1
|
Villalobo A. Ca 2+ Signaling and Src Functions in Tumor Cells. Biomolecules 2023; 13:1739. [PMID: 38136610 PMCID: PMC10741856 DOI: 10.3390/biom13121739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Signaling by calcium ion (Ca2+) plays a prominent role in cell physiology, and these mechanisms are frequently altered in tumor cells. In this review, we consider the interplay of Ca2+ signaling and the functions of the proto-oncogene non-receptor tyrosine kinase c-Src in tumor cells, and the viral oncogenic variant v-Src in transformed cells. Also, other members of the Src-family kinases are considered in this context. The role of Ca2+ in the cell is frequently mediated by Ca2+-binding proteins, where the Ca2+-sensor protein calmodulin (CaM) plays a prominent, essential role in many cellular signaling pathways. Thus, we cover the available information on the role and direct interaction of CaM with c-Src and v-Src in cancerous cells, the phosphorylation of CaM by v-Src/c-Src, and the actions of different CaM-regulated Ser/Thr-protein kinases and the CaM-dependent phosphatase calcineurin on v-Src/c-Src. Finally, we mention some clinical implications of these systems to identify mechanisms that could be targeted for the therapeutic treatment of human cancers.
Collapse
Affiliation(s)
- Antonio Villalobo
- Cancer and Human Molecular Genetics Area-Oto-Neurosurgery Research Group, University Hospital La Paz Research Institute (IdiPAZ), Paseo de la Castellana 261, E-28046 Madrid, Spain
| |
Collapse
|
2
|
Tzou YM, Shin R, Krishna NR. HIV-1 Virus Interactions With Host Proteins: Interaction of the N-terminal Domain of the HIV-1 Capsid Protein With Human Calmodulin. Nat Prod Commun 2019; 14. [PMID: 31388391 PMCID: PMC6684243 DOI: 10.1177/1934578x19849190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The human immunodeficiency virus (HIV-1 virus) exploits several host factors for assembly, infection, and replication within the infected cells. In this work, we describe the evidence for an interaction of the N-terminal domain of the HIV-1 capsid protein with human calmodulin. The precise role of this interaction within the life cycle of the HIV-1 virus is yet to be defined. Potential roles for this interaction in the viral capsid uncoating are discussed.
Collapse
Affiliation(s)
- Ywh-Min Tzou
- Department of Biochemistry and Molecular Genetics, and Comprehensive Cancer Center, University of Alabama at Birmingham, AL, USA.,Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Ronald Shin
- Department of Biochemistry and Molecular Genetics, and Comprehensive Cancer Center, University of Alabama at Birmingham, AL, USA
| | - N Rama Krishna
- Department of Biochemistry and Molecular Genetics, and Comprehensive Cancer Center, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
3
|
The multifunctional role of phospho-calmodulin in pathophysiological processes. Biochem J 2018; 475:4011-4023. [PMID: 30578290 PMCID: PMC6305829 DOI: 10.1042/bcj20180755] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/23/2018] [Accepted: 11/30/2018] [Indexed: 02/06/2023]
Abstract
Calmodulin (CaM) is a versatile Ca2+-sensor/transducer protein that modulates hundreds of enzymes, channels, transport systems, transcription factors, adaptors and other structural proteins, controlling in this manner multiple cellular functions. In addition to its capacity to regulate target proteins in a Ca2+-dependent and Ca2+-independent manner, the posttranslational phosphorylation of CaM by diverse Ser/Thr- and Tyr-protein kinases has been recognized as an important additional manner to regulate this protein by fine-tuning its functionality. In this review, we shall cover developments done in recent years in which phospho-CaM has been implicated in signalling pathways that are relevant for the onset and progression of diverse pathophysiological processes. These include diverse systems playing a major role in carcinogenesis and tumour development, prion-induced encephalopathies and brain hypoxia, melatonin-regulated neuroendocrine disorders, hypertension, and heavy metal-induced cell toxicity.
Collapse
|
4
|
Nussinov R, Zhang M, Tsai CJ, Jang H. Calmodulin and IQGAP1 activation of PI3Kα and Akt in KRAS, HRAS and NRAS-driven cancers. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2304-2314. [DOI: 10.1016/j.bbadis.2017.10.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/24/2017] [Accepted: 10/27/2017] [Indexed: 02/06/2023]
|
5
|
Wang G, Zhang M, Jang H, Lu S, Lin S, Chen G, Nussinov R, Zhang J, Gaponenko V. Interaction of Calmodulin with the cSH2 Domain of the p85 Regulatory Subunit. Biochemistry 2018; 57:1917-1928. [PMID: 29494137 PMCID: PMC6454211 DOI: 10.1021/acs.biochem.7b01130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Calmodulin (CaM) is a calcium sensor protein that directly interacts with the dual-specificity (lipid and protein) kinase PI3Kα through the SH2 domains of the p85 regulatory subunit. In adenocarcinomas, the CaM interaction removes the autoinhibition of the p110 catalytic subunit of PI3Kα, leading to activation of PI3Kα and promoting cell proliferation, survival, and migration. Here we demonstrate that the cSH2 domain of p85α engages its two CaM-binding motifs in the interaction with the N- and C-lobes of CaM as well as the flexible central linker, and our nuclear magnetic resonance experiments provide structural details. We show that in response to binding CaM, cSH2 exposes its tryptophan residue at the N-terminal region to the solvent. Because of the flexible nature of both CaM and cSH2, multiple binding modes of the interactions are possible. Binding of CaM to the cSH2 domain can help release the inhibition imposed on the p110 subunit, similar to the binding of the phosphorylated motif of RTK, or phosphorylated CaM (pCaM), to the SH2 domains. Amino acid sequence analysis shows that CaM-binding motifs are common in SH2 domains of non-RTKs. We speculate that CaM can also activate these kinases through similar mechanisms.
Collapse
Affiliation(s)
- Guanqiao Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Mingzhen Zhang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Shizhou Lin
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Guoqiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
6
|
Nussinov R, Wang G, Tsai CJ, Jang H, Lu S, Banerjee A, Zhang J, Gaponenko V. Calmodulin and PI3K Signaling in KRAS Cancers. Trends Cancer 2017; 3:214-224. [PMID: 28462395 PMCID: PMC5408465 DOI: 10.1016/j.trecan.2017.01.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Calmodulin (CaM) uniquely promotes signaling of oncogenic K-Ras; but not N-Ras or H-Ras. How CaM interacts with K-Ras and how this stimulates cell proliferation are among the most challenging questions in KRAS-driven cancers. Earlier data pointed to formation of a ternary complex consisting of K-Ras, PI3Kα and CaM. Recent data point to phosphorylated CaM binding to the SH2 domains of the p85 subunit of PI3Kα and activating it. Modeling suggests that the high affinity interaction between the phosphorylated CaM tyrosine motif and PI3Kα, can promote full PI3Kα activation by oncogenic K-Ras. Our up-to-date review discusses CaM's role in PI3K signaling at the membrane in KRAS-driven cancers. This is significant since it may help development of K-Ras-specific pharmacology.
Collapse
Affiliation(s)
- Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, U.S.A
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Guanqiao Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Children’s Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200127, China
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, U.S.A
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, U.S.A
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Children’s Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200127, China
| | - Avik Banerjee
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, IL 60607, U.S.A
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Children’s Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200127, China
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, IL 60607, U.S.A
| |
Collapse
|
7
|
Anguita E, Villalobo A. Src-family tyrosine kinases and the Ca 2+ signal. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:915-932. [PMID: 27818271 DOI: 10.1016/j.bbamcr.2016.10.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/25/2016] [Accepted: 10/30/2016] [Indexed: 01/08/2023]
Abstract
In this review, we shall describe the rich crosstalk between non-receptor Src-family kinases (SFKs) and the Ca2+ transient generated in activated cells by a variety of extracellular and intracellular stimuli, resulting in diverse signaling events. The exchange of information between SFKs and Ca2+ is reciprocal, as it flows in both directions. These kinases are main actors in pathways leading to the generation of the Ca2+ signal, and reciprocally, the Ca2+ signal modulates SFKs activity and functions. We will cover how SFKs participate in the generation of the cytosolic Ca2+ rise upon activation of a series of receptors and the mechanism of clearance of this Ca2+ signal. The role of SFKs modulating Ca2+-translocating channels participating in these events will be amply discussed. Finally, the role of the Ca2+ sensor protein calmodulin on the activity of c-Src, and potentially on other SFKs, will be outlined as well. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- Estefanía Anguita
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/ Arturo Duperier 4, E-28029 Madrid, Spain
| | - Antonio Villalobo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/ Arturo Duperier 4, E-28029 Madrid, Spain.
| |
Collapse
|