1
|
Princiotto S, Casciaro B, G Temprano A, Musso L, Sacchi F, Loffredo MR, Cappiello F, Sacco F, Raponi G, Fernandez VP, Iucci T, Mangoni ML, Mori M, Dallavalle S, Pisano C. The antimicrobial potential of adarotene derivatives against Staphylococcus aureus strains. Bioorg Chem 2024; 145:107227. [PMID: 38387400 DOI: 10.1016/j.bioorg.2024.107227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Multidrug-resistant (MDR) pathogens are severely impacting our ability to successfully treat common infections. Here we report the synthesis of a panel of adarotene-related retinoids showing potent antimicrobial activity on Staphylococcus aureus strains (including multidrug-resistant ones). Fluorescence and molecular dynamic studies confirmed that the adarotene analogues were able to induce conformational changes and disfunctions to the cell membrane, perturbing the permeability of the phospholipid bilayer. Since the major obstacle for developing retinoids is their potential cytotoxicity, a selected candidate was further investigated to evaluate its activity on a panel of human cell lines. The compound was found to be well tolerated, with IC50 5-15-fold higher than the MIC on S. aureus strains. Furthermore, the adarotene analogue had a good pharmacokinetic profile, reaching a plasma concentration of about 6 μM after 0.5 h after administration (150 mg/kg), at least twice the MIC observed against various bacterial strains. Moreover, it was demonstrated that the compound potentiated the growth-inhibitory effect of the poorly bioavailable rifaximin, when used in combination. Overall, the collected data pave the way for the development of synthetic retinoids as potential therapeutics for hard-to-treat infectious diseases caused by antibiotic-resistant Gram-positive pathogens.
Collapse
Affiliation(s)
- Salvatore Princiotto
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Bruno Casciaro
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Alvaro G Temprano
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain
| | - Loana Musso
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Francesca Sacchi
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Maria Rosa Loffredo
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Floriana Cappiello
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Federica Sacco
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Giammarco Raponi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | | | | | - Maria Luisa Mangoni
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy.
| | | |
Collapse
|
2
|
Shaaban MM, Teleb M, Ragab HM, Singh M, Elwakil BH, A Heikal L, Sriram D, Mahran MA. The first-in-class pyrazole-based dual InhA-VEGFR inhibitors towards integrated antitubercular host-directed therapy. Bioorg Chem 2024; 145:107179. [PMID: 38367430 DOI: 10.1016/j.bioorg.2024.107179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 02/19/2024]
Abstract
Several facets of the host response to tuberculosis have been tapped for clinical investigation, especially targeting angiogenesis mediated by VEGF signaling from infected macrophages. Herein, we rationalized combining the antiangiogenic effects of VEGFR-2 blockade with direct antitubercular InhA inhibition in single hybrid dual inhibitors as advantageous alternatives to the multidrug regimens. Inspired by expanded triclosans, the ether ligation of triclosan was replaced by rationalized linkers to assemble the VEGFR-2 inhibitors thematic scaffold. Accordingly, new series of 3-(p-chlorophenyl)-1-phenylpyrazole derivatives tethered to substituted ureas and their isosteres were synthesized, evaluated against Mycobacterium tuberculosis virulent cell line H37Rv, and assessed for their InhA inhibitory activities. The urea derivatives 8d and 8g exhibited the most promising antitubercular activity (MIC = 6.25 µg/mL) surpassing triclosan (MIC = 20 µg/mL) with potential InhA inhibition, thus identified as the study hits. Interestingly, both compounds inhibited VEGFR-2 at nanomolar IC50 (15.27 and 24.12 nM, respectively). Docking and molecular dynamics simulations presumed that 8d and 8g could bind to their molecular targets InhA and VEGFR-2 posing essential stable interactions shared by the reference inhibitors triclosan and sorafenib. Finally, practical LogP, Lipinski's parameters and in silico ADMET calculations highlighted their drug-likeness as novel leads in the arsenal against TB.
Collapse
Affiliation(s)
- Marwa M Shaaban
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| | - Hanan M Ragab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Monica Singh
- Tuberculosis Drug Discovery Laboratory, Pharmacy Group, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500 0078, India
| | - Bassma H Elwakil
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, Egypt
| | - Lamia A Heikal
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - D Sriram
- Tuberculosis Drug Discovery Laboratory, Pharmacy Group, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500 0078, India
| | - Mona A Mahran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
3
|
Lipon T, Marpna ID, Wanniang K, Shangpliang OR, Laloo BM, Nongkhlaw R, Myrboh B. Selenium Dioxide-Mediated Bromination of α,β-Unsaturated Ketones Using N-Bromosuccinimide in the Presence of p-Toluenesulfonic Acid: A Versatile Route for the Synthesis of α'-Bromo-4-arylbut-3-en-2-one and α',α'-Dibromo-4-arylbut-3-en-2-one. ACS OMEGA 2021; 6:27466-27477. [PMID: 34693167 PMCID: PMC8529695 DOI: 10.1021/acsomega.1c04352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
An efficient method for the synthesis of α,β-unsaturated α'-bromoketones and α,β-unsaturated α',α'-dibromoketones is described using N-bromosuccinimide (NBS) as the brominating agent mediated by selenium dioxide (SeO2) in the presence of p-toluenesulfonic acid (PTSA) monohydrate in toluene. The method is simple, employing easily available shelf reagents to afford a wide range of products in good yields. The method highlighted that simple fine-tuning of the reaction conditions and molar equivalents of the reactants easily affords either mono- or dibrominated products in excellent yields. A number of these products have not been reported in the literature. All of the reactions were carried out in gram-scale quantities.
Collapse
|
4
|
Zhang L, Zhang J, Jiang Q, Zhang L, Song W. Zinc binding groups for histone deacetylase inhibitors. J Enzyme Inhib Med Chem 2018; 33:714-721. [PMID: 29616828 PMCID: PMC6009916 DOI: 10.1080/14756366.2017.1417274] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/10/2017] [Accepted: 12/11/2017] [Indexed: 11/01/2022] Open
Abstract
Zinc binding groups (ZBGs) play a crucial role in targeting histone deacetylase inhibitors (HDACIs) to the active site of histone deacetylases (HDACs), thus determining the potency of HDACIs. Due to the high affinity to the zinc ion, hydroxamic acid is the most commonly used ZBG in the structure of HDACs. An alternative ZBG is benzamide group, which features excellent inhibitory selectivity for class I HDACs. Various ZBGs have been designed and tested to improve the activity and selectivity of HDACIs, and to overcome the pharmacokinetic limitations of current HDACIs. Herein, different kinds of ZBGs are reviewed and their features have been discussed for further design of HDACIs.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Jian Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Qixiao Jiang
- School of Pharmacy, Qingdao University, Qingdao, Shandong, China
| | - Li Zhang
- School of Pharmacy, Qingdao University, Qingdao, Shandong, China
| | - Weiguo Song
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
5
|
Zhou H, Wang C, Ye J, Chen H, Tao R. Design, virtual screening, molecular docking and molecular dynamics studies of novel urushiol derivatives as potential HDAC2 selective inhibitors. Gene 2017; 637:63-71. [PMID: 28939339 DOI: 10.1016/j.gene.2017.09.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/18/2017] [Accepted: 09/19/2017] [Indexed: 12/26/2022]
Abstract
Three series of novel urushiol derivatives were designed by introducing a hydroxamic acid moiety into the tail of an alkyl side chain and substituents with differing electronic properties or steric bulk onto the benzene ring and alkyl side chain. The binding affinity toward HDAC2 of the compounds was screened by Glide docking. The best scoring compounds were processed further with molecular docking, MD simulations and binding free energy studies to analyze the binding modes and mechanisms. Six compounds, 21, 23, 10, 19, 9 and 30, gave Glide scores of -7.9 to -8.5, which revealed that introducing F, Cl, triazole, benzamido, formamido, hydroxyl or nitro substituents onto the benzene ring could increase binding affinity significantly. Molecular docking studies revealed that zinc ion coordination, hydrogen bonding and hydrophobic interactions contributed to the high calculated binding affinities of these compounds toward HDAC2 and that His145, His146, Gly154, Glu103, His183, Asp104, Tyr308 and Phe155 contributed favorably to the binding. MD simulations and binding free energy studies showed that all complexes possessed good stability as characterized by low RMSDs; low RMSFs of residues, moderate hydrogen bonding and zinc ion coordination; and low values of binding free energies. van der Waals and electrostatic interactions provided major contributions to the stability of these complexes. These results show the promising potential of urushiol derivatives as potent HDAC2 binding lead compounds.
Collapse
Affiliation(s)
- Hao Zhou
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu 210042, China; Key Lab of Biomass Energy and Material, Nanjing 210042, Jiangsu, China.
| | - Chengzhang Wang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu 210042, China; Key Lab of Biomass Energy and Material, Nanjing 210042, Jiangsu, China.
| | - Jianzhong Ye
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu 210042, China
| | - Hongxia Chen
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu 210042, China
| | - Ran Tao
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu 210042, China
| |
Collapse
|
6
|
Zhou H, Wang C, Deng T, Tao R, Li W. Novel urushiol derivatives as HDAC8 inhibitors: rational design, virtual screening, molecular docking and molecular dynamics studies. J Biomol Struct Dyn 2017. [DOI: 10.1080/07391102.2017.1344568] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hao Zhou
- Key Lab of Biomass Energy and Material, Nanjing, Jiangsu 210042, China
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu 210042, China
| | - Chengzhang Wang
- Key Lab of Biomass Energy and Material, Nanjing, Jiangsu 210042, China
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu 210042, China
| | - Tao Deng
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu 210042, China
| | - Ran Tao
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu 210042, China
| | - Wenjun Li
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu 210042, China
| |
Collapse
|
7
|
Battistuzzi G, Giannini G. Synthesis of ST7612AA1, a Novel Oral HDAC Inhibitor, via Radical
Thioacetic Acid Addition. ACTA ACUST UNITED AC 2016; 12:282-288. [PMID: 27917100 PMCID: PMC5101637 DOI: 10.2174/1573407212666160504160556] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 04/28/2016] [Accepted: 05/02/2016] [Indexed: 11/22/2022]
Abstract
Abstract: Background In the expanding field of anticancer drugs, HDAC inhibitors are playing an increasingly important role. To date, four/five HDAC inhibitors have been approved by FDA. All these compounds fit the widely accepted HDAC inhibitors pharmacophore model characterized by a cap group, a linker chain and a zinc binding group (ZBG), able to bind the Zn2+ ion in a pocket of the HDAC active site. Romidepsin, a natural compound, is the only thiol derivative. We have selected a new class of synthetic HDAC inhibitors, the thio-ω(lactam-carboxamide) derivatives, with ST7612AA1 as drug candidate, pan-inhibitor active in the range of single- to two-digit nanomolar concentrations. Preliminary results of a synthetic optimization attempt towards a fast scale-up process are here proposed. Methods In the four steps of synthesis, from unsaturated amino acid intermediate to the final product, we explored different synthetic conditions in order to have a transferable process for a scale-up synthetic laboratory. Results In the first step, isobutyl chloroformate was used and, after a simple work up with 1M HCl, 2 (96% yield) was obtained as a white solid, which was used directly in the next step. For thioacetic acid addition to the double bond of intermediate 2, two different routes were possible, with addition reaction in the first (D’) or last step (D). Reactions of 2 to give 5 or of 4 to give ST7612AA1 were both performed in dioxane. Reactions were fast and did not need the usually advised radical quenching with cyclohexene. The corresponding products were obtained in good yields (step D’, 89%; step D, 81%) after a flash chromatography. Conclusion: ST7612AA1 , a thiol derivative prodrug of ST7464AA1, is the first of a new generation of HDAC inhibitors, very potent, orally administered, and well tolerated. Here, we have identified a synthetic route, competitive, versatile and easily transferable to industrial processes.
Collapse
Affiliation(s)
| | - Giuseppe Giannini
- R&D Sigma-Tau IFR S.p.A., Via Pontina Km 30,400, I-00071 Pomezia, Rome, Italy
| |
Collapse
|
8
|
Goracci L, Deschamps N, Randazzo GM, Petit C, Dos Santos Passos C, Carrupt PA, Simões-Pires C, Nurisso A. A Rational Approach for the Identification of Non-Hydroxamate HDAC6-Selective Inhibitors. Sci Rep 2016; 6:29086. [PMID: 27404291 PMCID: PMC4941420 DOI: 10.1038/srep29086] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/08/2016] [Indexed: 02/07/2023] Open
Abstract
The human histone deacetylase isoform 6 (HDAC6) has been demonstrated to play a major role in cell motility and aggresome formation, being interesting for the treatment of multiple tumour types and neurodegenerative conditions. Currently, most HDAC inhibitors in preclinical or clinical evaluations are non-selective inhibitors, characterised by a hydroxamate zinc-binding group (ZBG) showing off-target effects and mutagenicity. The identification of selective HDAC6 inhibitors with novel chemical properties has not been successful yet, also because of the absence of crystallographic information that makes the rational design of HDAC6 selective inhibitors difficult. Using HDAC inhibitory data retrieved from the ChEMBL database and ligand-based computational strategies, we identified 8 original new non-hydroxamate HDAC6 inhibitors from the SPECS database, with activity in the low μM range. The most potent and selective compound, bearing a hydrazide ZBG, was shown to increase tubulin acetylation in human cells. No effects on histone H4 acetylation were observed. To the best of our knowledge, this is the first report of an HDAC6 selective inhibitor bearing a hydrazide ZBG. Its capability to passively cross the blood-brain barrier (BBB), as observed through PAMPA assays, and its low cytotoxicity in vitro, suggested its potential for drug development.
Collapse
Affiliation(s)
- Laura Goracci
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Quai Ernest-Ansermet, 30, CH-1211, Geneva 4, Switzerland.,Laboratory for Cheminformatics and Molecular Modeling, Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto, 8, 06123 Perugia, Italy
| | - Nathalie Deschamps
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Quai Ernest-Ansermet, 30, CH-1211, Geneva 4, Switzerland
| | - Giuseppe Marco Randazzo
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Quai Ernest-Ansermet, 30, CH-1211, Geneva 4, Switzerland
| | - Charlotte Petit
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Quai Ernest-Ansermet, 30, CH-1211, Geneva 4, Switzerland
| | - Carolina Dos Santos Passos
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Quai Ernest-Ansermet, 30, CH-1211, Geneva 4, Switzerland
| | - Pierre-Alain Carrupt
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Quai Ernest-Ansermet, 30, CH-1211, Geneva 4, Switzerland
| | - Claudia Simões-Pires
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Quai Ernest-Ansermet, 30, CH-1211, Geneva 4, Switzerland
| | - Alessandra Nurisso
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Quai Ernest-Ansermet, 30, CH-1211, Geneva 4, Switzerland.,Département de Biochimie, Université de Montréal, H3C 3J7 Montréal, Québec, Canada
| |
Collapse
|
9
|
Musso L, Cincinelli R, Zuco V, De Cesare M, Zunino F, Fallacara AL, Botta M, Dallavalle S. 3-Arylidene-N-hydroxyoxindoles: A New Class of Compounds Endowed with Antitumor Activity. ChemMedChem 2016; 11:1700-4. [DOI: 10.1002/cmdc.201600225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 05/20/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Loana Musso
- Department of Food; Environmental and Nutritional Sciences; Division of Chemistry and Molecular Biology; University of Milan; via Celoria 2; 20133 Milano Italy
| | - Raffaella Cincinelli
- Department of Food; Environmental and Nutritional Sciences; Division of Chemistry and Molecular Biology; University of Milan; via Celoria 2; 20133 Milano Italy
| | - Valentina Zuco
- Department of Experimental Oncology and Molecular Medicine; Fondazione IRCCS - Istituto Nazionale dei Tumori; Via Amadeo 42; 20133 Milano Italy
| | - Michelandrea De Cesare
- Department of Experimental Oncology and Molecular Medicine; Fondazione IRCCS - Istituto Nazionale dei Tumori; Via Amadeo 42; 20133 Milano Italy
| | - Franco Zunino
- Department of Experimental Oncology and Molecular Medicine; Fondazione IRCCS - Istituto Nazionale dei Tumori; Via Amadeo 42; 20133 Milano Italy
| | - Anna Lucia Fallacara
- Department of Biotechnology Chemistry and Pharmaceutical Science; University of Siena; Via Aldo Moro 2; 53100 Siena Italy
| | - Maurizio Botta
- Department of Biotechnology Chemistry and Pharmaceutical Science; University of Siena; Via Aldo Moro 2; 53100 Siena Italy
- Sbarro Institute for Cancer Research and Molecular Medicine; Center for Biotechnology; College of Science and Technology; Temple University, BioLife Science Building, Suite 333; 1900 North 12th Street Philadelphia PA 19122 USA
| | - Sabrina Dallavalle
- Department of Food; Environmental and Nutritional Sciences; Division of Chemistry and Molecular Biology; University of Milan; via Celoria 2; 20133 Milano Italy
| |
Collapse
|
10
|
Roche J, Bertrand P. Inside HDACs with more selective HDAC inhibitors. Eur J Med Chem 2016; 121:451-483. [PMID: 27318122 DOI: 10.1016/j.ejmech.2016.05.047] [Citation(s) in RCA: 245] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/20/2016] [Accepted: 05/21/2016] [Indexed: 01/08/2023]
Abstract
Inhibitors of histone deacetylases (HDACs) are nowadays part of the therapeutic arsenal mainly against cancers, with four compounds approved by the Food and Drug Administration. During the last five years, several groups have made continuous efforts to improve this class of compounds, designing more selective compounds or compounds with multiple capacities. After a survey of the HDAC biology and structures, this review summarizes the results of the chemists working in this field, and highlights when possible the behavior of the molecules inside their targets.
Collapse
Affiliation(s)
- Joëlle Roche
- Laboratoire Ecologie et Biologie des Interactions, Equipe « SEVE Sucres & Echanges Végétaux-Environnement », Université de Poitiers, UMR CNRS 7267, F-86073 Poitiers Cedex 09, France; Réseau Epigénétique du Cancéropôle Grand Ouest, France
| | - Philippe Bertrand
- Institut de Chimie des Milieux et Matériaux de Poitiers, UMR CNRS 7285, 4 rue Michel Brunet, TSA 51106, B28, F-86073 Poitiers Cedex 09, France; Réseau Epigénétique du Cancéropôle Grand Ouest, France.
| |
Collapse
|
11
|
Ellert-Miklaszewska A, Dallavalle S, Musso L, Martinet N, Wojnicki K, Kaminska B. Identification of new scaffolds with anti-tumor action toward human glioblastoma cells. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00477f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Compounds containing an isothiazolonaphthoquinone core and HDAC inhibitors with an indolyl-substituted biphenyl-4-yl-acrylohydroxamic acid are promising drug candidates against malignant brain tumors, glioblastomas.
Collapse
Affiliation(s)
- Aleksandra Ellert-Miklaszewska
- Laboratory of Molecular Biology
- Neurobiology Center
- The Nencki Institute of Experimental Biology of Polish Academy of Sciences
- 02-093 Warsaw
- Poland
| | - Sabrina Dallavalle
- Department of Food
- Environmental and Nutritional Sciences
- Division of Chemistry and Molecular Biology
- 20133 Milan
- Italy
| | - Loana Musso
- Department of Food
- Environmental and Nutritional Sciences
- Division of Chemistry and Molecular Biology
- 20133 Milan
- Italy
| | - Nadine Martinet
- CNRS UMR 7272
- Institut de Chimie
- Université de Nice-Sophia Antipolis
- Nice
- France
| | - Kamil Wojnicki
- Laboratory of Molecular Biology
- Neurobiology Center
- The Nencki Institute of Experimental Biology of Polish Academy of Sciences
- 02-093 Warsaw
- Poland
| | - Bozena Kaminska
- Laboratory of Molecular Biology
- Neurobiology Center
- The Nencki Institute of Experimental Biology of Polish Academy of Sciences
- 02-093 Warsaw
- Poland
| |
Collapse
|