1
|
Acharyya RK, Rej RK, Hu B, Chen Z, Wu D, Lu J, Metwally H, McEachern D, Wang Y, Jiang W, Bai L, Tošović J, Gersch CL, Xu G, Zhang W, Wu W, Priestley ES, Sui Z, Sarkari F, Wen B, Sun D, Rae JM, Wang S. Discovery of ERD-1233 as a Potent and Orally Efficacious Estrogen Receptor PROTAC Degrader for the Treatment of ER+ Human Breast Cancer. J Med Chem 2024. [PMID: 39485242 DOI: 10.1021/acs.jmedchem.4c01521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Despite the development of highly effective therapies for the treatment of estrogen receptor α (ERα)-positive human breast cancer, clinical resistance to current therapies requires the development of novel therapeutic strategies. Herein, we report the discovery of ERD-1233 as a potent and orally efficacious ERα degrader designed using the PROTAC technology. ERD-1233 was developed based on Lasofoxifene as the ER binding moiety and a novel cereblon ligand through extensive optimization of the linker. ERD-1233 potently and effectively reduces the ERα protein in vitro and achieves excellent oral bioavailability in mice and rats. Oral administration of ERD-1233 effectively reduces ER protein in ER+ tumors and achieves tumor regression in the ER wild-type MCF-7 xenograft tumor model and strong tumor growth inhibition in the ESR1Y537S mutated model in mice. Our data demonstrate that ERD-1233 is a promising ER PROTAC degrader for extensive evaluation as a new therapy for the treatment of ER+ human breast cancer.
Collapse
Affiliation(s)
- Ranjan Kumar Acharyya
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rohan Kalyan Rej
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Biao Hu
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zhixiang Chen
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Dimin Wu
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jianfeng Lu
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hoda Metwally
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Donna McEachern
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yu Wang
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Wei Jiang
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Longchuan Bai
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jelena Tošović
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Christina L Gersch
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Guozhang Xu
- SK Life Science Laboratories, 2500 Renaissance Blvd, King of Prussia, Pennsylvania 19406, United States
| | - Weihong Zhang
- SK Life Science Laboratories, 2500 Renaissance Blvd, King of Prussia, Pennsylvania 19406, United States
| | - WenXue Wu
- SK Life Science Laboratories, 2500 Renaissance Blvd, King of Prussia, Pennsylvania 19406, United States
| | - E Scott Priestley
- SK Life Science Laboratories, 2500 Renaissance Blvd, King of Prussia, Pennsylvania 19406, United States
| | - Zhihua Sui
- SK Life Science Laboratories, 2500 Renaissance Blvd, King of Prussia, Pennsylvania 19406, United States
| | - Farzad Sarkari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - James M Rae
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shaomeng Wang
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Chen Z, Hu B, Rej RK, Wu D, Acharyya RK, Wang M, Xu T, Lu J, Metwally H, Wang Y, McEachern D, Bai L, Gersch CL, Wang M, Zhang W, Li Q, Wen B, Sun D, Rae JM, Wang S. Discovery of ERD-3111 as a Potent and Orally Efficacious Estrogen Receptor PROTAC Degrader with Strong Antitumor Activity. J Med Chem 2023; 66:12559-12585. [PMID: 37647546 DOI: 10.1021/acs.jmedchem.3c01186] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Estrogen receptor α (ERα) is a prime target for the treatment of ER-positive (ER+) breast cancer. Despite the development of several effective therapies targeting ERα signaling, clinical resistance remains a major challenge. In this study, we report the discovery of a new class of potent and orally bioavailable ERα degraders using the PROTAC technology, with ERD-3111 being the most promising compound. ERD-3111 exhibits potent in vitro degradation activity against ERα and demonstrates high oral bioavailability in mice, rats, and dogs. Oral administration of ERD-3111 effectively reduces the levels of wild-type and mutated ERα proteins in tumor tissues. ERD-3111 achieves tumor regression or complete tumor growth inhibition in the parental MCF-7 xenograft model with wild-type ER and two clinically relevant ESR1 mutated models in mice. ERD-3111 is a promising ERα degrader for further extensive evaluations for the treatment of ER+ breast cancer.
Collapse
Affiliation(s)
- Zhixiang Chen
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Biao Hu
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rohan Kalyan Rej
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Dimin Wu
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ranjan Kumar Acharyya
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mingliang Wang
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tianfeng Xu
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jianfeng Lu
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hoda Metwally
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yu Wang
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Donna McEachern
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Longchuan Bai
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Christina L Gersch
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Meilin Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Wenjing Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Qiuxia Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - James M Rae
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shaomeng Wang
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Dong N, Du Y, Zheng Y, Zhang H, Lv H, Yan Z. Research progress on tamoxifen and its analogs associated with nuclear receptors. Future Med Chem 2023; 15:1427-1442. [PMID: 37706220 DOI: 10.4155/fmc-2023-0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
Tamoxifen, a triphenylethylene-based selective estrogen-receptor modulator, is a landmark drug for the treatment of breast cancer and is also used for treating liver cancer and osteoporosis. Structural studies of tamoxifen have led to the synthesis of more than 20 novel tamoxifen analogs as receptor modulators, including 16 ERα modulators 2-17, an ERRβ inverse agonist 19 and six ERRγ inverse agonists 20-25. This paper summarizes the research progress and structure-activity relationships of tamoxifen analogs modulating these three nuclear receptors reported in the literature, and introduces the relationship between these three nuclear receptor-mediated diseases and tamoxifen analogs to guide the research of novel tamoxifen analogs.
Collapse
Affiliation(s)
- Ning Dong
- School of Chemistry & Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Yongli Du
- School of Chemistry & Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Yong Zheng
- School of Chemistry & Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Haibin Zhang
- School of Chemistry & Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Huiting Lv
- School of Chemistry & Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Zhijia Yan
- School of Chemistry & Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| |
Collapse
|
4
|
Rej RK, Thomas JE, Acharyya RK, Rae JM, Wang S. Targeting the Estrogen Receptor for the Treatment of Breast Cancer: Recent Advances and Challenges. J Med Chem 2023. [PMID: 37377342 DOI: 10.1021/acs.jmedchem.3c00136] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Estrogen receptor alpha (ERα) is a well-established therapeutic target for the treatment of ER-positive (ER+) breast cancers. Despite the tremendous successes achieved with tamoxifen, a selective ER modulator, and aromatase inhibitors (AIs), resistance to these therapies is a major clinical problem. Therefore, induced protein degradation and covalent inhibition have been pursued as new therapeutic approaches to target ERα. This Perspective summarizes recent progress in the discovery and development of oral selective ER degraders (SERDs), complete estrogen receptor antagonists (CERANs), selective estrogen receptor covalent antagonists (SERCAs), and proteolysis targeting chimera (PROTAC) ER degraders. We focus on those compounds which have been advanced into clinical development.
Collapse
Affiliation(s)
- Rohan Kalyan Rej
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Junius Eugene Thomas
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ranjan Kumar Acharyya
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - James Michael Rae
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shaomeng Wang
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
5
|
Bhatia N, Hazra S, Thareja S. Selective Estrogen receptor degraders (SERDs) for the treatment of breast cancer: An overview. Eur J Med Chem 2023; 256:115422. [PMID: 37163948 DOI: 10.1016/j.ejmech.2023.115422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
Discovery of SERDs has changed the direction of anticancer research, as more than 70% of breast cancer cases are estrogen receptor positive (ER+). Therapies such as selective estrogen receptor modulators (SERM) and aromatase inhibitors (AI's) have been effective, but due to endocrine resistance, SERDs are now considered essential therapeutics for the treatment of ER+ breast cancer. The present review deliberates the pathophysiology of SERDs from the literature covering various molecules in clinical trials. Estrogen receptors active sites distinguishing characteristics and interactions with currently available FDA-approved drugs have also been discussed. Designing strategy of previously reported SERDs, their SAR analysis, in silico, and the biological efficacy have also been summarized along with appropriate examples.
Collapse
Affiliation(s)
- Neha Bhatia
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Shreejita Hazra
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India.
| |
Collapse
|
6
|
Mi X, Cui B, Song J, Zhang J. Visible-Light-Promoted Direct C3-H Cyanomethylation of 2 H-Indazoles. ACS OMEGA 2023; 8:11192-11200. [PMID: 37008106 PMCID: PMC10061648 DOI: 10.1021/acsomega.2c08094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
The efficient visible-light-promoted cyanomethylation of 2H-indazoles in the presence of Ir(ppy)3 as the photocatalyst and bromoacetonitrile as the cyanomethyl radical source was achieved under mild conditions, providing a series of C3-cyanomethylated derivatives in good yields.
Collapse
|
7
|
Puri S, Sawant S, Juvale K. A comprehensive review on the indazole based derivatives as targeted anticancer agents. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
8
|
Cui B, Mi X, Zhang J. Crystal structure of 2-(2-(4-methoxyphenyl)-2 H-indazol-3-yl)acetonitrile, C 16H 13N 3O. Z KRIST-NEW CRYST ST 2023. [DOI: 10.1515/ncrs-2023-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Abstract
C16H13N3O, orthorhombic, P212121 (no. 19), a = 7.6087(4) Å, b = 9.6681(4) Å, c = 18.6600(9) Å, V = 1372.66(11) Å3, Z = 4, R
gt(F) = 0.0420, wR
ref(F
2) = 0.1093, T = 293 K.
Collapse
Affiliation(s)
- Beibei Cui
- College of Pharmacy , Henan University of Chinese Medicine , Zhengzhou 450046 , P. R. China
| | - Xia Mi
- College of Pharmacy , Henan University of Chinese Medicine , Zhengzhou 450046 , P. R. China
| | - Jingyu Zhang
- College of Pharmacy , Henan University of Chinese Medicine , Zhengzhou 450046 , P. R. China
| |
Collapse
|
9
|
Zhang C, Wei T, Yu Z, Ding Y, Su W, Xie Y. Metal-free regioselective mono- and poly-halogenation of 2-substituted indazoles. RSC Adv 2023; 13:4958-4962. [PMID: 36762091 PMCID: PMC9904359 DOI: 10.1039/d2ra07398f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/04/2023] [Indexed: 02/10/2023] Open
Abstract
An unprecedented metal-free regioselective halogenation of 2H-indazoles has been revealed, which not only realized the highly selective synthesis of mono-halogenated products, but also completed poly-halogenations by fine tuning the reaction conditions. Various mono-/poly-/hetero-halogenated indazoles were obtained in moderate to excellent yields. Notably, this approach features environmentally friendly solvents, mild reaction conditions, simple execution and short reaction time.
Collapse
Affiliation(s)
- Changjun Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Tingting Wei
- College of Pharmaceutical Sciences, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Zhichen Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Yuxin Ding
- College of Pharmaceutical Sciences, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Weike Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaeuticals, Zhejiang University of TechnologyHangzhou 310014P. R. China
| | - Yuanyuan Xie
- College of Pharmaceutical Sciences, Zhejiang University of Technology Hangzhou 310014 P. R. China .,Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaeuticals, Zhejiang University of Technology Hangzhou 310014 P. R. China.,Key Laboratory of Pharmaceutical Engineering of Zhejiang Province Hangzhou 310014 China
| |
Collapse
|
10
|
Wei T, Wang K, Yu Z, Hou J, Xie Y. Electrochemically mediated trifluoromethylation of 2H-indazole derivatives using CF3SO2Na. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Shang C, Hou Y, Meng T, Shi M, Cui G. The Anticancer Activity of Indazole Compounds: A Mini Review. Curr Top Med Chem 2021; 21:363-376. [PMID: 33238856 DOI: 10.2174/1568026620999201124154231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 11/22/2022]
Abstract
The incidence and mortality of cancer continue to grow since the current medical treatments often fail to produce a complete and durable tumor response and ultimately give rise to therapy resistance and tumor relapse. Heterocycles with potential therapeutic values are of great pharmacological importance, and among them, indazole moiety is a privileged structure in medicinal chemistry. Indazole compounds possess potential anticancer activity, and indazole-based agents such as, axitinib, lonidamine and pazopanib have already been employed for cancer therapy, demonstrating indazole compounds as useful templates for the development of novel anticancer agents. The aim of this review is to present the main aspects of exploring anticancer properties, such as the structural modifications, the structure-activity relationship and mechanisms of action, making an effort to highlight the importance and therapeutic potential of the indazole compounds in the present anticancer agents.
Collapse
Affiliation(s)
- Congshan Shang
- Medical College, Xi'an Peihua University, Xi'an 710025, Shaanxi, China
| | - Yani Hou
- Medical College, Xi'an Peihua University, Xi'an 710025, Shaanxi, China
| | - Tingting Meng
- Medical College, Xi'an Peihua University, Xi'an 710025, Shaanxi, China
| | - Min Shi
- Medical College, Xi'an Peihua University, Xi'an 710025, Shaanxi, China
| | - Guoyan Cui
- Department of Basic Medicine, Changzhi Medical College, Changzhi 046000, Shaanxi, China
| |
Collapse
|
12
|
Lu Y, Liu W. Selective Estrogen Receptor Degraders (SERDs): A Promising Strategy for Estrogen Receptor Positive Endocrine-Resistant Breast Cancer. J Med Chem 2020; 63:15094-15114. [PMID: 33138369 DOI: 10.1021/acs.jmedchem.0c00913] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Estrogen receptor (ER) plays important roles in gene transcription and the proliferation of ER positive breast cancers. Selective modulation of ER has been a therapeutic target for this specific type of breast cancer for more than 30 years. Selective estrogen receptor modulators (SERMs) and aromatase inhibitors (AIs) have been demonstrated to be effective therapeutic approaches for ER positive breast cancers. Unfortunately, 30-50% of ER positive tumors become resistant to SERM/AI treatment after 3-5 years. Fulvestrant, the only approved selective estrogen receptor degrader (SERD), is currently an important therapeutic approach for the treatment of endocrine-resistant breast cancers. The poor pharmacokinetic properties of fulvestrant have inspired the development of a new generation of oral SERDs to overcome drug resistance. In this review, we describe recent advances in ERα structure, functions, and mechanisms of endocrine resistance and summarize the development of oral SERDs in both academic and industrial areas.
Collapse
Affiliation(s)
- Yunlong Lu
- School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Wukun Liu
- School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
13
|
Wang L, Sharma A. The Quest for Orally Available Selective Estrogen Receptor Degraders (SERDs). ChemMedChem 2020; 15:2072-2097. [PMID: 32916035 DOI: 10.1002/cmdc.202000473] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/31/2020] [Indexed: 01/10/2023]
Abstract
Estrogen receptor-alpha (ERα) is the target of endocrine therapies for the treatment of more than 70 % of ERα-positive breast cancers. Selective estrogen receptor degraders (SERDs) antagonize estrogen binding and target the receptor for degradation, representing the last line of treatment for resistant metastatic breast cancer patients. However, the clinical efficacy of the lone clinically approved SERD (Fulvestrant) is limited by its poor oral bioavailability. Recently, several analogues of GW5638, an acrylic acid-based ERα ligand developed by Glaxo Research Institute in 1994, have been reported as promising orally bioavailable SERDs. Some of these compounds are currently in clinical trials, while various other structurally novel SERDs have also been reported by pharma as well as academic research groups. This review provides a critical analysis of the recent developments in orally available SERDs, with a focus on the structure-activity relationships, binding interactions and pharmacokinetic properties of these compounds.
Collapse
Affiliation(s)
- Lucia Wang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA
| | - Abhishek Sharma
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA
| |
Collapse
|
14
|
Scott JS, Moss TA, Balazs A, Barlaam B, Breed J, Carbajo RJ, Chiarparin E, Davey PRJ, Delpuech O, Fawell S, Fisher DI, Gagrica S, Gangl ET, Grebe T, Greenwood RD, Hande S, Hatoum-Mokdad H, Herlihy K, Hughes S, Hunt TA, Huynh H, Janbon SLM, Johnson T, Kavanagh S, Klinowska T, Lawson M, Lister AS, Marden S, McGinnity DF, Morrow CJ, Nissink JWM, O'Donovan DH, Peng B, Polanski R, Stead DS, Stokes S, Thakur K, Throner SR, Tucker MJ, Varnes J, Wang H, Wilson DM, Wu D, Wu Y, Yang B, Yang W. Discovery of AZD9833, a Potent and Orally Bioavailable Selective Estrogen Receptor Degrader and Antagonist. J Med Chem 2020; 63:14530-14559. [PMID: 32910656 DOI: 10.1021/acs.jmedchem.0c01163] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Herein we report the optimization of a series of tricyclic indazoles as selective estrogen receptor degraders (SERD) and antagonists for the treatment of ER+ breast cancer. Structure based design together with systematic investigation of each region of the molecular architecture led to the identification of N-[1-(3-fluoropropyl)azetidin-3-yl]-6-[(6S,8R)-8-methyl-7-(2,2,2-trifluoroethyl)-6,7,8,9-tetrahydro-3H-pyrazolo[4,3-f]isoquinolin-6-yl]pyridin-3-amine (28). This compound was demonstrated to be a highly potent SERD that showed a pharmacological profile comparable to fulvestrant in its ability to degrade ERα in both MCF-7 and CAMA-1 cell lines. A stringent control of lipophilicity ensured that 28 had favorable physicochemical and preclinical pharmacokinetic properties for oral administration. This, combined with demonstration of potent in vivo activity in mouse xenograft models, resulted in progression of this compound, also known as AZD9833, into clinical trials.
Collapse
Affiliation(s)
- James S Scott
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Thomas A Moss
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Amber Balazs
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Bernard Barlaam
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Jason Breed
- Discovery Sciences R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | | | | | - Paul R J Davey
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Oona Delpuech
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Stephen Fawell
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - David I Fisher
- Discovery Sciences R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | | | - Eric T Gangl
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Tyler Grebe
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | | | - Sudhir Hande
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Holia Hatoum-Mokdad
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Kara Herlihy
- Discovery Sciences R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Samantha Hughes
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Thomas A Hunt
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Hoan Huynh
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Sophie L M Janbon
- Early Chemical Development, Pharmaceutical Sciences, R&D, Macclesfield, United Kingdom
| | - Tony Johnson
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Stefan Kavanagh
- Oncology Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | | | - Mandy Lawson
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Andrew S Lister
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Stacey Marden
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, Boston, Massachusetts, United States
| | | | | | | | | | - Bo Peng
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Radoslaw Polanski
- Discovery Sciences R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Darren S Stead
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Stephen Stokes
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Kumar Thakur
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Scott R Throner
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | | | - Jeffrey Varnes
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Haixia Wang
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - David M Wilson
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Dedong Wu
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, Boston, Massachusetts, United States
| | - Ye Wu
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Bin Yang
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Wenzhan Yang
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, Boston, Massachusetts, United States
| |
Collapse
|
15
|
Ghosh S, Mondal S, Hajra A. Direct Catalytic Functionalization of Indazole Derivatives. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000423] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sumit Ghosh
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| | - Susmita Mondal
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| | - Alakananda Hajra
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| |
Collapse
|
16
|
Srivastava A, Singh PK, Ali A, Singh PP, Srivastava V. Recent applications of Rose Bengal catalysis in N-heterocycles: a short review. RSC Adv 2020; 10:39495-39508. [PMID: 35515398 PMCID: PMC9057485 DOI: 10.1039/d0ra07400d] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/18/2020] [Indexed: 11/21/2022] Open
Abstract
The visible light harnessing ability of Rose Bengal, an organic dye, has been extensively employed in organic chemistry over the last few years. In visible light mediated reactions, this photoredox catalyst operates through multiple pathways and has the ability to provide distinctly different and valuable results. The most significant of these results are bond creation, bond functionalization, particularly for C–H and C–heteroatom bonds, and cross couplings. It is crucial to study these cases whenever these bond formations and couplings lead to the formation of heterocyclic compounds or their functionalization. The diverse biological activity and medicinal applications of heterocyclic compounds is an extensively explored area. This review primarily attempts to demonstrate the synthetic potential of Rose Bengal for synthesis and site selective functionalization of nitrogen containing heterocycles. The recent applications of Rose Bengal as a photocatalyst for the synthesis and functionalization of N-heterocycles have been discussed.![]()
Collapse
Affiliation(s)
| | | | - Akram Ali
- Department of Chemistry
- CMP Degree College
- Prayagraj
- India
| | - Praveen P. Singh
- Department of Chemistry
- United College of Engineering and Research
- Prayagraj
- India
| | | |
Collapse
|
17
|
El-Ahmad Y, Tabart M, Halley F, Certal V, Thompson F, Filoche-Rommé B, Gruss-Leleu F, Muller C, Brollo M, Fabien L, Loyau V, Bertin L, Richepin P, Pilorge F, Desmazeau P, Girardet C, Beccari S, Louboutin A, Lebourg G, Le-Roux J, Terrier C, Vallée F, Steier V, Mathieu M, Rak A, Abecassis PY, Vicat P, Benard T, Bouaboula M, Sun F, Shomali M, Hebert A, Levit M, Cheng H, Courjaud A, Ginesty C, Perrault C, Garcia-Echeverria C, McCort G, Schio L. Discovery of 6-(2,4-Dichlorophenyl)-5-[4-[(3 S)-1-(3-fluoropropyl)pyrrolidin-3-yl]oxyphenyl]-8,9-dihydro-7 H-benzo[7]annulene-2-carboxylic acid (SAR439859), a Potent and Selective Estrogen Receptor Degrader (SERD) for the Treatment of Estrogen-Receptor-Positive Breast Cancer. J Med Chem 2019; 63:512-528. [PMID: 31721572 DOI: 10.1021/acs.jmedchem.9b01293] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
More than 75% of breast cancers are estrogen receptor alpha (ERα) positive (ER+), and resistance to current hormone therapies occurs in one-third of ER+ patients. Tumor resistance is still ERα-dependent, but mutations usually confer constitutive activation to the hormone receptor, rendering ERα modulator drugs such as tamoxifen and aromatase inhibitors ineffective. Fulvestrant is a potent selective estrogen receptor degrader (SERD), which degrades the ERα receptor in drug-resistant tumors and has been approved for the treatment of hormone-receptor-positive metastatic breast cancer following antiestrogen therapy. However, fulvestrant shows poor pharmacokinetic properties in human, low solubility, weak permeation, and high metabolism, limiting its administration to inconvenient intramuscular injections. This Drug Annotation describes the identification and optimization of a new series of potent orally available SERDs, which led to the discovery of 6-(2,4-dichlorophenyl)-5-[4-[(3S)-1-(3-fluoropropyl)pyrrolidin-3-yl]oxyphenyl]-8,9-dihydro-7H-benzo[7]annulene-2-carboxylic acid (43d), showing promising antitumor activity in breast cancer mice xenograft models and whose properties warranted clinical evaluation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Monsif Bouaboula
- Oncology , Sanofi , 640 Memorial Drive , Cambridge , Massachusetts 02139 , United States
| | - Fangxian Sun
- Oncology , Sanofi , 640 Memorial Drive , Cambridge , Massachusetts 02139 , United States
| | - Maysoun Shomali
- Oncology , Sanofi , 640 Memorial Drive , Cambridge , Massachusetts 02139 , United States
| | - Andrew Hebert
- Oncology , Sanofi , 640 Memorial Drive , Cambridge , Massachusetts 02139 , United States
| | - Mikhail Levit
- Oncology , Sanofi , 640 Memorial Drive , Cambridge , Massachusetts 02139 , United States
| | - Hong Cheng
- Oncology , Sanofi , 640 Memorial Drive , Cambridge , Massachusetts 02139 , United States
| | | | | | | | | | | | | |
Collapse
|
18
|
Wiles RJ, Phelan JP, Molander GA. Metal-free defluorinative arylation of trifluoromethyl alkenes via photoredox catalysis. Chem Commun (Camb) 2019; 55:7599-7602. [PMID: 31199418 PMCID: PMC7210470 DOI: 10.1039/c9cc04265b] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Literature methods to access gem-difluoroalkenes are largely limited to harsh, organometallic-based methods, and known photoredox-mediated processes are not amenable to aryl radical addition to trifluoromethyl alkenes. A metal-free, functional group-tolerant method for the preparation of benzylic gem-difluoroalkenes is described. Halogen atom abstraction from (hetero)aryl halides generates aryl radicals that undergo a defluorinative arylation of α-trifluoromethyl alkenes, tolerating electronically disparate aryl radicals and α-trifluoromethyl alkenes.
Collapse
Affiliation(s)
- Rebecca J Wiles
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323, USA.
| | - James P Phelan
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323, USA.
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323, USA.
| |
Collapse
|
19
|
Selective estrogen receptor degraders with novel structural motifs induce regression in a tamoxifen-resistant breast cancer xenograft. Bioorg Med Chem Lett 2019; 29:367-372. [DOI: 10.1016/j.bmcl.2018.12.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/07/2018] [Accepted: 12/17/2018] [Indexed: 12/23/2022]
|
20
|
Scott JS, Bailey A, Buttar D, Carbajo RJ, Curwen J, Davey PRJ, Davies RDM, Degorce SL, Donald C, Gangl E, Greenwood R, Groombridge SD, Johnson T, Lamont S, Lawson M, Lister A, Morrow CJ, Moss TA, Pink JH, Polanski R. Tricyclic Indazoles-A Novel Class of Selective Estrogen Receptor Degrader Antagonists. J Med Chem 2019; 62:1593-1608. [PMID: 30640465 DOI: 10.1021/acs.jmedchem.8b01837] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Herein, we report the identification and synthesis of a series of tricyclic indazoles as a novel class of selective estrogen receptor degrader antagonists. Replacement of a phenol, present in our previously reported tetrahydroisoquinoline scaffold, with an indazole group led to the removal of a reactive metabolite signal in an in vitro glutathione trapping assay. Further optimization, guided by X-ray crystal structures and NMR conformational work, varied the alkyl side chain and pendant aryl group and resulted in compounds with low turnover in human hepatocytes and enhanced chemical stability. Compound 9 was profiled as a representative of the series in terms of pharmacology and demonstrated the desired estrogen receptor α degrader-antagonist profile and demonstrated activity in a xenograft model of breast cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Eric Gangl
- Oncology IMED Biotech Unit , AstraZeneca, R&D Boston , 35 Gatehouse Drive , Waltham , Massachusetts 02451 , United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhang SG, Liang CG, Zhang WH. Recent Advances in Indazole-Containing Derivatives: Synthesis and Biological Perspectives. Molecules 2018; 23:E2783. [PMID: 30373212 PMCID: PMC6278422 DOI: 10.3390/molecules23112783] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/14/2018] [Accepted: 10/24/2018] [Indexed: 02/07/2023] Open
Abstract
Indazole-containing derivatives represent one of the most important heterocycles in drug molecules. Diversely substituted indazole derivatives bear a variety of functional groups and display versatile biological activities; hence, they have gained considerable attention in the field of medicinal chemistry. This review aims to summarize the recent advances in various methods for the synthesis of indazole derivatives. The current developments in the biological activities of indazole-based compounds are also presented.
Collapse
Affiliation(s)
- Shu-Guang Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Chao-Gen Liang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wei-Hua Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
22
|
Wang L, Guillen VS, Sharma N, Flessa K, Min J, Carlson KE, Toy W, Braqi S, Katzenellenbogen BS, Katzenellenbogen JA, Chandarlapaty S, Sharma A. New Class of Selective Estrogen Receptor Degraders (SERDs): Expanding the Toolbox of PROTAC Degrons. ACS Med Chem Lett 2018; 9:803-808. [PMID: 30128071 DOI: 10.1021/acsmedchemlett.8b00106] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/05/2018] [Indexed: 12/14/2022] Open
Abstract
An effective endocrine therapy for breast cancer is to selectively and effectively degrade the estrogen receptor (ER). Up until now, there have been largely only two molecular scaffolds capable of doing this. In this study, we have developed new classes of scaffolds that possess selective estrogen receptor degrader (SERD) and ER antagonistic properties. These novel SERDs potently inhibit MCF-7 breast cancer cell proliferation and the expression of ER target genes, and their efficacy is comparable to Fulvestrant. Unlike Fulvestrant, the modular protein-targeted chimera (PROTAC)-type design of these novel SERDs should allow easy diversification into a library of analogs to further fine-tune their pharmacokinetic properties including oral availability. This work also expands the pool of currently available PROTAC-type scaffolds that could be beneficial for targeted degradation of various other therapeutically important proteins.
Collapse
Affiliation(s)
- Lucia Wang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07601 United States
| | - Valeria S. Guillen
- Department of Chemistry, Department of Molecular and Integrative Physiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801 United States
| | - Naina Sharma
- Department of Chemistry, Department of Molecular and Integrative Physiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801 United States
| | - Kevin Flessa
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07601 United States
| | - Jian Min
- Department of Chemistry, Department of Molecular and Integrative Physiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801 United States
| | - Kathryn E. Carlson
- Department of Chemistry, Department of Molecular and Integrative Physiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801 United States
| | - Weiyi Toy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Sara Braqi
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07601 United States
| | - Benita S. Katzenellenbogen
- Department of Chemistry, Department of Molecular and Integrative Physiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801 United States
| | - John A. Katzenellenbogen
- Department of Chemistry, Department of Molecular and Integrative Physiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801 United States
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Abhishek Sharma
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07601 United States
| |
Collapse
|
23
|
Dong J, Zhang Q, Wang Z, Huang G, Li S. Recent Advances in the Development of Indazole-based Anticancer Agents. ChemMedChem 2018; 13:1490-1507. [PMID: 29863292 DOI: 10.1002/cmdc.201800253] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/25/2018] [Indexed: 12/20/2022]
Abstract
Cancer is one of the leading causes of human mortality globally; therefore, intensive efforts have been made to seek new active drugs with improved anticancer efficacy. Indazole-containing derivatives are endowed with a broad range of biological properties, including anti-inflammatory, antimicrobial, anti-HIV, antihypertensive, and anticancer activities. In recent years, the development of anticancer drugs has given rise to a wide range of indazole derivatives, some of which exhibit outstanding activity against various tumor types. The aim of this review is to outline recent developments concerning the anticancer activity of indazole derivatives, as well as to summarize the design strategies and structure-activity relationships of these compounds.
Collapse
Affiliation(s)
- Jinyun Dong
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China
| | - Qijing Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China
| | - Zengtao Wang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China
| | - Guang Huang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China
| | - Shaoshun Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China
| |
Collapse
|
24
|
Meyer MR, Barton M. GPER blockers as Nox downregulators: A new drug class to target chronic non-communicable diseases. J Steroid Biochem Mol Biol 2018; 176:82-87. [PMID: 28343901 DOI: 10.1016/j.jsbmb.2017.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 01/22/2023]
Abstract
Oxidative stress is a hallmark of chronic non-communicable diseases such as arterial hypertension, coronary artery disease, diabetes, and chronic renal disease. Cardiovascular diseases are characterized by increased production of reactive oxygen species (ROS) by NAPDH oxidase 1 (Nox1) and additional Nox isoforms among other sources. Activation of the G protein-coupled estrogen receptor (GPER) can mediate multiple salutary effects on the cardiovascular system. However, GPER also has constitutive activity, e.g. in the absence of specific agonists, that was recently shown to promote hypertension and aging-induced tissue damage by promoting Nox1-derived production of ROS. Furthermore, the small molecule GPER blocker (GRB) G36 reduces blood pressure and vascular ROS production by selectively down-regulating Nox1 expression. These unexpected findings revealed GRBs as first in class Nox downregulators capable to selectively reduce the increased expression and activity of Nox1 in disease conditions. Here, we will discuss the paradigm shift from selective GPER activation to ligand-independent, constitutive GPER signaling as a key regulator of Nox-derived oxidative stress, and the surprising identification of GRBs as the first Nox downregulators for the treatment of chronic non-communicable diseases.
Collapse
Affiliation(s)
- Matthias R Meyer
- Institute of Primary Care, University of Zurich, Switzerland; Division of Cardiology, Triemli City Hospital, Zurich, Switzerland.
| | - Matthias Barton
- Molecular Internal Medicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
25
|
Abdel-Magid AF. Selective Estrogen Receptor Degraders (SERDs): A Promising Treatment to Overcome Resistance to Endocrine Therapy in ERα-Positive Breast Cancer. ACS Med Chem Lett 2017; 8:1129-1131. [PMID: 29152041 DOI: 10.1021/acsmedchemlett.7b00424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Indexed: 11/29/2022] Open
|
26
|
Muragishi K, Asahara H, Nishiwaki N. Hydrohalogenation of Ethynylpyridines Involving Nucleophilic Attack of a Halide Ion. ACS OMEGA 2017; 2:1265-1272. [PMID: 31457502 PMCID: PMC6640932 DOI: 10.1021/acsomega.7b00133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/23/2017] [Indexed: 06/10/2023]
Abstract
Efficient hydrochlorination of 2-ethynylpyridines was achieved without the use of special reagents. Ethynylpyridine readily reacts with hydrochloric acid to form a pyridinium salt. The salt formation considerably enhances the electrophilicity of the ethynyl group and attracts a chloride ion as the counteranion. The spatial proximity facilitates the nucleophilic addition of the halide anion to the ethynyl group, producing 2-(2-chloroethenyl)pyridine in high yields. This protocol could also be applied for hydrobromination and hydroiodination using hydrobromic and hydroiodic acids, respectively. In the case of acetic acid, the reaction did not proceed because of the low acidity and lack of salt formation. This problem was overcome by exchanging the counteranion using silver acetate; the resultant pyridinium acetate underwent hydroacetoxylation.
Collapse
Affiliation(s)
- Kengo Muragishi
- School
of Environmental Science and Engineering and Research Center for Material Science
and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan
| | - Haruyasu Asahara
- School
of Environmental Science and Engineering and Research Center for Material Science
and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan
| | - Nagatoshi Nishiwaki
- School
of Environmental Science and Engineering and Research Center for Material Science
and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan
| |
Collapse
|
27
|
Huang D, Yang F, Wang Y, Guan X. Mechanisms of resistance to selective estrogen receptor down-regulator in metastatic breast cancer. Biochim Biophys Acta Rev Cancer 2017; 1868:148-156. [PMID: 28344099 DOI: 10.1016/j.bbcan.2017.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/18/2017] [Accepted: 03/21/2017] [Indexed: 02/07/2023]
Abstract
Based on the prominent role estrogen receptor (ER) plays in breast cancer, endocrine therapy has been developed to block the ER pathway and has shown great effectiveness. Fulvestrant, the first selective ER down-regulator (SERD), was demonstrated to completely suppress ERα and notably efficient. However, resistance to fulvestrant occurs, either intrinsic or acquired during the treatment. Several potential mechanisms inducing fulvestrant resistance have been proposed, composed of activated ERα-independent compensatory growth factor signaling, stimulated downstream kinases, altered cell cycle mediators, etcetera. Experimentally, combinations of fulvestrant with targeted treatments were reported to eliminate the resistance and improve the effect of fulvestrant. Meanwhile, some clinical trials associated with the targeted combination therapies are in progress. This review focuses on the underlying mechanisms that contribute to fulvestrant resistance in ER-positive breast cancer and provides an overview of combined fulvestrant with targeted agents to shed light on optimal therapies for patients with ER-positive breast cancer.
Collapse
Affiliation(s)
- Doudou Huang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China
| | - Fang Yang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China
| | - Yucai Wang
- Department of Oncology, Mayo Clinic, Rochester, MN, United States
| | - Xiaoxiang Guan
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China.
| |
Collapse
|
28
|
Burks HE, Abrams T, Kirby CA, Baird J, Fekete A, Hamann LG, Kim S, Lombardo F, Loo A, Lubicka D, Macchi K, McDonnell DP, Mishina Y, Norris JD, Nunez J, Saran C, Sun Y, Thomsen NM, Wang C, Wang J, Peukert S. Discovery of an Acrylic Acid Based Tetrahydroisoquinoline as an Orally Bioavailable Selective Estrogen Receptor Degrader for ERα+ Breast Cancer. J Med Chem 2017; 60:2790-2818. [DOI: 10.1021/acs.jmedchem.6b01468] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Heather E. Burks
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Tinya Abrams
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Christina A. Kirby
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jason Baird
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Alexander Fekete
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Lawrence G. Hamann
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Sunkyu Kim
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Franco Lombardo
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Alice Loo
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Danuta Lubicka
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Kaitlin Macchi
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Donald P. McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Yuji Mishina
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - John D. Norris
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Jill Nunez
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Chitra Saran
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yingchuan Sun
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Noel M. Thomsen
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Chunrong Wang
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jianling Wang
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Stefan Peukert
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
29
|
Xiong R, Zhao J, Gutgesell LM, Wang Y, Lee S, Karumudi B, Zhao H, Lu Y, Tonetti DA, Thatcher GRJ. Novel Selective Estrogen Receptor Downregulators (SERDs) Developed against Treatment-Resistant Breast Cancer. J Med Chem 2017; 60:1325-1342. [PMID: 28117994 DOI: 10.1021/acs.jmedchem.6b01355] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Resistance to the selective estrogen receptor modulator tamoxifen and to aromatase inhibitors that lower circulating estradiol occurs in up to 50% of patients, generally leading to an endocrine-independent ER+ phenotype. Selective ER downregulators (SERDs) are able to ablate ER and thus, theoretically, to prevent survival of both endocrine-dependent and -independent ER+ tumors. The clinical SERD fulvestrant is hampered by intramuscular administration and undesirable pharmacokinetics. Novel SERDs were designed using the 6-OH-benzothiophene (BT) scaffold common to arzoxifene and raloxifene. Treatment-resistant (TR) ER+ cell lines (MCF-7:5C and MCF-7:TAM1) were used for optimization, followed by validation in the parent endocrine-dependent cell line (MCF-7:WS8), in 2D and 3D cultures, using ERα in-cell westerns, ERE-luciferase, and cell viability assays, with 2 (GDC-0810/ARN-810) used for comparison. Two BT SERDs with superior in vitro activity to 2 were studied for bioavailability and shown to cause regression of a TR, endocrine-independent ER+ xenograft superior to that with 2.
Collapse
Affiliation(s)
- Rui Xiong
- Department of Medicinal Chemistry & Pharmacognosy, ‡Department of Biopharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago , 833 S. Wood St., Chicago, Illinois 60612, United States
| | - Jiong Zhao
- Department of Medicinal Chemistry & Pharmacognosy, ‡Department of Biopharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago , 833 S. Wood St., Chicago, Illinois 60612, United States
| | - Lauren M Gutgesell
- Department of Medicinal Chemistry & Pharmacognosy, ‡Department of Biopharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago , 833 S. Wood St., Chicago, Illinois 60612, United States
| | - Yueting Wang
- Department of Medicinal Chemistry & Pharmacognosy, ‡Department of Biopharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago , 833 S. Wood St., Chicago, Illinois 60612, United States
| | - Sue Lee
- Department of Medicinal Chemistry & Pharmacognosy, ‡Department of Biopharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago , 833 S. Wood St., Chicago, Illinois 60612, United States
| | - Bhargava Karumudi
- Department of Medicinal Chemistry & Pharmacognosy, ‡Department of Biopharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago , 833 S. Wood St., Chicago, Illinois 60612, United States
| | - Huiping Zhao
- Department of Medicinal Chemistry & Pharmacognosy, ‡Department of Biopharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago , 833 S. Wood St., Chicago, Illinois 60612, United States
| | - Yunlong Lu
- Department of Medicinal Chemistry & Pharmacognosy, ‡Department of Biopharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago , 833 S. Wood St., Chicago, Illinois 60612, United States
| | - Debra A Tonetti
- Department of Medicinal Chemistry & Pharmacognosy, ‡Department of Biopharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago , 833 S. Wood St., Chicago, Illinois 60612, United States
| | - Gregory R J Thatcher
- Department of Medicinal Chemistry & Pharmacognosy, ‡Department of Biopharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago , 833 S. Wood St., Chicago, Illinois 60612, United States
| |
Collapse
|
30
|
Pennington LD, Moustakas DT. The Necessary Nitrogen Atom: A Versatile High-Impact Design Element for Multiparameter Optimization. J Med Chem 2017; 60:3552-3579. [PMID: 28177632 DOI: 10.1021/acs.jmedchem.6b01807] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is a continued desire in biomedical research to reduce the number and duration of design cycles required to optimize lead compounds into high-quality chemical probes or safe and efficacious drug candidates. The insightful application of impactful molecular design elements is one approach toward achieving this goal. The replacement of a CH group with a N atom in aromatic and heteroaromatic ring systems can have many important effects on molecular and physicochemical properties and intra- and intermolecular interactions that can translate to improved pharmacological profiles. In this Perspective, the "necessary nitrogen atom" is shown to be a versatile high-impact design element for multiparameter optimization, wherein ≥10-, 100-, or 1000-fold improvement in a variety of key pharmacological parameters can be realized.
Collapse
Affiliation(s)
- Lewis D Pennington
- Medicinal Chemistry and ‡Modeling and Informatics, Alkermes, Plc , 852 Winter Street, Waltham, Massachusetts 02451-1420, United States
| | - Demetri T Moustakas
- Medicinal Chemistry and ‡Modeling and Informatics, Alkermes, Plc , 852 Winter Street, Waltham, Massachusetts 02451-1420, United States
| |
Collapse
|
31
|
Abstract
Small-molecule drug discovery has traditionally focused on occupancy of a binding site that directly affects protein function, and this approach typically precludes targeting proteins that lack such amenable sites. Furthermore, high systemic drug exposures may be needed to maintain sufficient target inhibition in vivo, increasing the risk of undesirable off-target effects. Induced protein degradation is an alternative approach that is event-driven: upon drug binding, the target protein is tagged for elimination. Emerging technologies based on proteolysis-targeting chimaeras (PROTACs) that exploit cellular quality control machinery to selectively degrade target proteins are attracting considerable attention in the pharmaceutical industry owing to the advantages they could offer over traditional small-molecule strategies. These advantages include the potential to reduce systemic drug exposure, the ability to counteract increased target protein expression that often accompanies inhibition of protein function and the potential ability to target proteins that are not currently therapeutically tractable, such as transcription factors, scaffolding and regulatory proteins.
Collapse
Affiliation(s)
| | - Craig M. Crews
- Departments of Molecular, Cellular & Developmental Biology; Chemistry; Pharmacology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
32
|
Abstract
Protein homeostasis networks are highly regulated systems responsible for maintaining the health and productivity of cells. Whereas therapeutics have been developed to disrupt protein homeostasis, more recently identified techniques have been used to repurpose homeostatic networks to effect degradation of disease-relevant proteins. Here, we review recent advances in the use of small molecules to degrade proteins in a selective manner. First, we highlight all-small-molecule techniques with direct clinical application. Second, we describe techniques that may find broader acceptance in the biomedical research community that require little or no synthetic chemistry. In addition to serving as innovative research tools, these new approaches to control intracellular protein levels offer the potential to develop novel therapeutics targeting proteins that are not currently pharmaceutically vulnerable.
Collapse
Affiliation(s)
- Daniel P Bondeson
- Department of Molecular, Cellular, and Developmental Biology, Department of Chemistry, and Department of Pharmacology, Yale University, New Haven, Connecticut 06511;
| | - Craig M Crews
- Department of Molecular, Cellular, and Developmental Biology, Department of Chemistry, and Department of Pharmacology, Yale University, New Haven, Connecticut 06511;
| |
Collapse
|
33
|
Functionalization of indazoles by means of transition metal-catalyzed cross-coupling reactions. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.08.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|