreatic cancer activity and molecular docking studies. RSC Adv 2024; 14:13129-13141. [PMID: 38655481 PMCID: PMC11036175 DOI: 10.1039/d4ra01683a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
New amide conjugates 1-6 of hydroxycinnamic acids (HCA) and 5'-deoxy-5-fluorocytidine (5-dFCR), the prodrug of 5-fluorouracil (5-FU), were synthesized and tested in vitro against pancreatic cancer lines (PDAC). The compounds showed slightly higher efficacy against primary BxPC-3 cells (IC50 values of 14-45 μM) than against metastatic AsPC-1 (IC50 values of 37-133 μM), and similar to that of 5-FU for both PDAC lines. Compound 1, which has a para-(acetyloxy)coumaroyl substituent, was found to be the most potent (IC50 = 14 μM) with a selectivity index of approximately 7 to normal dermal fibroblasts (IC50 = 96 μM). The potential pharmacological profiles were discussed on the basis of the ADME data. Docking to the carboxylesterase CES2 showed that the synthesized compounds have the ability to bind via hydrogen bonding between a specific acetate group of the sugar moiety and Ser228, which belongs to the catalytic triad that causes hydrolysis. Docking to albumin, a major transport protein in the circulatory system, revealed a strong interaction of the conjugates at the binding site which is native to warfarin and responsible for its transport in the body.
Collapse
Affiliation(s)
- Marcin Cybulski
- Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute Rydygiera 8 01-793 Warsaw Poland +48 453 056 175 +48 453 056 177
| | - Magdalena Zaremba-Czogalla
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw Fryderyka Joliot-Curie 14a 50-383 Wroclaw Poland
| | - Bartosz Trzaskowski
- Chemical and Biological Systems Simulation Laboratory, Center of New Technologies, University of Warsaw Banacha 2c 02-097 Warsaw Poland
| | - Marek Kubiszewski
- Pharmaceutical Analysis Laboratory, Łukasiewicz Research Network-Industrial Chemistry Institute Rydygiera 8 01-793 Warsaw Poland
| | - Joanna Tobiasz
- Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute Rydygiera 8 01-793 Warsaw Poland +48 453 056 175 +48 453 056 177
| | - Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw Fryderyka Joliot-Curie 14a 50-383 Wroclaw Poland
| | - Piotr Krzeczyński
- Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute Rydygiera 8 01-793 Warsaw Poland +48 453 056 175 +48 453 056 177
| | - Jerzy Gubernator
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw Fryderyka Joliot-Curie 14a 50-383 Wroclaw Poland
| | - Olga Michalak
- Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute Rydygiera 8 01-793 Warsaw Poland +48 453 056 175 +48 453 056 177
| |
Collapse
|
2
|
Cybulski M, Sidoryk K, Zaremba-Czogalla M, Trzaskowski B, Kubiszewski M, Tobiasz J, Jaromin A, Michalak O. The Conjugates of Indolo[2,3- b]quinoline as Anti-Pancreatic Cancer Agents: Design, Synthesis, Molecular Docking and Biological Evaluations. Int J Mol Sci 2024; 25:2573. [PMID: 38473820 DOI: 10.3390/ijms25052573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
New amide conjugates of hydroxycinnamic acids (HCAs) and the known antineoplastic 5,11-dimethyl-5H-indolo[2,3-b]quinoline (DiMIQ), an analog of the natural alkaloid neocryptolepine, were synthesized and tested in vitro for anticancer activity. The compound 9-[((2-hydroxy)cinnamoyl)amino]-5,11-dimethyl-5H-indolo[2,3-b]quinoline (2), which contains the ortho-coumaric acid fragment, demonstrated dose-dependent effectiveness against both normal BxPC-3 and metastatic AsPC-1 pancreatic cancer cells. The IC50 values for AsPC-1 and BxPC-3 were 336.5 nM and 347.5 nM, respectively, with a selectivity index of approximately 5 for both pancreatic cancer cells compared to normal dermal fibroblasts. Conjugate 2 did not exhibit any hemolytic activity against human erythrocytes at the tested concentration. Computational studies were performed to predict the pharmacokinetic profile and potential mechanism of action of the synthesized conjugates. These studies focused on the ADME properties of the conjugates and their interactions with DNA, as well as DNA-topoisomerase alpha and beta complexes. All of the conjugates studied showed approximately one order of magnitude stronger binding to DNA compared to the reference DiMIQ, and approximately two orders of magnitude stronger binding to the topoisomerase II-DNA complex compared to DiMIQ. Conjugate 2 was predicted to have the strongest binding to the enzyme-DNA complex, with a Ki value of 2.8 nM.
Collapse
Affiliation(s)
- Marcin Cybulski
- Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute, 01-793 Warsaw, Poland
| | - Katarzyna Sidoryk
- Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute, 01-793 Warsaw, Poland
| | - Magdalena Zaremba-Czogalla
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Bartosz Trzaskowski
- Chemical and Biological Systems Simulation Lab, Center of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Marek Kubiszewski
- Pharmaceutical Analysis Laboratory, Łukasiewicz Research Network-Industrial Chemistry Institute, 01-793 Warsaw, Poland
| | - Joanna Tobiasz
- Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute, 01-793 Warsaw, Poland
| | - Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Olga Michalak
- Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute, 01-793 Warsaw, Poland
| |
Collapse
|
3
|
Pourzand C, Albieri-Borges A, Raczek NN. Shedding a New Light on Skin Aging, Iron- and Redox-Homeostasis and Emerging Natural Antioxidants. Antioxidants (Basel) 2022; 11:471. [PMID: 35326121 PMCID: PMC8944509 DOI: 10.3390/antiox11030471] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/10/2022] Open
Abstract
Reactive oxygen species (ROS) are necessary for normal cell signaling and the antimicrobial defense of the skin. However excess production of ROS can disrupt the cellular redox balance and overwhelm the cellular antioxidant (AO) capacity, leading to oxidative stress. In the skin, oxidative stress plays a key role in driving both extrinsic and intrinsic aging. Sunlight exposure has also been a major contributor to extrinsic photoaging of the skin as its oxidising components disrupt both redox- and iron-homeostasis, promoting oxidative damage to skin cells and tissue constituents. Upon oxidative insults, the interplay between excess accumulation of ROS and redox-active labile iron (LI) and its detrimental consequences to the skin are often overlooked. In this review we have revisited the oxidative mechanisms underlying skin damage and aging by focussing on the concerted action of ROS and redox-active LI in the initiation and progression of intrinsic and extrinsic skin aging processes. Based on these, we propose to redefine the selection criteria for skin antiaging and photoprotective ingredients to include natural antioxidants (AOs) exhibiting robust redox-balancing and/or iron-chelating properties. This would promote the concept of natural-based or bio-inspired bifunctional anti-aging and photoprotective ingredients for skincare and sunscreen formulations with both AO and iron-chelating properties.
Collapse
Affiliation(s)
- Charareh Pourzand
- Medicines Design, Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK
- Medicines Development, Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
| | - Andrea Albieri-Borges
- Research and Development, ASEA LLC., Pleasant Grove, UT 84062, USA; (A.A.-B.); (N.N.R.)
| | - Nico N. Raczek
- Research and Development, ASEA LLC., Pleasant Grove, UT 84062, USA; (A.A.-B.); (N.N.R.)
| |
Collapse
|
4
|
Karisma VW, Wu W, Lei M, Liu H, Nisar MF, Lloyd MD, Pourzand C, Zhong JL. UVA-Triggered Drug Release and Photo-Protection of Skin. Front Cell Dev Biol 2021; 9:598717. [PMID: 33644041 PMCID: PMC7905215 DOI: 10.3389/fcell.2021.598717] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Light has attracted special attention as a stimulus for triggered drug delivery systems (DDS) due to its intrinsic features of being spatially and temporally tunable. Ultraviolet A (UVA) radiation has recently been used as a source of external light stimuli to control the release of drugs using a "switch on- switch off" procedure. This review discusses the promising potential of UVA radiation as the light source of choice for photo-controlled drug release from a range of photo-responsive and photolabile nanostructures via photo-isomerization, photo-cleavage, photo-crosslinking, and photo-induced rearrangement. In addition to its clinical use, we will also provide here an overview of the recent UVA-responsive drug release approaches that are developed for phototherapy and skin photoprotection.
Collapse
Affiliation(s)
- Vega Widya Karisma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Wei Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Mingxing Lei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Huawen Liu
- Three Gorges Central Hospital, Chongqing, China
| | - Muhammad Farrukh Nisar
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur, Pakistan
| | - Matthew D. Lloyd
- Drug and Target Discovery, Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | - Charareh Pourzand
- Medicines Design, Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
- Medicines Development, Centre for Therapeutic Innovation, University of Bath, Bath, United Kingdom
| | - Julia Li Zhong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| |
Collapse
|
5
|
Rao MLN, Ramakrishna BS. Rh-Catalyzed Deformylative Coupling of Salicylaldehydes with Acrylates and Acrylamides. J Org Chem 2019; 84:5677-5683. [DOI: 10.1021/acs.joc.9b00602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Maddali L. N. Rao
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Boddu S. Ramakrishna
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
6
|
Light-triggered release of photocaged therapeutics - Where are we now? J Control Release 2019; 298:154-176. [PMID: 30742854 DOI: 10.1016/j.jconrel.2019.02.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 01/02/2023]
Abstract
The current available therapeutics face several challenges such as the development of ideal drug delivery systems towards the goal of personalized treatments for patients benefit. The application of light as an exogenous activation mechanism has shown promising outcomes, owning to the spatiotemporal confinement of the treatment in the vicinity of the diseased tissue, which offers many intriguing possibilities. Engineering therapeutics with light responsive moieties have been explored to enhance the bioavailability, and drug efficacy either in vitro or in vivo. The tailor-made character turns the so-called photocaged compounds highly desirable to reduce the side effects of drugs and, therefore, have received wide research attention. Herein, we seek to highlight the potential of photocaged compounds to obtain a clear understanding of the mechanisms behind its use in therapeutic delivery. A deep overview on the progress achieved in the design, fabrication as well as current and possible future applications in therapeutics of photocaged compounds is provided, so that novel formulations for biomedical field can be designed.
Collapse
|
7
|
Zaengle-Barone JM, Jackson AC, Besse DM, Becken B, Arshad M, Seed PC, Franz KJ. Copper Influences the Antibacterial Outcomes of a β-Lactamase-Activated Prochelator against Drug-Resistant Bacteria. ACS Infect Dis 2018; 4:1019-1029. [PMID: 29557647 PMCID: PMC6252259 DOI: 10.1021/acsinfecdis.8b00037] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The unabated rise in bacterial resistance to conventional antibiotics, coupled with collateral damage to normal flora incurred by overuse of broad-spectrum antibiotics, necessitates the development of new antimicrobials targeted against pathogenic organisms. Here, we explore the antibacterial outcomes and mode of action of a prochelator that exploits the production of β-lactamase enzymes by drug-resistant bacteria to convert a nontoxic compound into a metal-binding antimicrobial agent directly within the microenvironment of pathogenic organisms. Compound PcephPT (phenylacetamido-cephem-pyrithione) contains a cephalosporin core linked to 2-mercaptopyridine N-oxide (pyrithione) via one of its metal-chelating atoms, which minimizes its preactivation interaction with metal ions and its cytotoxicity. Spectroscopic and chromatographic assays indicate that PcephPT releases pyrithione in the presence of β-lactamase-producing bacteria. The prochelator shows enhanced antibacterial activity against strains expressing β-lactamases, with bactericidal efficacy improved by the presence of low-micromolar copper in the growth medium. Metal analysis shows that cell-associated copper accumulation by the prochelator is significantly lower than that induced by pyrithione itself, suggesting that the location of pyrithione release influences biological outcomes. Low-micromolar (4-8 μg/mL) minimum inhibitory concentration (MIC) values of PcephPT in ceftriaxone-resistant bacteria compared with median lethal dose (LD50) values greater than 250 μM in mammalian cells suggests favorable selectivity. Further investigation into the mechanisms of prochelators will provide insight for the design of new antibacterial agents that manipulate cellular metallobiology as a strategy against infection.
Collapse
Affiliation(s)
| | - Abigail C. Jackson
- Department of Chemistry, Duke University, 124 Science Dr. Durham, North Carolina 27708, United States
| | - David M. Besse
- Department of Chemistry, Duke University, 124 Science Dr. Durham, North Carolina 27708, United States
| | - Bradford Becken
- Department of Pediatrics, Duke University, Durham, North Carolina 27710, United States
| | - Mehreen Arshad
- Department of Pediatrics, Duke University, Durham, North Carolina 27710, United States
| | - Patrick C. Seed
- Ann and Robert H. Lurie Children’s Hospital and Stanley Manne Children’s Research Institute, 225 E. Chicago Ave. Chicago, Illinois 60611, United States
- Department of Microbiology and Immunology, Northwestern University, 300 E. Superior St. Chicago, Illinois 60611, United States
| | - Katherine J. Franz
- Department of Chemistry, Duke University, 124 Science Dr. Durham, North Carolina 27708, United States
| |
Collapse
|
8
|
Abstract
Metal ions are essential for a wide range of physiological processes, but they can also be toxic if not appropriately regulated by a complex network of metal trafficking proteins. Intervention in cellular metal distribution with small-molecule or peptide chelating agents has promising therapeutic potential to harness metals to fight disease. Molecular outcomes associated with forming metal-chelate interactions in situ include altering the concentration and subcellular metal distribution, inhibiting metalloenzymes, enhancing the reactivity of a metal species to elicit a favorable biological response, or passivating the reactivity of a metal species to prevent deleterious reactivity. The systemic administration of metal chelating agents, however, raises safety concerns due to the potential risks of indiscriminate extraction of metals from critical metalloproteins and inhibition of metalloenzymes. One can estimate that chelators capable of complexing metal ions with dissociation constants in the submicromolar range are thermodynamically capable of extracting metal ions from some metalloproteins and disrupting regular function. Such dissociation constants are easily attainable for multidentate chelators interacting with first-row d-block metal cations in relevant +1, + 2, and +3 oxidation states. To overcome this challenge of indiscriminate metal chelation, we have pursued a prodrug strategy for chelating agents in which the resulting "prochelator" has negligible metal binding affinity until a specific stimulus generates a favorable metal binding site. The prochelator strategy enables conditional metal chelation to occur preferentially in locations affected by disease- or therapy-associated stimuli, thereby minimizing off-target metal chelation. Our design of responsive prochelators encompasses three general approaches of activation: the "removal" approach operates by eliminating a masking group that blocks a potential metal chelation site to reveal the complete binding site under the desired conditions; the molecular "switch" approach involves a reversible conformational change between inactive and active forms of a chelator with differential metal binding affinity under specific conditions; and the "addition" approach adds a new ligand donor arm to the prochelator to constitute a complete metal chelation site. Adopting these approaches, we have created four categories of triggerable prochelators that respond to (1) reactive oxygen species, (2) light, (3) specific enzymes, and (4) biological regulatory events. This Account highlights progress from our group on building prochelators that showcase these four categories of responsive metal chelating agents for manipulating cellular metals. The creation and chemical understanding of such stimulus-responsive prochelators enables exciting applications for understanding the cell biology of metals and for developing therapies based on metal-dependent processes in a variety of diseases.
Collapse
Affiliation(s)
- Qin Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Katherine J. Franz
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
9
|
Oliveri V, Vecchio G. Prochelator strategies for site-selective activation of metal chelators. J Inorg Biochem 2016; 162:31-43. [PMID: 27297691 DOI: 10.1016/j.jinorgbio.2016.05.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/23/2016] [Accepted: 05/13/2016] [Indexed: 02/06/2023]
Abstract
Metal dyshomeostasis has been involved in the etiology of a host of pathologies such as Wilson's, Alzheimer's, Parkinson's, Huntington's, transfusion-related iron overload diseases and cancer. Although metal chelating agents represent a necessary therapeutic strategy in metal overload diseases, long-term use of strong chelators that are not selective, can be anticipated perturbing normal physiological functions of essential metal-requiring biomolecules. In this context, the last decade has seen a growing interest in the development of molecules, referred to as "prochelators", that have little affinity for metal ions until they are activated in response to specific stimuli. Here, we present the main strategies applied to develop safe prochelators and focus on chosen examples to provide an overview of this field to date.
Collapse
Affiliation(s)
- Valentina Oliveri
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria, 6, 95125 Catania, Italy; Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici, C.I.R.C.M.S.B., Unità di Ricerca di Catania, 95125 Catania, Italy.
| | - Graziella Vecchio
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria, 6, 95125 Catania, Italy; Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici, C.I.R.C.M.S.B., Unità di Ricerca di Catania, 95125 Catania, Italy
| |
Collapse
|