1
|
Barhoosh H, Dixit A, Cochrane WG, Cavett V, Prince RN, Blair BO, Ward FR, McClure KF, Patten PA, Paulick MG, Paegel BM. Activity-Based DNA-Encoded Library Screening for Selective Inhibitors of Eukaryotic Translation. ACS CENTRAL SCIENCE 2024; 10:1960-1968. [PMID: 39463829 PMCID: PMC11503492 DOI: 10.1021/acscentsci.4c01218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/04/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024]
Abstract
Small molecule probes exist for only ∼2% of human proteins because most lack functional binding pockets or cannot be assayed for high-throughput screening. Selective translation modulation circumvents canonical druggability and assay development constraints by using in vitro transcription-translation (IVTT) as a universal biochemical screening assay. We developed an IVTT activity assay by fusing a GFP reporter to various target gene sequences and screened the target sequences for inhibitors in microfluidic picoliter-scale droplets using a 5,348-member translation inhibitor DNA-encoded library (DEL). Screening a proof-of-concept PCSK9-GFP reporter yielded many hits; 6/7 hits inhibited PCSK9-GFP IVTT (IC50 1-20 μM), and the lead hit reduced PCSK9 levels in HepG2 cells. Preliminary selectivity was informed by counterscreening the DEL against a frameshift mutant PCSK9-GFP reporter. A plug-and-play approach to assay development and screening was demonstrated by scouting the DEL for activity using reporter genes of targets with difficult-to-assay or even unknown function (RPL27, KRASG12D, MST1, USO1). This microfluidic IVTT DEL screening platform could scale probe discovery to the human proteome and perhaps more broadly across the tree of life.
Collapse
Affiliation(s)
- Huda Barhoosh
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
| | - Anjali Dixit
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
| | - Wesley G. Cochrane
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
| | - Valerie Cavett
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
| | - Robin N. Prince
- Initial
Therapeutics, South San Francisco, California 94080, United States
| | - Brooke O. Blair
- Initial
Therapeutics, South San Francisco, California 94080, United States
| | - Fred R. Ward
- Initial
Therapeutics, South San Francisco, California 94080, United States
| | - Kim F. McClure
- Initial
Therapeutics, South San Francisco, California 94080, United States
| | - Phillip A. Patten
- Initial
Therapeutics, South San Francisco, California 94080, United States
| | - Margot G. Paulick
- Initial
Therapeutics, South San Francisco, California 94080, United States
| | - Brian M. Paegel
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
- Departments
of Chemistry & Biomedical Engineering, University of California, Irvine, California 92697, United States
| |
Collapse
|
2
|
Zhao G, Zhu M, Li Y, Zhang G, Li Y. Using DNA-encoded libraries of fragments for hit discovery of challenging therapeutic targets. Expert Opin Drug Discov 2024; 19:725-740. [PMID: 38753553 DOI: 10.1080/17460441.2024.2354287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION The effectiveness of Fragment-based drug design (FBDD) for targeting challenging therapeutic targets has been hindered by two factors: the small library size and the complexity of the fragment-to-hit optimization process. The DNA-encoded library (DEL) technology offers a compelling and robust high-throughput selection approach to potentially address these limitations. AREA COVERED In this review, the authors propose the viewpoint that the DEL technology matches perfectly with the concept of FBDD to facilitate hit discovery. They begin by analyzing the technical limitations of FBDD from a medicinal chemistry perspective and explain why DEL may offer potential solutions to these limitations. Subsequently, they elaborate in detail on how the integration of DEL with FBDD works. In addition, they present case studies involving both de novo hit discovery and full ligand discovery, especially for challenging therapeutic targets harboring broad drug-target interfaces. EXPERT OPINION The future of DEL-based fragment discovery may be promoted by both technical advances and application scopes. From the technical aspect, expanding the chemical diversity of DEL will be essential to achieve success in fragment-based drug discovery. From the application scope side, DEL-based fragment discovery holds promise for tackling a series of challenging targets.
Collapse
Affiliation(s)
- Guixian Zhao
- Chongqing University FuLing Hospital, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Mengping Zhu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
3
|
Zhou Y, Shen W, Gao Y, Peng J, Li Q, Wei X, Liu S, Lam FS, Mayol-Llinàs J, Zhao G, Li G, Li Y, Sun H, Cao Y, Li X. Protein-templated ligand discovery via the selection of DNA-encoded dynamic libraries. Nat Chem 2024; 16:543-555. [PMID: 38326646 DOI: 10.1038/s41557-024-01442-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024]
Abstract
DNA-encoded chemical libraries (DELs) have become a powerful technology platform in drug discovery. Dual-pharmacophore DELs display two sets of small molecules at the termini of DNA duplexes, thereby enabling the identification of synergistic binders against biological targets, and have been successfully applied in fragment-based ligand discovery and affinity maturation of known ligands. However, dual-pharmacophore DELs identify separate binders that require subsequent linking to obtain the full ligands, which is often challenging. Here we report a protein-templated DEL selection approach that can identify full ligand/inhibitor structures from DNA-encoded dynamic libraries (DEDLs) without the need for subsequent fragment linking. Our approach is based on dynamic DNA hybridization and target-templated in situ ligand synthesis, and it incorporates and encodes the linker structures in the library, along with the building blocks, to be sampled by the target protein. To demonstrate the performance of this method, 4.35-million- and 3.00-million-member DEDLs with different library architectures were prepared, and hit selection was achieved against four therapeutically relevant target proteins.
Collapse
Grants
- AoE/P-705/16, 17301118, 17111319, 17303220, 17300321, 17318322, C7005-20G, C7016-22G, and 2122-7S04 Research Grants Council, University Grants Committee (RGC, UGC)
- 21877093, 22222702, and 91953119 National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund (NSFC-Yunnan Joint Fund)
- Health@InnoHK Innovation and Technology Commission (ITF)
Collapse
Affiliation(s)
- Yu Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Hong Kong SAR, China
| | - Wenyin Shen
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Ying Gao
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Jianzhao Peng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Qingrong Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Xueying Wei
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Shihao Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Fong Sang Lam
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Joan Mayol-Llinàs
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Hong Kong SAR, China
| | - Guixian Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Gang Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Hongzhe Sun
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China.
| | - Yan Cao
- School of Pharmacy, Naval Medical University, Shanghai, China.
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China.
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Hong Kong SAR, China.
| |
Collapse
|
4
|
Plais L, Trachsel L, Scheuermann J. Asymmetry of Dual-Display DNA-Encoded Chemical Libraries. Bioconjug Chem 2024; 35:147-153. [PMID: 38266192 DOI: 10.1021/acs.bioconjchem.3c00559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
While dual-display DNA-encoded chemical libraries (DELs) are increasingly employed for ligand discovery, some of their fundamental properties have not yet been studied in-depth. Aided with fluorescence polarization experiments, we demonstrate that dual-display DELs are intrinsically asymmetrical entities, and we deduce practical guidelines to perform better-informed on-DNA hit validation from these libraries.
Collapse
Affiliation(s)
- Louise Plais
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland
| | - Louis Trachsel
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland
| |
Collapse
|
5
|
Lessing A, Petrov D, Scheuermann J. Advancing small-molecule drug discovery by encoded dual-display technologies. Trends Pharmacol Sci 2023; 44:817-831. [PMID: 37739829 DOI: 10.1016/j.tips.2023.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/24/2023]
Abstract
DNA-encoded chemical library technology (DECL or DEL) has become an important pillar for small-molecule drug discovery. The technology rapidly identifies small-molecule hits for relevant target proteins at low cost and with a high success rate, including ligands for targeted protein degradation (TPD). More recently, the setup of DNA- or peptide nucleic acid (PNA)-encoded chemical libraries based on the simultaneous display of ligand pairs, termed dual-display, allows for more sophisticated applications which will be reviewed herein. Both stable and dynamic dual-display DEL technologies enable innovative affinity-based selection modalities, even on and in cells. Novel methods for a seamless conversion between single- and double-stranded library formats allow for even more versatility. We present the first candidates emerging from dual-display technologies and discuss the future potential of dual-display for drug discovery.
Collapse
Affiliation(s)
- Alice Lessing
- ETH Zürich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Zürich, Switzerland
| | - Dimitar Petrov
- ETH Zürich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Zürich, Switzerland
| | - Jörg Scheuermann
- ETH Zürich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Zürich, Switzerland.
| |
Collapse
|
6
|
Shi B, Zhou Y, Li X. Recent advances in DNA-encoded dynamic libraries. RSC Chem Biol 2022; 3:407-419. [PMID: 35441147 PMCID: PMC8985084 DOI: 10.1039/d2cb00007e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/16/2022] [Indexed: 11/21/2022] Open
Abstract
The DNA-encoded chemical library (DEL) has emerged as a powerful technology platform in drug discovery and is also gaining momentum in academic research. The rapid development of DNA-/DEL-compatible chemistries has greatly expanded the chemical space accessible to DELs. DEL technology has been widely adopted in the pharmaceutical industry and a number of clinical drug candidates have been identified from DEL selections. Recent innovations have combined DELs with other legacy and emerging techniques. Among them, the DNA-encoded dynamic library (DEDL) introduces DNA encoding into the classic dynamic combinatorial libraries (DCLs) and also integrates the principle of fragment-based drug discovery (FBDD), making DEDL a novel approach with distinct features from static DELs. In this Review, we provide a summary of the recently developed DEDL methods and their applications. Future developments in DEDLs are expected to extend the application scope of DELs to complex biological systems with unique ligand-discovery capabilities.
Collapse
Affiliation(s)
- Bingbing Shi
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Jining Medical University Jining Shandong 272067 P. R. China
| | - Yu Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission Units 1503-1511 15/F. Building 17W Hong Kong SAR China
| |
Collapse
|
7
|
Huang Y, Li Y, Li X. Strategies for developing DNA-encoded libraries beyond binding assays. Nat Chem 2022; 14:129-140. [PMID: 35121833 DOI: 10.1038/s41557-021-00877-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/01/2021] [Indexed: 01/01/2023]
Abstract
DNA-encoded chemical libraries (DELs) have emerged as a powerful technology in drug discovery. The wide adoption of DELs in the pharmaceutical industry and the rapid advancements of DEL-compatible chemistry have further fuelled its development and applications. In general, a DEL has been considered as a massive binding assay to identify physical binders for individual protein targets. However, recent innovations demonstrate the capability of DELs to operate in the complex milieu of biological systems. In this Perspective, we discuss the recent progress in using DNA-encoded chemical libraries to interrogate complex biological targets and their potential to identify structures that elicit function or possess other useful properties. Future breakthroughs in these aspects are expected to catapult DEL to become a momentous technology platform not only for drug discovery but also to explore fundamental biology.
Collapse
Affiliation(s)
- Yiran Huang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China. .,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China.
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China. .,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Hong Kong SAR, China.
| |
Collapse
|
8
|
Oehler S, Plais L, Bassi G, Neri D, Scheuermann J. Modular assembly and encoding strategies for dual-display DNA-encoded chemical libraries. Chem Commun (Camb) 2021; 57:12289-12292. [PMID: 34730584 PMCID: PMC8603192 DOI: 10.1039/d1cc04306d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/27/2021] [Indexed: 01/11/2023]
Abstract
DNA-encoded chemical libraries (DELs) are increasingly being used for the discovery of protein ligands and can be constructed displaying either one or two molecules at the extremities of the two complementary DNA strands. Here, we describe that DELs, featuring the simultaneous display of two molecules, can be encoded using various types of DNA structures, which go beyond the use of conventional double-stranded DNA fragments. Specifically, we compared dual-display methodologies in hairpin, circular or linear formats in terms of polymerase chain reaction (PCR) amplifiability and performance in affinity capture selections. The methods reported in this article highlight the feasibility and modularity of the described encoding strategies and may thus further expand the scope of DNA-encoded chemistry, particularly for the identification of compounds which recognize adjacent epitopes on the surface of target proteins of interest.
Collapse
Affiliation(s)
- Sebastian Oehler
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, Zürich 8093, Switzerland.
| | - Louise Plais
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, Zürich 8093, Switzerland.
| | - Gabriele Bassi
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, Zürich 8093, Switzerland.
| | - Dario Neri
- Philochem AG, Libernstrasse 3, Otelfingen, 8112, Switzerland.
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, Zürich 8093, Switzerland.
| |
Collapse
|
9
|
Abstract
In the past two decades, a DNA-encoded chemical library (DEL or DECL) has emerged and has become a major technology platform for ligand discovery in drug discovery as well as in chemical biology research. Although based on a simple concept, i.e., encoding each compound with a unique DNA tag in a combinatorial chemical library, DEL has been proven to be a powerful tool for interrogating biological targets by accessing vast chemical space at a fraction of the cost of traditional high-throughput screening (HTS). Moreover, the recent technological advances and rapid developments of DEL-compatible reactions have greatly enhanced the chemical diversity of DELs. Today, DELs have been adopted by nearly all major pharmaceutical companies and are also gaining momentum in academia. However, this field is heavily biased toward library encoding and synthesis, and an underexplored aspect of DEL research is the selection methods. Generally, DEL selection is considered to be a massive binding assay conducted over an immobilized protein to identify the physical binders using the typical bind-wash-elute procedure. In recent years, we and other research groups have developed new approaches that can perform DEL selections in the solution phase, which has enabled the selection against complex biological targets beyond purified proteins. On the one hand, these methods have significantly widened the target scope of DELs; on the other hand, they have enabled the functional and potentially phenotypic assays of DELs beyond simple binding. An overview of these methods is provided in this Account.Our laboratory has been using DNA-programmed affinity labeling (DPAL) as the main strategy to develop new DEL selection methods. DPAL is based on DNA-templated synthesis; by using a known ligand to guide the target binding, DPAL is able to specifically establish a stable linkage between the target protein and the ligand. The DNA tag of the target-ligand conjugates serves as a programmable handle for protein characterization or hit compound decoding in the case of DEL selections. DPAL also takes advantage of the fast reaction kinetics of photo-cross-linking to achieve high labeling specificity and fidelity, especially in the selection of DNA-encoded dynamic libraries (DEDLs). DPAL has enabled DEL selections not only in buffer and cell lysates but also with complex biological systems, such as large protein complexes and live cells. Moreover, this strategy has also been employed in other biological applications, such as site-specific protein labeling, protein detection, protein profiling, and target identification. In the Account, we describe these methods, highlight their underlying principles, and conclude with perspectives of the development of the DEL technology.
Collapse
Affiliation(s)
- Yinan Song
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Xiaoyu Li
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units 1503-1511, 15/F, Building 17W, Hong Kong Science and Technology Parks, New
Territories, Hong Kong SAR, China
| |
Collapse
|
10
|
Daguer JP, Gonse A, Shchukin Y, Farrera-Soler L, Barluenga S, Winssinger N. Dual Bcl-X L /Bcl-2 inhibitors discovered from DNA-encoded libraries using a fragment pairing strategy. Bioorg Med Chem 2021; 44:116282. [PMID: 34216984 DOI: 10.1016/j.bmc.2021.116282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 11/26/2022]
Abstract
A dual Bcl-XL / Bcl-2 inhibitor was discovered from DNA-encoded libraries using a two steps process. In the first step, DNA was used to pair PNA-encoded fragments exploring > 250 000 combinations. In the second step, a focused library combining the selected fragments with linkers of different lengths and geometries led to the identification of tight binding adducts that were further investigated for their selective target engagement in pull-down assays, for their affinity by SPR, and their selectivity in a cytotoxicity assay. The best compound showed comparable cellular activity to venetoclax, the first-in-class therapeutic targeting Bcl-2.
Collapse
Affiliation(s)
- Jean-Pierre Daguer
- Department of Organic Chemistry, Faculty of Sciences, NCCR Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Arthur Gonse
- Department of Organic Chemistry, Faculty of Sciences, NCCR Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Yevhenii Shchukin
- Department of Organic Chemistry, Faculty of Sciences, NCCR Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Lluc Farrera-Soler
- Department of Organic Chemistry, Faculty of Sciences, NCCR Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Sofia Barluenga
- Department of Organic Chemistry, Faculty of Sciences, NCCR Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry, Faculty of Sciences, NCCR Chemical Biology, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
11
|
Saarbach J, Barluenga S, Winssinger N. PNA-Encoded Synthesis (PES) and DNA Display of Small Molecule Libraries. Methods Mol Biol 2021; 2105:119-139. [PMID: 32088867 DOI: 10.1007/978-1-0716-0243-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
DNA-encoded library technologies have emerged as a powerful platform to rapidly screen for binders to a protein of interest. These technologies are underpinned by the ability to encode a rich diversity of small molecules. While large libraries are accessible by cycles of mix and split synthesis, libraries based on single chemistries tend to be redundant. Furthermore, the quality of libraries generally decreases with the number of synthetic transformations performed in its synthesis. An alternative approach is to use hybridization to program the combinatorial assembly of fragment pairs onto a library of DNA templates. A broad molecular diversity is more easily sampled since it arises from the pairing of diverse fragments. Upon identification of productive fragment pairs, a focused library covalently linking the fragments is prepared. This focused library includes linker of different length and geometry and offers the opportunity to enrich the selected fragment set with close neighbors. Herein we describe detailed protocols to covalently link diverse fragments and screen fragment-based libraries using commercially available microarray platform.
Collapse
Affiliation(s)
- Jacques Saarbach
- Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Sofia Barluenga
- Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
12
|
Brom T, Reddavide FV, Heiden S, Thompson M, Zhang Y. Influence of the geometry of fluorescently labelled DNA constructs on fluorescence anisotropy assay. Biochem Biophys Res Commun 2020; 533:230-234. [PMID: 32376008 DOI: 10.1016/j.bbrc.2020.04.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/09/2020] [Indexed: 11/15/2022]
Abstract
DNA-encoded chemical libraries (DECLs) are powerful tools for modern drug discovery. A DECL is a pooled mixture of small molecule compounds, each of which is tagged with a unique DNA sequence which functions as a barcode. After incubation with a drug target and washing to remove non-binders, the bound molecules are eluted and submitted for DNA sequencing to determine which molecules are binding the target. While the DECL technology itself is ultra-high throughput, the following re-synthesis of identified compounds for orthogonal validation experiments remains the bottleneck. Using existing DNA-small molecule conjugates directly for affinity measurements, as opposed to complete compound resynthesis, could accelerate the discovery process. To this end, we have tested various geometries of fluorescently-labelled DNA constructs for fluorescence anisotropy (FA) experiments. Minimizing the distance between the fluorescent moiety and ligand can maximize the correlation between ligand-protein interaction and corresponding change in fluorophore rotational freedom, thus leading to larger, easier to interpret changes in FA values. However, close proximity can also cause artifacts due to potentially promiscuous interactions between fluorophore and protein. By balancing these two opposite effects, we have identified applicable fluorescently labelled DNA constructs displaying either a single ligand or pairs of fragments for affinity measurement using a FA assay.
Collapse
Affiliation(s)
- Tomas Brom
- LifeB, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic; DyNAbind GmbH, Dresden, Germany
| | | | | | | | - Yixin Zhang
- B CUBE, Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
13
|
Deng Y, Peng J, Xiong F, Song Y, Zhou Y, Zhang J, Lam FS, Xie C, Shen W, Huang Y, Meng L, Li X. Selection of DNA‐Encoded Dynamic Chemical Libraries for Direct Inhibitor Discovery. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yuqing Deng
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Jianzhao Peng
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
- Department of Chemistry Southern University of Science and Technology China 1088 Xueyuan Road Shenzhen China
| | - Feng Xiong
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Yinan Song
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Yu Zhou
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Jianfu Zhang
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Fong Sang Lam
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Chao Xie
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Wenyin Shen
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Yiran Huang
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Ling Meng
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| | - Xiaoyu Li
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry The University of Hong Kong Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission Pokfulam Road Hong Kong SAR China
| |
Collapse
|
14
|
Deng Y, Peng J, Xiong F, Song Y, Zhou Y, Zhang J, Lam FS, Xie C, Shen W, Huang Y, Meng L, Li X. Selection of DNA-Encoded Dynamic Chemical Libraries for Direct Inhibitor Discovery. Angew Chem Int Ed Engl 2020; 59:14965-14972. [PMID: 32436364 DOI: 10.1002/anie.202005070] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/18/2020] [Indexed: 11/11/2022]
Abstract
Dynamic combinatorial libraries (DCLs) is a powerful tool for ligand discovery in biomedical research; however, the application of DCLs has been hampered by their low diversity. Recently, the concept of DNA encoding has been employed in DCLs to create DNA-encoded dynamic libraries (DEDLs); however, all current DEDLs are limited to fragment identification, and a challenging process of fragment linking is required after selection. We report an anchor-directed DEDL approach that can identify full ligand structures from large-scale DEDLs. This method is also able to convert unbiased libraries into focused ones targeting specific protein classes. We demonstrated this method by selecting DEDLs against five proteins, and novel inhibitors were identified for all targets. Notably, several selective BD1/BD2 inhibitors were identified from the selections against bromodomain 4 (BRD4), an important anti-cancer drug target. This work may provide a broadly applicable method for inhibitor discovery.
Collapse
Affiliation(s)
- Yuqing Deng
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Jianzhao Peng
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China.,Department of Chemistry, Southern University of Science and Technology China, 1088 Xueyuan Road, Shenzhen, China
| | - Feng Xiong
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Yinan Song
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Yu Zhou
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Jianfu Zhang
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Fong Sang Lam
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Chao Xie
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Wenyin Shen
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Yiran Huang
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Ling Meng
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| | - Xiaoyu Li
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of Innovation and Technology Commission, Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
15
|
Taylor DM, Anglin J, Park S, Ucisik MN, Faver JC, Simmons N, Jin Z, Palaniappan M, Nyshadham P, Li F, Campbell J, Hu L, Sankaran B, Prasad BV, Huang H, Matzuk MM, Palzkill T. Identifying Oxacillinase-48 Carbapenemase Inhibitors Using DNA-Encoded Chemical Libraries. ACS Infect Dis 2020; 6:1214-1227. [PMID: 32182432 PMCID: PMC7673237 DOI: 10.1021/acsinfecdis.0c00015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bacterial resistance to β-lactam antibiotics is largely mediated by β-lactamases, which catalyze the hydrolysis of these drugs and continue to emerge in response to antibiotic use. β-Lactamases that hydrolyze the last resort carbapenem class of β-lactam antibiotics (carbapenemases) are a growing global health threat. Inhibitors have been developed to prevent β-lactamase-mediated hydrolysis and restore the efficacy of these antibiotics. However, there are few inhibitors available for problematic carbapenemases such as oxacillinase-48 (OXA-48). A DNA-encoded chemical library approach was used to rapidly screen for compounds that bind and potentially inhibit OXA-48. Using this approach, a hit compound, CDD-97, was identified with submicromolar potency (Ki = 0.53 ± 0.08 μM) against OXA-48. X-ray crystallography showed that CDD-97 binds noncovalently in the active site of OXA-48. Synthesis and testing of derivatives of CDD-97 revealed structure-activity relationships and informed the design of a compound with a 2-fold increase in potency. CDD-97, however, synergizes poorly with β-lactam antibiotics to inhibit the growth of bacteria expressing OXA-48 due to poor accumulation into E. coli. Despite the low in vivo activity, CDD-97 provides new insights into OXA-48 inhibition and demonstrates the potential of using DNA-encoded chemistry technology to rapidly identify β-lactamase binders and to study β-lactamase inhibition, leading to clinically useful inhibitors.
Collapse
Affiliation(s)
- Doris Mia Taylor
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Justin Anglin
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Suhyeorn Park
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Melek N. Ucisik
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - John C. Faver
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Nicholas Simmons
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zhuang Jin
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Murugesan Palaniappan
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Pranavanand Nyshadham
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Feng Li
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - James Campbell
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Liya Hu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Advanced Light Source, Lawrence Berkeley National Lab, CA, 94720, USA
| | - B.V. Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hongbing Huang
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Martin M. Matzuk
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Timothy Palzkill
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
16
|
Li J, Li Y, Lu F, Liu L, Ji Q, Song K, Yin Q, Lerner RA, Yang G, Xu H, Ma P. A DNA-encoded library for the identification of natural product binders that modulate poly (ADP-ribose) polymerase 1, a validated anti-cancer target. Biochem Biophys Res Commun 2020; 533:241-248. [PMID: 32381359 DOI: 10.1016/j.bbrc.2020.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/09/2020] [Indexed: 01/01/2023]
Abstract
Natural products have been an invaluable source of drug discovery, but their targets remain largely unknown. Natural products enriched DNA-encoded chemical libraries (nDELs) empower the researchers to rapidly and economically screen numerous natural products against various protein targets, and therefore promote the elucidation of the molecular mechanisms. In this work, we used poly (ADP-ribose) polymerase 1 (PARP1), as an example to explore the usage of nDEL for the functional natural products selection. We used late-stage modification approach to label three positive binders with unique DNA barcodes, whose dissociation constants range from sub-micromolar to micromolar. The selection criterion was set up according to the enrichment of these controls. Five natural products selected by this criterion directly bind to PARP1 in SPR, among which luteolin exhibits the highest inhibitory activity against PARP1. Moreover, luteolin selectively induces accumulation of DNA double-strand breaks and G2/M phase arrest in BRCA-deficient cells. All the findings from these investigations on luteolin support that PARP1 inhibition is one of the mechanisms for its anti-cancer activity.
Collapse
Affiliation(s)
- Jie Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yu Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Fengping Lu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Lili Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Qun Ji
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Ke Song
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Qianqian Yin
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Richard A Lerner
- Department of Chemistry, Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China.
| | - Peixiang Ma
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China.
| |
Collapse
|
17
|
Abstract
Tyrosine phosphorylation is a critical component of signal transduction for multicellular organisms, particularly for pathways that regulate cell proliferation and differentiation. While tyrosine kinase inhibitors have become FDA-approved drugs, inhibitors of the other important components of these signaling pathways have been harder to develop. Specifically, direct phosphotyrosine (pTyr) isosteres have been aggressively pursued as inhibitors of Src homology 2 (SH2) domains and protein tyrosine phosphatases (PTPs). Medicinal chemists have produced many classes of peptide and small molecule inhibitors that mimic pTyr. However, balancing affinity with selectivity and cell penetration has made this an extremely difficult space for developing successful clinical candidates. This review will provide a comprehensive picture of the field of pTyr isosteres, from early beginnings to the current state and trajectory. We will also highlight the major protein targets of these medicinal chemistry efforts, the major classes of peptide and small molecule inhibitors that have been developed, and the handful of compounds which have been tested in clinical trials.
Collapse
Affiliation(s)
- Robert A Cerulli
- Cellular, Molecular and Developmental Biology Program, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts 02111, USA
| | - Joshua A Kritzer
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, USA.
| |
Collapse
|
18
|
Figuerola-Conchas A, Saarbach J, Daguer JP, Cieren A, Barluenga S, Winssinger N, Gotta M. Small-Molecule Modulators of the ATPase VCP/p97 Affect Specific p97 Cellular Functions. ACS Chem Biol 2020; 15:243-253. [PMID: 31790201 DOI: 10.1021/acschembio.9b00832] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
VCP/p97 belongs to the AAA+ ATPase family and has an essential role in several cellular processes ranging from cell division to protein homeostasis. Compounds targeting p97 inhibit the main ATPase domain and cause cell death. Here, using PNA-encoded chemical libraries, we have identified two small molecules that target the regulatory domain of p97, comprising the N-terminal and the D1 ATPase domains, and do not cause cell death. One molecule, NW1028, inhibits the degradation of a p97-dependent reporter, whereas the other, NW1030, increases it. ATPase assays show that NW1028 and NW1030 do not affect the main catalytic domain of p97. Mapping of the binding site using a photoaffinity conjugate points to a cleft at the interface of the N-terminal and the D1 ATPase domains. We have therefore discovered two new compounds that bind to the regulatory domain of p97 and modulate specific p97 cellular functions. Using these compounds, we have revealed a role for p97 in the regulation of mitotic spindle orientation in HeLa cells.
Collapse
Affiliation(s)
- Ainoa Figuerola-Conchas
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva 4, Switzerland
- National Centre of Competence in Research (NCCR) in Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Jacques Saarbach
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva 4, Switzerland
- National Centre of Competence in Research (NCCR) in Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Jean-Pierre Daguer
- National Centre of Competence in Research (NCCR) in Chemical Biology, University of Geneva, Geneva, Switzerland
- Department of Organic Chemistry, University of Geneva, 1211 Geneva 4, Switzerland
| | - Adeline Cieren
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva 4, Switzerland
- National Centre of Competence in Research (NCCR) in Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Sofia Barluenga
- National Centre of Competence in Research (NCCR) in Chemical Biology, University of Geneva, Geneva, Switzerland
- Department of Organic Chemistry, University of Geneva, 1211 Geneva 4, Switzerland
| | - Nicolas Winssinger
- National Centre of Competence in Research (NCCR) in Chemical Biology, University of Geneva, Geneva, Switzerland
- Department of Organic Chemistry, University of Geneva, 1211 Geneva 4, Switzerland
| | - Monica Gotta
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva 4, Switzerland
- National Centre of Competence in Research (NCCR) in Chemical Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
19
|
Flood DT, Kingston C, Vantourout JC, Dawson PE, Baran PS. DNA Encoded Libraries: A Visitor's Guide. Isr J Chem 2020. [DOI: 10.1002/ijch.201900133] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Dillon T. Flood
- Department of ChemistryScripps Research 10550 North Torrey Pines Road La Jolla, California 93037
| | - Cian Kingston
- Department of ChemistryScripps Research 10550 North Torrey Pines Road La Jolla, California 93037
| | - Julien C. Vantourout
- Department of ChemistryScripps Research 10550 North Torrey Pines Road La Jolla, California 93037
| | - Philip E. Dawson
- Department of ChemistryScripps Research 10550 North Torrey Pines Road La Jolla, California 93037
| | - Phil S. Baran
- Department of ChemistryScripps Research 10550 North Torrey Pines Road La Jolla, California 93037
| |
Collapse
|
20
|
Galli V, Sadhu KK, Masi D, Saarbach J, Roux A, Winssinger N. Caprin‐1 Promotes Cellular Uptake of Nucleic Acids with Backbone and Sequence Discrimination. Helv Chim Acta 2019. [DOI: 10.1002/hlca.201900255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Valentina Galli
- School of Chemistry and BiochemistryFaculty of Science and National Centre of Competence in Research (NCCR) Chemical BiologyUniversity of Geneva CH-1211 Geneva Switzerland
| | - Kalyan K. Sadhu
- School of Chemistry and BiochemistryFaculty of Science and National Centre of Competence in Research (NCCR) Chemical BiologyUniversity of Geneva CH-1211 Geneva Switzerland
| | - Daniela Masi
- School of Chemistry and BiochemistryFaculty of Science and National Centre of Competence in Research (NCCR) Chemical BiologyUniversity of Geneva CH-1211 Geneva Switzerland
| | - Jacques Saarbach
- School of Chemistry and BiochemistryFaculty of Science and National Centre of Competence in Research (NCCR) Chemical BiologyUniversity of Geneva CH-1211 Geneva Switzerland
| | - Aurélien Roux
- School of Chemistry and BiochemistryFaculty of Science and National Centre of Competence in Research (NCCR) Chemical BiologyUniversity of Geneva CH-1211 Geneva Switzerland
| | - Nicolas Winssinger
- School of Chemistry and BiochemistryFaculty of Science and National Centre of Competence in Research (NCCR) Chemical BiologyUniversity of Geneva CH-1211 Geneva Switzerland
| |
Collapse
|
21
|
Yuen LH, Dana S, Liu Y, Bloom SI, Thorsell AG, Neri D, Donato AJ, Kireev D, Schüler H, Franzini RM. A Focused DNA-Encoded Chemical Library for the Discovery of Inhibitors of NAD+-Dependent Enzymes. J Am Chem Soc 2019; 141:5169-5181. [DOI: 10.1021/jacs.8b08039] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Lik Hang Yuen
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Srikanta Dana
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Yu Liu
- Department of Internal Medicine, University of Utah, 500 Foothill Drive, Salt Lake City, Utah 84148, United States
| | - Samuel I. Bloom
- Department of Internal Medicine, University of Utah, 500 Foothill Drive, Salt Lake City, Utah 84148, United States
| | - Ann-Gerd Thorsell
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 7c, 14157 Huddinge, Sweden
| | - Dario Neri
- Department of Pharmaceutical Sciences, ETH Zürich, Vladimir Prelog Weg 3, 8093 Zürich, Switzerland
| | - Anthony J. Donato
- Department of Internal Medicine, University of Utah, 500 Foothill Drive, Salt Lake City, Utah 84148, United States
| | - Dmitri Kireev
- Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Herwig Schüler
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 7c, 14157 Huddinge, Sweden
| | - Raphael M. Franzini
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|
22
|
Reddavide FV, Cui M, Lin W, Fu N, Heiden S, Andrade H, Thompson M, Zhang Y. Second generation DNA-encoded dynamic combinatorial chemical libraries. Chem Commun (Camb) 2019; 55:3753-3756. [DOI: 10.1039/c9cc01429b] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A novel DNA-encoded chemical library architecture can mimic the mechanisms of immunity to evolve binders through recombination, dynamics and adaption.
Collapse
Affiliation(s)
- Francesco V. Reddavide
- B CUBE Center for Molecular Bioengineering
- Technische Universität Dresden
- Germany
- DyNAbind GmbH
- Dresden
| | - Meiying Cui
- B CUBE Center for Molecular Bioengineering
- Technische Universität Dresden
- Germany
| | - Weilin Lin
- B CUBE Center for Molecular Bioengineering
- Technische Universität Dresden
- Germany
| | - Naiqiang Fu
- B CUBE Center for Molecular Bioengineering
- Technische Universität Dresden
- Germany
| | | | - Helena Andrade
- B CUBE Center for Molecular Bioengineering
- Technische Universität Dresden
- Germany
| | | | - Yixin Zhang
- B CUBE Center for Molecular Bioengineering
- Technische Universität Dresden
- Germany
| |
Collapse
|
23
|
Kielar C, Reddavide FV, Tubbenhauer S, Cui M, Xu X, Grundmeier G, Zhang Y, Keller A. Pharmacophore Nanoarrays on DNA Origami Substrates as a Single-Molecule Assay for Fragment-Based Drug Discovery. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Charlotte Kielar
- Technical and Macromolecular Chemistry; Paderborn University; Warburger Str. 100 33098 Paderborn Germany
| | - Francesco V. Reddavide
- B CUBE-Center for Molecular Bioengineering; Technische Universität Dresden; Arnoldstr. 18 01307 Dresden Germany
- DyNAbind GmbH; Arnoldstr. 20 01307 Dresden Germany
| | - Stefan Tubbenhauer
- Technical and Macromolecular Chemistry; Paderborn University; Warburger Str. 100 33098 Paderborn Germany
| | - Meiying Cui
- B CUBE-Center for Molecular Bioengineering; Technische Universität Dresden; Arnoldstr. 18 01307 Dresden Germany
| | - Xiaodan Xu
- Technical and Macromolecular Chemistry; Paderborn University; Warburger Str. 100 33098 Paderborn Germany
| | - Guido Grundmeier
- Technical and Macromolecular Chemistry; Paderborn University; Warburger Str. 100 33098 Paderborn Germany
| | - Yixin Zhang
- B CUBE-Center for Molecular Bioengineering; Technische Universität Dresden; Arnoldstr. 18 01307 Dresden Germany
| | - Adrian Keller
- Technical and Macromolecular Chemistry; Paderborn University; Warburger Str. 100 33098 Paderborn Germany
| |
Collapse
|
24
|
Kielar C, Reddavide FV, Tubbenhauer S, Cui M, Xu X, Grundmeier G, Zhang Y, Keller A. Pharmacophore Nanoarrays on DNA Origami Substrates as a Single-Molecule Assay for Fragment-Based Drug Discovery. Angew Chem Int Ed Engl 2018; 57:14873-14877. [DOI: 10.1002/anie.201806778] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/22/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Charlotte Kielar
- Technical and Macromolecular Chemistry; Paderborn University; Warburger Str. 100 33098 Paderborn Germany
| | - Francesco V. Reddavide
- B CUBE-Center for Molecular Bioengineering; Technische Universität Dresden; Arnoldstr. 18 01307 Dresden Germany
- DyNAbind GmbH; Arnoldstr. 20 01307 Dresden Germany
| | - Stefan Tubbenhauer
- Technical and Macromolecular Chemistry; Paderborn University; Warburger Str. 100 33098 Paderborn Germany
| | - Meiying Cui
- B CUBE-Center for Molecular Bioengineering; Technische Universität Dresden; Arnoldstr. 18 01307 Dresden Germany
| | - Xiaodan Xu
- Technical and Macromolecular Chemistry; Paderborn University; Warburger Str. 100 33098 Paderborn Germany
| | - Guido Grundmeier
- Technical and Macromolecular Chemistry; Paderborn University; Warburger Str. 100 33098 Paderborn Germany
| | - Yixin Zhang
- B CUBE-Center for Molecular Bioengineering; Technische Universität Dresden; Arnoldstr. 18 01307 Dresden Germany
| | - Adrian Keller
- Technical and Macromolecular Chemistry; Paderborn University; Warburger Str. 100 33098 Paderborn Germany
| |
Collapse
|
25
|
Wang X, Sun H, Liu J, Dai D, Zhang M, Zhou H, Zhong W, Lu X. Ruthenium-Promoted C–H Activation Reactions between DNA-Conjugated Acrylamide and Aromatic Acids. Org Lett 2018; 20:4764-4768. [DOI: 10.1021/acs.orglett.8b01837] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co., Ltd., 4560 Jinke Road, Building No. 2, 13th Floor, Pudong, Shanghai 201210, P. R. China
| | - Hui Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Jiaxiang Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Dongcheng Dai
- Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co., Ltd., 4560 Jinke Road, Building No. 2, 13th Floor, Pudong, Shanghai 201210, P. R. China
| | - Mingqiang Zhang
- Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co., Ltd., 4560 Jinke Road, Building No. 2, 13th Floor, Pudong, Shanghai 201210, P. R. China
| | - Hu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Wenge Zhong
- Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co., Ltd., 4560 Jinke Road, Building No. 2, 13th Floor, Pudong, Shanghai 201210, P. R. China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| |
Collapse
|
26
|
Li Y, De Luca R, Cazzamalli S, Pretto F, Bajic D, Scheuermann J, Neri D. Versatile protein recognition by the encoded display of multiple chemical elements on a constant macrocyclic scaffold. Nat Chem 2018; 10:441-448. [PMID: 29556050 PMCID: PMC6044424 DOI: 10.1038/s41557-018-0017-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 01/04/2018] [Indexed: 11/09/2022]
Abstract
In nature, specific antibodies can be generated as a result of an adaptive selection and expansion of lymphocytes with suitable protein binding properties. We attempted to mimic antibody-antigen recognition by displaying multiple chemical diversity elements on a defined macrocyclic scaffold. Encoding of the displayed combinations was achieved using distinctive DNA tags, resulting in a library size of 35,393,112. Specific binders could be isolated against a variety of proteins, including carbonic anhydrase IX, horseradish peroxidase, tankyrase 1, human serum albumin, alpha-1 acid glycoprotein, calmodulin, prostate-specific antigen and tumour necrosis factor. Similar to antibodies, the encoded display of multiple chemical elements on a constant scaffold enabled practical applications, such as fluorescence microscopy procedures or the selective in vivo delivery of payloads to tumours. Furthermore, the versatile structure of the scaffold facilitated the generation of protein-specific chemical probes, as illustrated by photo-crosslinking.
Collapse
Affiliation(s)
- Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Shapingba, Chongqing, China
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Roberto De Luca
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Samuele Cazzamalli
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | | | - Davor Bajic
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland.
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland.
| |
Collapse
|
27
|
Pels K, Dickson P, An H, Kodadek T. DNA-Compatible Solid-Phase Combinatorial Synthesis of β-Cyanoacrylamides and Related Electrophiles. ACS COMBINATORIAL SCIENCE 2018; 20:61-69. [PMID: 29298042 DOI: 10.1021/acscombsci.7b00169] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We demonstrate that the Knoevenagel condensation can be exploited in combinatorial synthesis on the solid phase. Condensation products from such reactions were structurally characterized, and their Michael reactivity with thiol and phosphine nucleophiles is described. Cyanoacrylamides were previously reported to react reversibly with thiols, and notably, we show that dilution into low pH buffer can trap covalent adducts, which are isolable via chromatography. Finally, we synthesized both traditional and DNA-encoded one-bead, one-compound libraries containing cyanoacrylamides as a source of cysteine-reactive reversibly covalent protein ligands.
Collapse
Affiliation(s)
- Kevin Pels
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Paige Dickson
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Hongchan An
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Thomas Kodadek
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| |
Collapse
|
28
|
Zimmermann G, Rieder U, Bajic D, Vanetti S, Chaikuad A, Knapp S, Scheuermann J, Mattarella M, Neri D. A Specific and Covalent JNK-1 Ligand Selected from an Encoded Self-Assembling Chemical Library. Chemistry 2017; 23:8152-8155. [PMID: 28485044 PMCID: PMC5557334 DOI: 10.1002/chem.201701644] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Indexed: 01/05/2023]
Abstract
We describe the construction of a DNA-encoded chemical library comprising 148 135 members, generated through the self-assembly of two sub-libraries, containing 265 and 559 members, respectively. The library was designed to contain building blocks potentially capable of forming covalent interactions with target proteins. Selections performed with JNK1, a kinase containing a conserved cysteine residue close to the ATP binding site, revealed the preferential enrichment of a 2-phenoxynicotinic acid moiety (building block A82) and a 4-(3,4-difluorophenyl)-4-oxobut-2-enoic acid moiety (building block B272). When the two compounds were joined by a short PEG linker, the resulting bidentate binder (A82-L-B272) was able to covalently modify JNK1 in the presence of a large molar excess of glutathione (0.5 mm), used to simulate intracellular reducing conditions. By contrast, derivatives of the individual building blocks were not able to covalently modify JNK1 in the same experimental conditions. The A82-L-B272 ligand was selective over related kinases (BTK and GAK), which also contain targetable cysteine residues in the vicinity of the active site.
Collapse
Affiliation(s)
- Gunther Zimmermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich (Switzerland)
| | - Ulrike Rieder
- Philochem AG, Libernstrasse 3, CH-8112 Otelfingen (Switzerland)
| | - Davor Bajic
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich (Switzerland)
| | - Sara Vanetti
- Philochem AG, Libernstrasse 3, CH-8112 Otelfingen (Switzerland)
| | - Apirat Chaikuad
- Institute of Pharmaceutical Chemistry and Buchmann Institute for Life Sciences (BMLS), Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt (Germany)
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium and Target Discovery Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry and Buchmann Institute for Life Sciences (BMLS), Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt (Germany)
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium and Target Discovery Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich (Switzerland)
| | | | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093 Zürich (Switzerland)
| |
Collapse
|
29
|
Yuen LH, Franzini RM. Stability of Oligonucleotide-Small Molecule Conjugates to DNA-Deprotection Conditions. Bioconjug Chem 2017; 28:1076-1083. [PMID: 28233987 DOI: 10.1021/acs.bioconjchem.7b00005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oligonucleotide conjugates of small molecules are widely used in chemical biology and have found increasing interest in the context of DNA-encoded chemical libraries for drug discovery. Attachment of molecules to DNA bound to the solid support is an attractive small-molecule conjugation method that permits the use of organic solvents, rigorous reaction conditions, and simple workup. However, the conjugated structures must be resistant to the harsh DNA deprotection/cleavage conditions and the stabilities of building blocks under various deprotection conditions are mostly unexplored. In the present study, we analyzed the stability of 131 structurally diverse fragments that contain amides and amide-like elements during DNA deprotection protocols. Structural features susceptible to decomposition in DNA deprotection conditions were identified and a protocol that enabled the synthesis of DNA conjugates with labile fragments on solid support was identified.
Collapse
Affiliation(s)
- Lik Hang Yuen
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah , 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Raphael M Franzini
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah , 30 S 2000 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|
30
|
Yuen LH, Franzini RM. Achievements, Challenges, and Opportunities in DNA-Encoded Library Research: An Academic Point of View. Chembiochem 2017; 18:829-836. [DOI: 10.1002/cbic.201600567] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Lik Hang Yuen
- Department of Medicinal Chemistry; University of Utah; 30 S 2000 E Salt Lake City UT 84113 USA
| | - Raphael M. Franzini
- Department of Medicinal Chemistry; University of Utah; 30 S 2000 E Salt Lake City UT 84113 USA
| |
Collapse
|
31
|
Abstract
DNA-encoded chemical library technologies are increasingly being adopted in drug discovery for hit and lead generation. DNA-encoded chemistry enables the exploration of chemical spaces four to five orders of magnitude more deeply than is achievable by traditional high-throughput screening methods. Operation of this technology requires developing a range of capabilities including aqueous synthetic chemistry, building block acquisition, oligonucleotide conjugation, large-scale molecular biological transformations, selection methodologies, PCR, sequencing, sequence data analysis and the analysis of large chemistry spaces. This Review provides an overview of the development and applications of DNA-encoded chemistry, highlighting the challenges and future directions for the use of this technology.
Collapse
|
32
|
Recent advances on the encoding and selection methods of DNA-encoded chemical library. Bioorg Med Chem Lett 2016; 27:361-369. [PMID: 28011218 DOI: 10.1016/j.bmcl.2016.12.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 11/22/2022]
Abstract
DNA-encoded chemical library (DEL) has emerged as a powerful and versatile tool for ligand discovery in chemical biology research and in drug discovery. Encoding and selection methods are two of the most important technological aspects of DEL that can dictate the performance and utilities of DELs. In this digest, we have summarized recent advances on the encoding and selection strategies of DEL and also discussed the latest developments on DNA-encoded dynamic library, a new frontier in DEL research.
Collapse
|
33
|
Zimmermann G, Neri D. DNA-encoded chemical libraries: foundations and applications in lead discovery. Drug Discov Today 2016; 21:1828-1834. [PMID: 27477486 DOI: 10.1016/j.drudis.2016.07.013] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/17/2016] [Accepted: 07/23/2016] [Indexed: 12/16/2022]
Abstract
DNA-encoded chemical libraries have emerged as a powerful tool for hit identification in the pharmaceutical industry and in academia. Similar to biological display techniques (such as phage display technology), DNA-encoded chemical libraries contain a link between the displayed chemical building block and an amplifiable genetic barcode on DNA. Using routine procedures, libraries containing millions to billions of compounds can be easily produced within a few weeks. The resulting compound libraries are screened in a single test tube against proteins of pharmaceutical interest and hits can be identified by PCR amplification of DNA barcodes and subsequent high-throughput sequencing.
Collapse
Affiliation(s)
- Gunther Zimmermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir Prelog Weg 1-5/10, CH-8093 Zürich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir Prelog Weg 1-5/10, CH-8093 Zürich, Switzerland.
| |
Collapse
|
34
|
Affiliation(s)
- Raphael M. Franzini
- Department
of Medicinal Chemistry,
College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Cassie Randolph
- Department
of Medicinal Chemistry,
College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|
35
|
Zambaldo C, Daguer JP, Saarbach J, Barluenga S, Winssinger N. Screening for covalent inhibitors using DNA-display of small molecule libraries functionalized with cysteine reactive moieties. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00242k] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Discriminating between non-covalent and covalent inhibitors with SDS wash in microarray-based screen.
Collapse
Affiliation(s)
- C. Zambaldo
- Department of Organic Chemistry
- NCCR Chemical Biology
- University of Geneva
- Switzerland
| | - J.-P. Daguer
- Department of Organic Chemistry
- NCCR Chemical Biology
- University of Geneva
- Switzerland
| | - J. Saarbach
- Department of Organic Chemistry
- NCCR Chemical Biology
- University of Geneva
- Switzerland
| | - S. Barluenga
- Department of Organic Chemistry
- NCCR Chemical Biology
- University of Geneva
- Switzerland
| | - N. Winssinger
- Department of Organic Chemistry
- NCCR Chemical Biology
- University of Geneva
- Switzerland
| |
Collapse
|