1
|
Lu P, Juarez L, Wiget PA, Zhang W, Raman K, Kotian PL. Regioselective alkylation of a versatile indazole: Electrophile scope and mechanistic insights from density functional theory calculations. Beilstein J Org Chem 2024; 20:1940-1954. [PMID: 39135655 PMCID: PMC11318628 DOI: 10.3762/bjoc.20.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024] Open
Abstract
Herein, we report a pair of regioselective N 1- and N 2 -alkylations of a versatile indazole, methyl 5-bromo-1H-indazole-3-carboxylate (6) and the use of density functional theory (DFT) to evaluate their mechanisms. Over thirty N 1- and N 2-alkylated products were isolated in over 90% yield regardless of the conditions. DFT calculations suggest a chelation mechanism produces the N 1-substituted products when cesium is present and other non-covalent interactions (NCIs) drive the N 2-product formation. Methyl 1H-indazole-7-carboxylate (18) and 1H-indazole-3-carbonitrile (21) were also subjected to the reaction conditions and their mechanisms were evaluated. The N 1- and N 2-partial charges and Fukui indices were calculated for compounds 6, 18, and 21 via natural bond orbital (NBO) analyses which further support the suggested reaction pathways.
Collapse
Affiliation(s)
- Pengcheng Lu
- Department of Discovery Chemistry, BioCryst Pharmaceuticals Inc., Discovery Center of Excellence, 2100 Riverchase Center Building 200, Suite 200 Birmingham, AL, 35244, USA
| | - Luis Juarez
- Department of Discovery Chemistry, BioCryst Pharmaceuticals Inc., Discovery Center of Excellence, 2100 Riverchase Center Building 200, Suite 200 Birmingham, AL, 35244, USA
| | - Paul A Wiget
- Department of Discovery Chemistry, BioCryst Pharmaceuticals Inc., Discovery Center of Excellence, 2100 Riverchase Center Building 200, Suite 200 Birmingham, AL, 35244, USA
| | - Weihe Zhang
- Department of Discovery Chemistry, BioCryst Pharmaceuticals Inc., Discovery Center of Excellence, 2100 Riverchase Center Building 200, Suite 200 Birmingham, AL, 35244, USA
| | - Krishnan Raman
- Department of Computational Chemistry and Structural Biology, BioCryst Pharmaceuticals Inc., Discovery Center of Excellence, 2100 Riverchase Center Building 200, Suite 200 Birmingham, AL, 35244, USA
| | - Pravin L Kotian
- Department of Discovery Chemistry, BioCryst Pharmaceuticals Inc., Discovery Center of Excellence, 2100 Riverchase Center Building 200, Suite 200 Birmingham, AL, 35244, USA
| |
Collapse
|
2
|
Halder P, Rai A, Talukdar V, Das P, Lakkaniga NR. Pyrazolopyridine-based kinase inhibitors for anti-cancer targeted therapy. RSC Med Chem 2024; 15:1452-1470. [PMID: 38784451 PMCID: PMC11110789 DOI: 10.1039/d4md00003j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/24/2024] [Indexed: 05/25/2024] Open
Abstract
The need for effective cancer treatments continues to be a challenge for the biomedical research community. In this case, the advent of targeted therapy has significantly improved therapeutic outcomes. Drug discovery and development efforts targeting kinases have resulted in the approval of several small-molecule anti-cancer drugs based on ATP-mimicking heterocyclic cores. Pyrazolopyridines are a group of privileged heterocyclic cores in kinase drug discovery, which are present in several inhibitors that have been developed against various cancers. Notably, selpercatinib, glumetinib, camonsertib and olverembatinib have either received approval or are in late-phase clinical studies. This review presents the success stories employing pyrazolopyridine scaffolds as hinge-binding cores to address various challenges in kinase-targeted drug discovery research.
Collapse
Affiliation(s)
- Pallabi Halder
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad India
| | - Anubhav Rai
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad India
| | - Vishal Talukdar
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad India
| | - Parthasarathi Das
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad India
| | - Naga Rajiv Lakkaniga
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad India
| |
Collapse
|
3
|
Yang J, Yu YC, Wang ZX, Li QQ, Ding N, Leng XJ, Cai J, Zhang MY, Wang JJ, Zhou Y, Wei TH, Xue X, Dai WC, Sun SL, Yang Y, Li NG, Shi ZH. Research strategies of small molecules as chemotherapeutics to overcome multiple myeloma resistance. Eur J Med Chem 2024; 271:116435. [PMID: 38648728 DOI: 10.1016/j.ejmech.2024.116435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Multiple myeloma (MM), a cancer of plasma cells, is the second most common hematological malignancy which is characterized by aberrant plasma cells infiltration in the bone marrow and complex heterogeneous cytogenetic abnormalities. Over the past two decades, novel treatment strategies such as proteasome inhibitors, immunomodulators, and monoclonal antibodies have significantly improved the relative survival rate of MM patients. However, the development of drug resistance results in the majority of MM patients suffering from relapse, limited treatment options and uncontrolled disease progression after relapse. There are urgent needs to develop and explore novel MM treatment strategies to overcome drug resistance and improve efficacy. Here, we review the recent small molecule therapeutic strategies for MM, and introduce potential new targets and corresponding modulators in detail. In addition, this paper also summarizes the progress of multi-target inhibitor therapy and protein degradation technology in the treatment of MM.
Collapse
Affiliation(s)
- Jin Yang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yan-Cheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Zi-Xuan Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Qing-Qing Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Xue-Jiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Jiao Cai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Meng-Yuan Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Jing-Jing Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yun Zhou
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Tian-Hua Wei
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Wei-Chen Dai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Zhi-Hao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
4
|
Chen L, Mao W, Ren C, Li J, Zhang J. Comprehensive Insights that Targeting PIM for Cancer Therapy: Prospects and Obstacles. J Med Chem 2024; 67:38-64. [PMID: 38164076 DOI: 10.1021/acs.jmedchem.3c01802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Proviral integration sitea for Moloney-murine leukemia virus (PIM) kinases are a family of highly conserved serine/tyrosine kinases consisting of three members, PIM-1, PIM-2, and PIM-3. These kinases regulate a wide range of substrates through phosphorylation and affect key cellular processes such as transcription, translation, proliferation, apoptosis, and energy metabolism. Several PIM inhibitors are currently undergoing clinical trials, such as a phase I clinical trial of Uzanserti (5) for the treatment of relapsed diffuse large B-cell lymphoma that has been completed. The current focus encompasses the structural and biological characterization of PIM, ongoing research progress on small-molecule inhibitors undergoing clinical trials, and evaluation analysis of persisting challenges in this field. Additionally, the design and discovery of small-molecule inhibitors targeting PIM in recent years have been explored, with a particular emphasis on medicinal chemistry, aiming to provide valuable insights for the future development of PIM inhibitors.
Collapse
Affiliation(s)
- Li Chen
- Department of Neurology, Joint Research Institution of Altitude Health and Institute of Respiratory Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Wuyu Mao
- Department of Neurology, Joint Research Institution of Altitude Health and Institute of Respiratory Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu 611130, Sichuan, China
| | - Jinqi Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and Institute of Respiratory Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
5
|
Wang C, Zhu M, Long X, Wang Q, Wang Z, Ouyang G. Design, Synthesis and Antitumor Activity of 1 H-indazole-3-amine Derivatives. Int J Mol Sci 2023; 24:ijms24108686. [PMID: 37240028 DOI: 10.3390/ijms24108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
A series of indazole derivatives were designed and synthesized by molecular hybridization strategy, and these compounds were evaluated the inhibitory activities against human cancer cell lines of lung (A549), chronic myeloid leukemia (K562), prostate (PC-3), and hepatoma (Hep-G2) by methyl thiazolyl tetrazolium (MTT) colorimetric assay. Among these, compound 6o exhibited a promising inhibitory effect against the K562 cell line with the IC50 (50% inhibition concentration) value of 5.15 µM, and this compound showed great selectivity for normal cell (HEK-293, IC50 = 33.2 µM). Moreover, compound 6o was confirmed to affect apoptosis and cell cycle possibly by inhibiting Bcl2 family members and the p53/MDM2 pathway in a concentration-dependent manner. Overall, this study indicates that compound 6o could be a promising scaffold to develop an effective and low-toxic anticancer agent.
Collapse
Affiliation(s)
- Congyu Wang
- College of Pharmacy, Guizhou University, Guiyang 550025, China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang 550025, China
| | - Mei Zhu
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Xuesha Long
- College of Pharmacy, Guizhou University, Guiyang 550025, China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang 550025, China
| | - Qin Wang
- College of Pharmacy, Guizhou University, Guiyang 550025, China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang 550025, China
| | - Zhenchao Wang
- College of Pharmacy, Guizhou University, Guiyang 550025, China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang 550025, China
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Guiping Ouyang
- College of Pharmacy, Guizhou University, Guiyang 550025, China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang 550025, China
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| |
Collapse
|
6
|
Almukadi H, Jadkarim GA, Mohammed A, Almansouri M, Sultana N, Shaik NA, Banaganapalli B. Combining machine learning and structure-based approaches to develop oncogene PIM kinase inhibitors. Front Chem 2023; 11:1137444. [PMID: 36970406 PMCID: PMC10036574 DOI: 10.3389/fchem.2023.1137444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/09/2023] [Indexed: 03/12/2023] Open
Abstract
Introduction: PIM kinases are targets for therapeutic intervention since they are associated with a number of malignancies by boosting cell survival and proliferation. Over the past years, the rate of new PIM inhibitors discovery has increased significantly, however, new generation of potent molecules with the right pharmacologic profiles were in demand that can probably lead to the development of Pim kinase inhibitors that are effective against human cancer.Method: In the current study, a machine learning and structure based approaches were used to generate novel and effective chemical therapeutics for PIM-1 kinase. Four different machine learning methods, namely, support vector machine, random forest, k-nearest neighbour and XGBoost have been used for the development of models. Total, 54 Descriptors have been selected using the Boruta method.Results: SVM, Random Forest and XGBoost shows better performance as compared to k-NN. An ensemble approach was implemented and, finally, four potential molecules (CHEMBL303779, CHEMBL690270, MHC07198, and CHEMBL748285) were found to be effective for the modulation of PIM-1 activity. Molecular docking and molecular dynamic simulation corroborated the potentiality of the selected molecules. The molecular dynamics (MD) simulation study indicated the stability between protein and ligands.Discussion: Our findings suggest that the selected models are robust and can be potentially useful for facilitating the discovery against PIM kinase.
Collapse
Affiliation(s)
- Haifa Almukadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Gada Ali Jadkarim
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Arif Mohammed
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Majid Almansouri
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nasreen Sultana
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
- *Correspondence: Noor Ahmad Shaik, ; Nasreen Sultana, ; Babajan Banaganapalli,
| | - Noor Ahmad Shaik
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
- *Correspondence: Noor Ahmad Shaik, ; Nasreen Sultana, ; Babajan Banaganapalli,
| | - Babajan Banaganapalli
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
- *Correspondence: Noor Ahmad Shaik, ; Nasreen Sultana, ; Babajan Banaganapalli,
| |
Collapse
|
7
|
Xu L, Meng YC, Guo P, Li M, Shao L, Huang JH. Recent Research Advances in Small-Molecule Pan-PIM Inhibitors. PHARMACEUTICAL FRONTS 2022. [DOI: 10.1055/s-0042-1758692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
PIM kinase is consequently emerging as a promising target for cancer therapeutics and immunomodulation. PIM kinases are overexpressed in a variety of hematological malignancies and solid tumors, and their inhibition has become a strong therapeutic interest. Currently, some pan-PIM kinase inhibitors are being developed under different phases of clinical trials. Based on the different scaffold structures, they can be classified into various subclasses. The X-ray structure of the kinase complex outlines the rationale of hit compound confirmation in the early stage. Structure–activity relationships allow us to rationally explore chemical space and further optimize multiple physicochemical and biological properties. This review focuses on the discovery and development of small-molecule pan-PIM kinase inhibitors in the current research, and hopes to provide guidance for future exploration of the inhibitors.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Yu-Cheng Meng
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Peng Guo
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Ming Li
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Lei Shao
- Microbial Pharmacology Laboratory, Shanghai University of Medicine and Health Sciences, Shanghai, People's Republic of China
| | - Jun-Hai Huang
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| |
Collapse
|
8
|
Zhao Y, Aziz AUR, Zhang H, Zhang Z, Li N, Liu B. A systematic review on active sites and functions of PIM-1 protein. Hum Cell 2022; 35:427-440. [PMID: 35000143 DOI: 10.1007/s13577-021-00656-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
The Proviral Integration of Molony murine leukemia virus (PIM)-1 protein contributes to the solid cancers and hematologic malignancies, cell growth, proliferation, differentiation, migration, and other life activities. Many studies have related these functions to its molecular structure, subcellular localization and expression level. However, recognition of specific active sites and their effects on the activity of this constitutively active kinase is still a challenge. Based on the close relationship between its molecular structure and functional activity, this review covers the specific residues involved in the binding of ATP and different substrates in its catalytic domain. This review then elaborates on the relevant changes in protein conformation and cell functions after PIM-1 binds to different substrates. Therefore, this intensive study can improve the understanding of PIM-1-regulated signaling pathways by facilitating the discovery of its potential phosphorylation substrates.
Collapse
Affiliation(s)
- Youyi Zhao
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China
| | - Aziz Ur Rehman Aziz
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China
| | - Hangyu Zhang
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China
| | - Zhengyao Zhang
- School of Life and Pharmaceutical Sciences, Panjin Campus of Dalian University of Technology, Panjin, 124221, China
| | - Na Li
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China.
| | - Bo Liu
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
9
|
Evaluation of Substituted Pyrazole-Based Kinase Inhibitors in One Decade (2011-2020): Current Status and Future Prospects. Molecules 2022; 27:molecules27010330. [PMID: 35011562 PMCID: PMC8747022 DOI: 10.3390/molecules27010330] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 11/17/2022] Open
Abstract
Pyrazole has been recognized as a pharmacologically important privileged scaffold whose derivatives produce almost all types of pharmacological activities and have attracted much attention in the last decades. Of the various pyrazole derivatives reported as potential therapeutic agents, this article focuses on pyrazole-based kinase inhibitors. Pyrazole-possessing kinase inhibitors play a crucial role in various disease areas, especially in many cancer types such as lymphoma, breast cancer, melanoma, cervical cancer, and others in addition to inflammation and neurodegenerative disorders. In this article, we reviewed the structural and biological characteristics of the pyrazole derivatives recently reported as kinase inhibitors and classified them according to their target kinases in a chronological order. We reviewed the reports including pyrazole derivatives as kinase inhibitors published during the past decade (2011-2020).
Collapse
|
10
|
Tandon N, Luxami V, Kant D, Tandon R, Paul K. Current progress, challenges and future prospects of indazoles as protein kinase inhibitors for the treatment of cancer. RSC Adv 2021; 11:25228-25257. [PMID: 35478899 PMCID: PMC9037120 DOI: 10.1039/d1ra03979b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/29/2021] [Indexed: 01/19/2023] Open
Abstract
The indazole core is an interesting pharmacophore due to its applications in medicinal chemistry. In the past few years, this moiety has been used for the synthesis of kinase inhibitors. Many researchers have demonstrated the use of indazole derivatives as specific kinase inhibitors, including tyrosine kinase and serine/threonine kinases. A number of anticancer drugs with an indazole core are commercially available, e.g. axitinib, linifanib, niraparib, and pazopanib. Indazole derivatives are applied for the targeted treatment of lung, breast, colon, and prostate cancers. In this review, we compile the current development of indazole derivatives as kinase inhibitors and their application as anticancer agents in the past five years.
Collapse
Affiliation(s)
- Nitin Tandon
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 India
| | - Vijay Luxami
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala-147004 India
| | - Divya Kant
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 India
| | - Runjhun Tandon
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala-147004 India
| |
Collapse
|
11
|
Shang C, Hou Y, Meng T, Shi M, Cui G. The Anticancer Activity of Indazole Compounds: A Mini Review. Curr Top Med Chem 2021; 21:363-376. [PMID: 33238856 DOI: 10.2174/1568026620999201124154231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 11/22/2022]
Abstract
The incidence and mortality of cancer continue to grow since the current medical treatments often fail to produce a complete and durable tumor response and ultimately give rise to therapy resistance and tumor relapse. Heterocycles with potential therapeutic values are of great pharmacological importance, and among them, indazole moiety is a privileged structure in medicinal chemistry. Indazole compounds possess potential anticancer activity, and indazole-based agents such as, axitinib, lonidamine and pazopanib have already been employed for cancer therapy, demonstrating indazole compounds as useful templates for the development of novel anticancer agents. The aim of this review is to present the main aspects of exploring anticancer properties, such as the structural modifications, the structure-activity relationship and mechanisms of action, making an effort to highlight the importance and therapeutic potential of the indazole compounds in the present anticancer agents.
Collapse
Affiliation(s)
- Congshan Shang
- Medical College, Xi'an Peihua University, Xi'an 710025, Shaanxi, China
| | - Yani Hou
- Medical College, Xi'an Peihua University, Xi'an 710025, Shaanxi, China
| | - Tingting Meng
- Medical College, Xi'an Peihua University, Xi'an 710025, Shaanxi, China
| | - Min Shi
- Medical College, Xi'an Peihua University, Xi'an 710025, Shaanxi, China
| | - Guoyan Cui
- Department of Basic Medicine, Changzhi Medical College, Changzhi 046000, Shaanxi, China
| |
Collapse
|
12
|
Alnabulsi S, Al-Hurani EA. Pim kinase inhibitors in cancer: medicinal chemistry insights into their activity and selectivity. Drug Discov Today 2020; 25:S1359-6446(20)30374-3. [PMID: 32971234 DOI: 10.1016/j.drudis.2020.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/09/2020] [Accepted: 09/14/2020] [Indexed: 01/09/2023]
Abstract
The oncogenic Pim kinase proteins (Pim-1/2/3) regulate tumorigenesis through phosphorylating essential proteins that control cell cycle and proliferation. Pim kinase is a potential chemotherapeutic target in cancer and its inhibition is currently the focus of intensive drug design and development efforts. The distinctive presence of proline amino acids in the hinge region provides an opportunity to inhibit Pim kinase while conserving the physiological functions of other kinases and reducing the toxicity profiles of the inhibitors. Various Pim kinase inhibitors have been clinically evaluated for the treatment of hematological cancers, yet none has reached the clinic. In this review, we discuss the design and development of selective and potent Pim inhibitors with novel chemotypes focusing on structural features essential for high potency and selectivity.
Collapse
Affiliation(s)
- Soraya Alnabulsi
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, PO Box 3030, Irbid 22110, Jordan.
| | - Enas A Al-Hurani
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, PO Box 3030, Irbid 22110, Jordan
| |
Collapse
|
13
|
Wang S, Zang J, Huang M, Guan L, Xing K, Zhang J, Liu D, Zhao L. Discovery of novel (+)-Usnic acid derivatives as potential anti-leukemia agents with pan-Pim kinases inhibitory activity. Bioorg Chem 2019; 89:102971. [PMID: 31200288 DOI: 10.1016/j.bioorg.2019.102971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/20/2019] [Accepted: 04/30/2019] [Indexed: 11/24/2022]
Abstract
Usnic acid (UA) is the main secondary metabolite isolated from lichens, with moderate anticancer activity. A small group of (+)-UA derivatives characterized with flavanone moiety was designed and synthesized, and their anticancer activities were evaluated in leukemia cells. It was demonstrated that (+)-UA derivatives 6a-6g inhibited the proliferation of leukemia cells HL-60 and K562 with low micromolar IC50 values. Mechanisms of action were investigated to find that 6g induced apoptosis in HL-60 and K562 cell lines, and affected the expression of MNK/eIF4E axis-related proteins, such as Mcl-1, p-eIF4E, p-4E-BP1. Finally, kinase inhibition assay suggested 6g was a potential inhibitor of pan-Pim kinases. Meanwhile, the blocking of phosphorylation of BAD and 4E-BP1 by 6g, together with the proposed binding mode of 6g with Pim-1 further confirmed its Pim inhibition effects. Our finding provides the sight towards the potential mechanism of (+)-UA derivatives 6g as anti-leukemia agents.
Collapse
Affiliation(s)
- Shuxiang Wang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jie Zang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Min Huang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lihong Guan
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Kun Xing
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jian Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dan Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Linxiang Zhao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
14
|
PIM kinase inhibitors: Structural and pharmacological perspectives. Eur J Med Chem 2019; 172:95-108. [PMID: 30954777 DOI: 10.1016/j.ejmech.2019.03.050] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/28/2019] [Accepted: 03/19/2019] [Indexed: 02/08/2023]
Abstract
The PIM kinase, also known as serine/threonine kinase plays an important role in cancer biology and is found in three different isoforms namely PIM-1, PIM-2, and PIM-3. They are extensively distributed and are implicated in a variety of biological processes, including cell proliferation, cell differentiation, and apoptosis. They act as weak oncogene and whenever expressed in exacerbating forms are responsible for different types of human cancer. Recently, different isoforms of PIM kinase have been identified as a clinical biomarker and potential therapeutic target for personalized treatment of advanced cancer. The inhibition of PIM kinase has become a scientific interest and some inhibitors have been developed and/or are under different phases of clinical trials. Several medicinally privileged heterocyclic ring scaffolds such as pyrrole, pyrimidine, thiazolidine, benzofuran, indole, triazole, oxadiazole, and quinoline derivatives have been synthesized and evaluated for their PIM inhibitory activity. This review comprehensively focuses on pharmacological implications of PIM kinases in oncogenesis, structural insights of PIM inhibitors and their structure-activity relationships (SARs).
Collapse
|
15
|
Gao J, Wang Y, Chen Q, Yao R. Integrating molecular dynamics simulation and molecular mechanics/generalized Born surface area calculation into pharmacophore modeling: a case study on the proviral integration site for Moloney murine leukemia virus (Pim)-1 kinase inhibitors. J Biomol Struct Dyn 2019; 38:581-588. [DOI: 10.1080/07391102.2019.1571946] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jian Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Yan Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Qingqing Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Ruosi Yao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, P. R. China
- Blood Diseases Institute Xuzhou Medical University, Xuzhou, P. R. China
| |
Collapse
|
16
|
Wang X, Blackaby W, Allen V, Chan GKY, Chang JH, Chiang PC, Diène C, Drummond J, Do S, Fan E, Harstad EB, Hodges A, Hu H, Jia W, Kofie W, Kolesnikov A, Lyssikatos JP, Ly J, Matteucci M, Moffat JG, Munugalavadla V, Murray J, Nash D, Noland CL, Del Rosario G, Ross L, Rouse C, Sharpe A, Slaga D, Sun M, Tsui V, Wallweber H, Yu SF, Ebens AJ. Optimization of Pan-Pim Kinase Activity and Oral Bioavailability Leading to Diaminopyrazole (GDC-0339) for the Treatment of Multiple Myeloma. J Med Chem 2019; 62:2140-2153. [DOI: 10.1021/acs.jmedchem.8b01857] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiaojing Wang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Wesley Blackaby
- Charles River Discovery Research Services UK Limited (formerly BioFocus), Chesterford Research Park, Saffron Walden, Essex CB10 1XL, United Kingdom
| | - Vivienne Allen
- Charles River Discovery Research Services UK Limited (formerly BioFocus), Chesterford Research Park, Saffron Walden, Essex CB10 1XL, United Kingdom
| | - Grace Ka Yan Chan
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jae H. Chang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Po-Chang Chiang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Coura Diène
- Charles River Discovery Research Services UK Limited (formerly BioFocus), Chesterford Research Park, Saffron Walden, Essex CB10 1XL, United Kingdom
| | - Jason Drummond
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Steven Do
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Eric Fan
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Eric B. Harstad
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Alastair Hodges
- Charles River Discovery Research Services UK Limited (formerly BioFocus), Chesterford Research Park, Saffron Walden, Essex CB10 1XL, United Kingdom
| | - Huiyong Hu
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Wei Jia
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - William Kofie
- Charles River Discovery Research Services UK Limited (formerly BioFocus), Chesterford Research Park, Saffron Walden, Essex CB10 1XL, United Kingdom
| | - Aleksandr Kolesnikov
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Joseph P. Lyssikatos
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Justin Ly
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Mizio Matteucci
- Charles River Discovery Research Services UK Limited (formerly BioFocus), Chesterford Research Park, Saffron Walden, Essex CB10 1XL, United Kingdom
| | - John G. Moffat
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Jeremy Murray
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - David Nash
- Charles River Discovery Research Services UK Limited (formerly BioFocus), Chesterford Research Park, Saffron Walden, Essex CB10 1XL, United Kingdom
| | - Cameron L. Noland
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Geoff Del Rosario
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Leanne Ross
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Craig Rouse
- Charles River Discovery Research Services UK Limited (formerly BioFocus), Chesterford Research Park, Saffron Walden, Essex CB10 1XL, United Kingdom
| | - Andrew Sharpe
- Charles River Discovery Research Services UK Limited (formerly BioFocus), Chesterford Research Park, Saffron Walden, Essex CB10 1XL, United Kingdom
| | - Dionysos Slaga
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Minghua Sun
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Vickie Tsui
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Heidi Wallweber
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Shang-Fan Yu
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Allen J. Ebens
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
17
|
Zhang SG, Liang CG, Zhang WH. Recent Advances in Indazole-Containing Derivatives: Synthesis and Biological Perspectives. Molecules 2018; 23:E2783. [PMID: 30373212 PMCID: PMC6278422 DOI: 10.3390/molecules23112783] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/14/2018] [Accepted: 10/24/2018] [Indexed: 02/07/2023] Open
Abstract
Indazole-containing derivatives represent one of the most important heterocycles in drug molecules. Diversely substituted indazole derivatives bear a variety of functional groups and display versatile biological activities; hence, they have gained considerable attention in the field of medicinal chemistry. This review aims to summarize the recent advances in various methods for the synthesis of indazole derivatives. The current developments in the biological activities of indazole-based compounds are also presented.
Collapse
Affiliation(s)
- Shu-Guang Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Chao-Gen Liang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wei-Hua Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
18
|
Lin M, Ly J, Takahashi R, Chen J, Deese A, Robinson SJ, Kolesnikov A, Wong S, Wang X, Chang JH. Characterizing the in vitro species differences in N-glucuronidation of a potent pan-PIM inhibitor GNE-924 containing a 3,5-substituted 6-azaindazole. Xenobiotica 2017; 48:1021-1027. [PMID: 28845725 DOI: 10.1080/00498254.2017.1373312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
1. Glucuronidation of amines has been shown to exhibit large species differences, where the activity is typically more pronounced in human than in many preclinical species such as rat, mouse, dog and monkey. The purpose of this work was to characterize the in vitro glucuronidation of GNE-924, a potent pan-PIM inhibitor, to form M1 using liver microsomes (LM) and intestinal microsomes (IM). 2. M1 formation kinetics varied highly across species and between liver and intestinal microsomes. In LM incubations, rat exhibited the highest rate of M1 formation (CLint,app) at 140 ± 10 µL/min/mg protein, which was approximately 30-fold higher than human. In IM incubations, mouse exhibited the highest CLint,app at 484 ± 40 µL/min/mg protein, which was >1000-fold higher than human. In addition, CLint,app in LM was markedly higher than IM in human and monkey. In contrast, CLint,app in IM was markedly higher than LM in dog and mouse. 3. Reaction phenotyping indicated that UGT1A1, UGT1A3, UGT1A9, UGT2B4 and the intestine-specific UGT1A10 contributed to the formation of M1. 4. This is one of the first reports showing that N-glucuronidation activity is significantly greater in multiple preclinical species than in humans, and suggests that extensive intestinal N-glucuronidation may limit the oral exposure of GNE-924.
Collapse
Affiliation(s)
- Molly Lin
- a Department of Drug Metabolism and Pharmacokinetics, Genentech , South San Francisco , CA , USA
| | - Justin Ly
- a Department of Drug Metabolism and Pharmacokinetics, Genentech , South San Francisco , CA , USA
| | - Ryan Takahashi
- a Department of Drug Metabolism and Pharmacokinetics, Genentech , South San Francisco , CA , USA
| | - John Chen
- a Department of Drug Metabolism and Pharmacokinetics, Genentech , South San Francisco , CA , USA
| | - Alan Deese
- a Department of Drug Metabolism and Pharmacokinetics, Genentech , South San Francisco , CA , USA
| | - Sarah J Robinson
- a Department of Drug Metabolism and Pharmacokinetics, Genentech , South San Francisco , CA , USA
| | - Aleksandr Kolesnikov
- a Department of Drug Metabolism and Pharmacokinetics, Genentech , South San Francisco , CA , USA
| | - Susan Wong
- a Department of Drug Metabolism and Pharmacokinetics, Genentech , South San Francisco , CA , USA
| | - Xiaojing Wang
- a Department of Drug Metabolism and Pharmacokinetics, Genentech , South San Francisco , CA , USA
| | - Jae H Chang
- a Department of Drug Metabolism and Pharmacokinetics, Genentech , South San Francisco , CA , USA
| |
Collapse
|
19
|
Wang X, Kolesnikov A, Tay S, Chan G, Chao Q, Do S, Drummond J, Ebens AJ, Liu N, Ly J, Harstad E, Hu H, Moffat J, Munugalavadla V, Murray J, Slaga D, Tsui V, Volgraf M, Wallweber H, Chang JH. Discovery of 5-Azaindazole (GNE-955) as a Potent Pan-Pim Inhibitor with Optimized Bioavailability. J Med Chem 2017; 60:4458-4473. [DOI: 10.1021/acs.jmedchem.7b00418] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xiaojing Wang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Aleksandr Kolesnikov
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Suzanne Tay
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Grace Chan
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Qi Chao
- ChemPartner, No. 1 Building, 998 Halei Road,
Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| | - Steven Do
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jason Drummond
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Allen J. Ebens
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Ning Liu
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Justin Ly
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Eric Harstad
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Huiyong Hu
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - John Moffat
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Jeremy Murray
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Dionysos Slaga
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Vickie Tsui
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Matthew Volgraf
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Heidi Wallweber
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jae H. Chang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
20
|
Johnson CN, Erlanson DA, Murray CW, Rees DC. Fragment-to-Lead Medicinal Chemistry Publications in 2015. J Med Chem 2016; 60:89-99. [PMID: 27739691 DOI: 10.1021/acs.jmedchem.6b01123] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Fragment-based drug discovery (FBDD) is now well-established as a technology for generating new chemical leads and drugs. This Miniperspective provides a tabulated overview of the fragment-to-lead literature published in the year 2015, together with a commentary on trends observed across the FBDD field during this time. It is hoped that this tabulated summary will provide a useful point of reference for both FBDD practitioners and the wider medicinal chemistry community.
Collapse
Affiliation(s)
- Christopher N Johnson
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Daniel A Erlanson
- Carmot Therapeutics Inc. , 409 Illinois Street, San Francisco, California 94158, United States
| | - Christopher W Murray
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - David C Rees
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| |
Collapse
|
21
|
Pettus LH, Andrews KL, Booker SK, Chen J, Cee VJ, Chavez F, Chen Y, Eastwood H, Guerrero N, Herberich B, Hickman D, Lanman BA, Laszlo J, Lee MR, Lipford JR, Mattson B, Mohr C, Nguyen Y, Norman MH, Powers D, Reed AB, Rex K, Sastri C, Tamayo N, Wang P, Winston JT, Wu B, Wu T, Wurz RP, Xu Y, Zhou Y, Tasker AS, Wang HL. Discovery and Optimization of Quinazolinone-pyrrolopyrrolones as Potent and Orally Bioavailable Pan-Pim Kinase Inhibitors. J Med Chem 2016; 59:6407-30. [DOI: 10.1021/acs.jmedchem.6b00610] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Liping H. Pettus
- Department of Therapeutic Discovery—Medicinal
Chemistry, ‡Molecular Structure, §Pharmacokinetics and Drug Metabolism, ∥Oncology Research, ⊥Pharmaceutics, #Discovery Technologies, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - Kristin L. Andrews
- Department of Therapeutic Discovery—Medicinal
Chemistry, ‡Molecular Structure, §Pharmacokinetics and Drug Metabolism, ∥Oncology Research, ⊥Pharmaceutics, #Discovery Technologies, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - Shon K. Booker
- Department of Therapeutic Discovery—Medicinal
Chemistry, ‡Molecular Structure, §Pharmacokinetics and Drug Metabolism, ∥Oncology Research, ⊥Pharmaceutics, #Discovery Technologies, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - Jie Chen
- Department of Therapeutic Discovery—Medicinal
Chemistry, ‡Molecular Structure, §Pharmacokinetics and Drug Metabolism, ∥Oncology Research, ⊥Pharmaceutics, #Discovery Technologies, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - Victor J. Cee
- Department of Therapeutic Discovery—Medicinal
Chemistry, ‡Molecular Structure, §Pharmacokinetics and Drug Metabolism, ∥Oncology Research, ⊥Pharmaceutics, #Discovery Technologies, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - Frank Chavez
- Department of Therapeutic Discovery—Medicinal
Chemistry, ‡Molecular Structure, §Pharmacokinetics and Drug Metabolism, ∥Oncology Research, ⊥Pharmaceutics, #Discovery Technologies, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - Yuping Chen
- Department of Therapeutic Discovery—Medicinal
Chemistry, ‡Molecular Structure, §Pharmacokinetics and Drug Metabolism, ∥Oncology Research, ⊥Pharmaceutics, #Discovery Technologies, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - Heather Eastwood
- Department of Therapeutic Discovery—Medicinal
Chemistry, ‡Molecular Structure, §Pharmacokinetics and Drug Metabolism, ∥Oncology Research, ⊥Pharmaceutics, #Discovery Technologies, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - Nadia Guerrero
- Department of Therapeutic Discovery—Medicinal
Chemistry, ‡Molecular Structure, §Pharmacokinetics and Drug Metabolism, ∥Oncology Research, ⊥Pharmaceutics, #Discovery Technologies, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - Bradley Herberich
- Department of Therapeutic Discovery—Medicinal
Chemistry, ‡Molecular Structure, §Pharmacokinetics and Drug Metabolism, ∥Oncology Research, ⊥Pharmaceutics, #Discovery Technologies, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - Dean Hickman
- Department of Therapeutic Discovery—Medicinal
Chemistry, ‡Molecular Structure, §Pharmacokinetics and Drug Metabolism, ∥Oncology Research, ⊥Pharmaceutics, #Discovery Technologies, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - Brian A. Lanman
- Department of Therapeutic Discovery—Medicinal
Chemistry, ‡Molecular Structure, §Pharmacokinetics and Drug Metabolism, ∥Oncology Research, ⊥Pharmaceutics, #Discovery Technologies, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - Jimmy Laszlo
- Department of Therapeutic Discovery—Medicinal
Chemistry, ‡Molecular Structure, §Pharmacokinetics and Drug Metabolism, ∥Oncology Research, ⊥Pharmaceutics, #Discovery Technologies, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - Matthew R. Lee
- Department of Therapeutic Discovery—Medicinal
Chemistry, ‡Molecular Structure, §Pharmacokinetics and Drug Metabolism, ∥Oncology Research, ⊥Pharmaceutics, #Discovery Technologies, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - J. Russell Lipford
- Department of Therapeutic Discovery—Medicinal
Chemistry, ‡Molecular Structure, §Pharmacokinetics and Drug Metabolism, ∥Oncology Research, ⊥Pharmaceutics, #Discovery Technologies, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - Bethany Mattson
- Department of Therapeutic Discovery—Medicinal
Chemistry, ‡Molecular Structure, §Pharmacokinetics and Drug Metabolism, ∥Oncology Research, ⊥Pharmaceutics, #Discovery Technologies, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - Christopher Mohr
- Department of Therapeutic Discovery—Medicinal
Chemistry, ‡Molecular Structure, §Pharmacokinetics and Drug Metabolism, ∥Oncology Research, ⊥Pharmaceutics, #Discovery Technologies, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - Yen Nguyen
- Department of Therapeutic Discovery—Medicinal
Chemistry, ‡Molecular Structure, §Pharmacokinetics and Drug Metabolism, ∥Oncology Research, ⊥Pharmaceutics, #Discovery Technologies, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - Mark H. Norman
- Department of Therapeutic Discovery—Medicinal
Chemistry, ‡Molecular Structure, §Pharmacokinetics and Drug Metabolism, ∥Oncology Research, ⊥Pharmaceutics, #Discovery Technologies, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - David Powers
- Department of Therapeutic Discovery—Medicinal
Chemistry, ‡Molecular Structure, §Pharmacokinetics and Drug Metabolism, ∥Oncology Research, ⊥Pharmaceutics, #Discovery Technologies, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - Anthony B. Reed
- Department of Therapeutic Discovery—Medicinal
Chemistry, ‡Molecular Structure, §Pharmacokinetics and Drug Metabolism, ∥Oncology Research, ⊥Pharmaceutics, #Discovery Technologies, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - Karen Rex
- Department of Therapeutic Discovery—Medicinal
Chemistry, ‡Molecular Structure, §Pharmacokinetics and Drug Metabolism, ∥Oncology Research, ⊥Pharmaceutics, #Discovery Technologies, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - Christine Sastri
- Department of Therapeutic Discovery—Medicinal
Chemistry, ‡Molecular Structure, §Pharmacokinetics and Drug Metabolism, ∥Oncology Research, ⊥Pharmaceutics, #Discovery Technologies, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - Nuria Tamayo
- Department of Therapeutic Discovery—Medicinal
Chemistry, ‡Molecular Structure, §Pharmacokinetics and Drug Metabolism, ∥Oncology Research, ⊥Pharmaceutics, #Discovery Technologies, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - Paul Wang
- Department of Therapeutic Discovery—Medicinal
Chemistry, ‡Molecular Structure, §Pharmacokinetics and Drug Metabolism, ∥Oncology Research, ⊥Pharmaceutics, #Discovery Technologies, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - Jeffrey T. Winston
- Department of Therapeutic Discovery—Medicinal
Chemistry, ‡Molecular Structure, §Pharmacokinetics and Drug Metabolism, ∥Oncology Research, ⊥Pharmaceutics, #Discovery Technologies, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - Bin Wu
- Department of Therapeutic Discovery—Medicinal
Chemistry, ‡Molecular Structure, §Pharmacokinetics and Drug Metabolism, ∥Oncology Research, ⊥Pharmaceutics, #Discovery Technologies, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - Tian Wu
- Department of Therapeutic Discovery—Medicinal
Chemistry, ‡Molecular Structure, §Pharmacokinetics and Drug Metabolism, ∥Oncology Research, ⊥Pharmaceutics, #Discovery Technologies, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - Ryan P. Wurz
- Department of Therapeutic Discovery—Medicinal
Chemistry, ‡Molecular Structure, §Pharmacokinetics and Drug Metabolism, ∥Oncology Research, ⊥Pharmaceutics, #Discovery Technologies, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - Yang Xu
- Department of Therapeutic Discovery—Medicinal
Chemistry, ‡Molecular Structure, §Pharmacokinetics and Drug Metabolism, ∥Oncology Research, ⊥Pharmaceutics, #Discovery Technologies, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - Yihong Zhou
- Department of Therapeutic Discovery—Medicinal
Chemistry, ‡Molecular Structure, §Pharmacokinetics and Drug Metabolism, ∥Oncology Research, ⊥Pharmaceutics, #Discovery Technologies, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - Andrew S. Tasker
- Department of Therapeutic Discovery—Medicinal
Chemistry, ‡Molecular Structure, §Pharmacokinetics and Drug Metabolism, ∥Oncology Research, ⊥Pharmaceutics, #Discovery Technologies, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - Hui-Ling Wang
- Department of Therapeutic Discovery—Medicinal
Chemistry, ‡Molecular Structure, §Pharmacokinetics and Drug Metabolism, ∥Oncology Research, ⊥Pharmaceutics, #Discovery Technologies, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| |
Collapse
|
22
|
Nishiguchi GA, Burger MT, Han W, Lan J, Atallah G, Tamez V, Lindvall M, Bellamacina C, Garcia P, Feucht P, Zavorotinskaya T, Dai Y, Wong K. Design, synthesis and structure activity relationship of potent pan-PIM kinase inhibitors derived from the pyridyl carboxamide scaffold. Bioorg Med Chem Lett 2016; 26:2328-32. [PMID: 26995528 DOI: 10.1016/j.bmcl.2016.03.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 12/21/2022]
Abstract
The Pim proteins (1, 2 and 3) are serine/threonine kinases that have been found to be upregulated in many hematological malignancies and solid tumors. As a result of overlapping functions among the three isoforms, inhibition of all three Pim kinases has become an attractive strategy for cancer therapy. Herein we describe our efforts in identifying potent pan-PIM inhibitors that are derived from our previously reported pyridyl carboxamide scaffold as part of a medicinal chemistry strategy to address metabolic stability.
Collapse
Affiliation(s)
- Gisele A Nishiguchi
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, CA 94608, United States.
| | - Matthew T Burger
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, CA 94608, United States
| | - Wooseok Han
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, CA 94608, United States
| | - Jiong Lan
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, CA 94608, United States
| | - Gordana Atallah
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, CA 94608, United States
| | - Victoriano Tamez
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, CA 94608, United States
| | - Mika Lindvall
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, CA 94608, United States
| | - Cornelia Bellamacina
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, CA 94608, United States
| | - Pablo Garcia
- Oncology, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, CA 94608, United States
| | - Paul Feucht
- Oncology, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, CA 94608, United States
| | - Tatiana Zavorotinskaya
- Oncology, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, CA 94608, United States
| | - Yumin Dai
- Oncology, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, CA 94608, United States
| | - Kent Wong
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, CA 94608, United States
| |
Collapse
|