1
|
Luo XF, Zhou H, Deng P, Zhang SY, Wang YR, Ding YY, Wang GH, Zhang ZJ, Wu ZR, Liu YQ. Current development and structure-activity relationship study of berberine derivatives. Bioorg Med Chem 2024; 112:117880. [PMID: 39216382 DOI: 10.1016/j.bmc.2024.117880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/28/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Berberine is a quaternary ammonium isoquinoline alkaloid derived from traditional Chinese medicines Coptis chinensis and Phellodendron chinense. It has many pharmacological activities such as hypoglycemic, hypolipidemic, anti-tumor, antimicrobial and anti-inflammatory. Through structural modifications at various sites of berberine, the introduction of different groups can change berberine's physical and chemical properties, thereby improving the biological activity and clinical efficacy, and expanding the scope of application. This paper reviews the research progress and structure-activity relationships of berberine in recent years, aiming to provide valuable insights for the exploration of novel berberine derivatives.
Collapse
Affiliation(s)
- Xiong-Fei Luo
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Han Zhou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Peng Deng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China.
| | - Yi-Rong Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yan-Yan Ding
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Guang-Han Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zheng-Rong Wu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China; State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
2
|
Chen X, Yang H, Shi L, Mao Y, Niu L, Wang J, Chen H, Jia J, Wang J, Xue J, Shen Y, Zheng C, Tian Y, Zheng Y. Self-Microemulsifying Drug Delivery System to Enhance Oral Bioavailability of Berberine Hydrochloride in Rats. Pharmaceutics 2024; 16:1116. [PMID: 39339154 PMCID: PMC11435259 DOI: 10.3390/pharmaceutics16091116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Berberine hydrochloride (BH) is a versatile bioactive compound derived from the plants of the Berberis genus, known for its various pharmacological effects. However, its oral bioavailability is low due to its high hydrophilicity and limited permeability. To enhance its clinical efficacy and oral bioavailability, this study designed and prepared a BH-loaded self-microemulsifying drug delivery system (BH-SMEDDS), and characterized its in vitro and in vivo properties. Firstly, the optimal formulation of BH-SMEDDS was selected using solubility evaluations, pseudo-ternary phase diagrams, and particle size analysis. The formulation containing 55% Capmul MCM, 22.5% Kolliphor RH 40, and 22.5% 1,2-propanediol was developed. BH-SMEDDS exhibited stable physicochemical properties, with an average particle size of 47.2 ± 0.10 nm and a self-emulsification time of 26.02 ± 0.24 s. Moreover, in vitro dissolution studies showed significant improvements in BH release in simulated intestinal fluid, achieving 93.1 ± 2.3% release within 300 min. Meanwhile, BH-SMEDDS did not exhibit cytotoxic effects on the Caco-2 cells. Additionally, BH-SMEDDS achieved a 1.63-fold increase in oral bioavailability compared to commercial BH tablets. Therefore, SMEDDS presents a promising strategy for delivering BH with enhanced oral bioavailability, demonstrating significant potential for clinical application.
Collapse
Affiliation(s)
- Xiaolan Chen
- Department of Pharmaceutics, Jiangsu Agri-Animal Husbandry Vocational College, No. 8, Fenghuang East Road, Taizhou 225300, China; (X.C.); (H.Y.); (Y.M.); (L.N.); (J.W.); (H.C.); (J.J.); (J.W.); (J.X.)
| | - Haifeng Yang
- Department of Pharmaceutics, Jiangsu Agri-Animal Husbandry Vocational College, No. 8, Fenghuang East Road, Taizhou 225300, China; (X.C.); (H.Y.); (Y.M.); (L.N.); (J.W.); (H.C.); (J.J.); (J.W.); (J.X.)
| | - Longyu Shi
- College of Life Sciences, China Pharmaceutical University, Nanjing 210009, China;
| | - Yujuan Mao
- Department of Pharmaceutics, Jiangsu Agri-Animal Husbandry Vocational College, No. 8, Fenghuang East Road, Taizhou 225300, China; (X.C.); (H.Y.); (Y.M.); (L.N.); (J.W.); (H.C.); (J.J.); (J.W.); (J.X.)
| | - Lin Niu
- Department of Pharmaceutics, Jiangsu Agri-Animal Husbandry Vocational College, No. 8, Fenghuang East Road, Taizhou 225300, China; (X.C.); (H.Y.); (Y.M.); (L.N.); (J.W.); (H.C.); (J.J.); (J.W.); (J.X.)
| | - Jing Wang
- Department of Pharmaceutics, Jiangsu Agri-Animal Husbandry Vocational College, No. 8, Fenghuang East Road, Taizhou 225300, China; (X.C.); (H.Y.); (Y.M.); (L.N.); (J.W.); (H.C.); (J.J.); (J.W.); (J.X.)
| | - Haifeng Chen
- Department of Pharmaceutics, Jiangsu Agri-Animal Husbandry Vocational College, No. 8, Fenghuang East Road, Taizhou 225300, China; (X.C.); (H.Y.); (Y.M.); (L.N.); (J.W.); (H.C.); (J.J.); (J.W.); (J.X.)
| | - Jiping Jia
- Department of Pharmaceutics, Jiangsu Agri-Animal Husbandry Vocational College, No. 8, Fenghuang East Road, Taizhou 225300, China; (X.C.); (H.Y.); (Y.M.); (L.N.); (J.W.); (H.C.); (J.J.); (J.W.); (J.X.)
| | - Jingxuan Wang
- Department of Pharmaceutics, Jiangsu Agri-Animal Husbandry Vocational College, No. 8, Fenghuang East Road, Taizhou 225300, China; (X.C.); (H.Y.); (Y.M.); (L.N.); (J.W.); (H.C.); (J.J.); (J.W.); (J.X.)
| | - Jiajie Xue
- Department of Pharmaceutics, Jiangsu Agri-Animal Husbandry Vocational College, No. 8, Fenghuang East Road, Taizhou 225300, China; (X.C.); (H.Y.); (Y.M.); (L.N.); (J.W.); (H.C.); (J.J.); (J.W.); (J.X.)
| | - Yan Shen
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (Y.S.); (C.Z.)
| | - Chunli Zheng
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (Y.S.); (C.Z.)
| | - Yu Tian
- School of Medicine, Shanghai University, Shanghai 200444, China
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 201613, China
| | - Yi Zheng
- Department of Pharmaceutics, Jiangsu Agri-Animal Husbandry Vocational College, No. 8, Fenghuang East Road, Taizhou 225300, China; (X.C.); (H.Y.); (Y.M.); (L.N.); (J.W.); (H.C.); (J.J.); (J.W.); (J.X.)
| |
Collapse
|
3
|
Niu ZX, Wang YT, Wang JF. Recent advances in total synthesis of protoberberine and chiral tetrahydroberberine alkaloids. Nat Prod Rep 2024. [PMID: 38712365 DOI: 10.1039/d4np00016a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Covering: Up to 2024Due to the widespread distribution of protoberberine alkaloids (PBs) and tetrahydroberberine alkaloids (THPBs) in nature, coupled with their myriad unique physiological activities, they have garnered considerable attention from medical practitioners. Over the past few decades, synthetic chemists have devised various total synthesis methods to attain these structures, continually expanding reaction pathways to achieve more efficient synthetic strategies. Simultaneously, the chiral construction of THPBs has become a focal point. In this comprehensive review, we categorically summarized the developmental trajectory of the total synthesis of these alkaloids based on the core closure strategies of protoberberine and tetrahydroberberine.
Collapse
Affiliation(s)
- Zhen-Xi Niu
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China.
| | - Ya-Tao Wang
- First People's Hospital of Shangqiu, Shangqiu 476000, Henan Province, China.
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Jun-Feng Wang
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, 125 Nashua Street, Suite 660, Boston, Massachusetts 02114, USA.
| |
Collapse
|
4
|
Zhao JS, Ahmad N, Li S, Zhou CH. Hydrazyl hydroxycoumarins as new potential conquerors towards Pseudomonas aeruginosa. Bioorg Med Chem Lett 2024; 103:129709. [PMID: 38494040 DOI: 10.1016/j.bmcl.2024.129709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
A class of unique hydrazyl hydroxycoumarins (HHs) as novel structural scaffold was developed to combat dreadful bacterial infections. Some HHs could effectively suppress bacterial growth at low concentrations, especially, pyridyl HH 7 exhibited a good inhibition against Pseudomonas aeruginosa 27853 with a low MIC value of 0.5 μg/mL, which was 8-fold more active than norfloxacin. Furthermore, pyridyl HH 7 with low hemolytic activity and low cytotoxicity towards NCM460 cells showed much lower trend to induce the drug-resistant development than norfloxacin. Preliminarily mechanism exploration indicated that pyridyl HH 7 could eradicate the integrity of bacterial membrane, result in the leakage of intracellular proteins, and interact with bacterial DNA gyrase via non-covalent binding, and ADME analysis manifested that compound 7 gave good pharmacokinetic properties. These results suggested that the newly developed hydrazyl hydroxycoumarins as potential multitargeting antibacterial agents should be worthy of further investigation for combating bacterial infection.
Collapse
Affiliation(s)
- Jiang-Sheng Zhao
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Nisar Ahmad
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shuo Li
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
5
|
Verma SK, Rangappa S, Verma R, Xue F, Verma S, Sharath Kumar KS, Rangappa KS. Sulfur (S Ⅵ)-containing heterocyclic hybrids as antibacterial agents against methicillin-resistant Staphylococcus aureus (MRSA) and its SAR. Bioorg Chem 2024; 145:107241. [PMID: 38437761 DOI: 10.1016/j.bioorg.2024.107241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024]
Abstract
The discovery of new small molecule-based inhibitors is an attractive field in medicinal chemistry. Structurally diversified heterocyclic derivatives have been investigated to combat multi-drug resistant bacterial infections and they offers several mechanism of action. Methicillin-resistant Staphylococcus aureus (MRSA) is becoming more and more deadly to humans because of its simple method of transmission, quick development of antibiotic resistance, and ability to cause hard-to-treat skin and filmy diseases. The sulfur (SVI) particularly sulfonyl and sulfonamide based heterocyclic moieties, have found to be good anti-MRSA agents. The development of new nontoxic, economical and highly active sulfur (SVI) containing derivatives has become hot research topics in drug discovery research. Presently, more than 150 FDA approved Sulfur (SVI)-based drugs are available in the market, and they are widely used to treat various types of diseases with different therapeutic potential. The present collective data provides the latest advancements in Sulfur (SVI)-hybrid compounds as antibacterial agents against MRSA. It also examines the outcomes of in-vitro and in-vivo investigations, exploring potential mechanisms of action and offering alternative perspectives on the structure-activity relationship (SAR). Sulfur (SVI)-hybrids exhibits synergistic effects with existing drugs to provide antibacterial action against MRSA.
Collapse
Affiliation(s)
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, Adichunchanagiri Institute of Medical Sciences, Adichunchanagiri University, B. G. Nagar 571448, India
| | - Rameshwari Verma
- School of New Energy, Yulin University, Yulin 719000, Shaanxi, PR China.
| | - Fan Xue
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, Yulin University, Yulin 719000, PR China
| | - Shekhar Verma
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur 495009, Chhattisgarh, India
| | | | | |
Collapse
|
6
|
Agili F. Novel Thiazole Derivatives Containing Imidazole and Furan Scaffold: Design, Synthesis, Molecular Docking, Antibacterial, and Antioxidant Evaluation. Molecules 2024; 29:1491. [PMID: 38611769 PMCID: PMC11013646 DOI: 10.3390/molecules29071491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024] Open
Abstract
Carbothioamides 3a,b were generated in high yield by reacting furan imidazolyl ketone 1 with N-arylthiosemicarbazide in EtOH with a catalytic amount of conc. HCl. The reaction of carbothioamides 3a,b with hydrazonyl chlorides 4a-c in EtOH with triethylamine at reflux produced 1,3-thiazole derivatives 6a-f. In a different approach, the 1,3-thiazole derivatives 6b and 6e were produced by reacting 3a and 3b with chloroacetone to afford 8a and 8b, respectively, followed by diazotization with 4-methylbenzenediazonium chloride. The thiourea derivatives 3a and 3b then reacted with ethyl chloroacetate in ethanol with AcONa at reflux to give the thiazolidinone derivatives 10a and 10b. The produced compounds were tested for antioxidant and antibacterial properties. Using phosphomolybdate, promising thiazoles 3a and 6a showed the best antioxidant activities at 1962.48 and 2007.67 µgAAE/g dry samples, respectively. Thiazoles 3a and 8a had the highest antibacterial activity against S. aureus and E. coli with 28, 25 and 27, 28 mm, respectively. Thiazoles 3a and 6d had the best activity against C. albicans with 26 mm and 37 mm, respectively. Thiazole 6c had the highest activity against A. niger, surpassing cyclohexamide. Most compounds demonstrated lower MIC values than neomycin against E. coli, S. aureus and C. albicans. A molecular docking study examined how antimicrobial compounds interact with DNA gyrase B crystal structures. The study found that all of the compounds had good binding energy to the enzymes and reacted similarly to the native inhibitor with the target DNA gyrase B enzymes' key amino acids.
Collapse
Affiliation(s)
- Fatimah Agili
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| |
Collapse
|
7
|
Pu MX, Guo HY, Quan ZS, Li X, Shen QK. Application of the Mannich reaction in the structural modification of natural products. J Enzyme Inhib Med Chem 2023; 38:2235095. [PMID: 37449337 DOI: 10.1080/14756366.2023.2235095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
The Mannich reaction is commonly used to introduce N atoms into compound molecules and is thus widely applied in drug synthesis. The Mannich reaction accounts for a certain proportion of structural modifications of natural products. The introduction of Mannich bases can significantly improve the activity, hydrophilicity, and medicinal properties of compounds; therefore, the Mannich reaction is widely used for the structural modification of natural products. In this paper, the application of the Mannich reaction to the structural modification of natural products is reviewed, providing a method for the structural modification of natural products.
Collapse
Affiliation(s)
- Miao-Xia Pu
- Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| | - Xiaoting Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| |
Collapse
|
8
|
Kou Z, Zhang J, Lan Q, Liu L, Su X, Islam R, Tian Y. Antifungal activity and mechanism of palmarosa essential oil against pathogen Botrytis cinerea in the postharvest onions. J Appl Microbiol 2023; 134:lxad290. [PMID: 38040655 DOI: 10.1093/jambio/lxad290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/03/2023]
Abstract
AIMS Botrytis cinerea is a pathogenic fungus that infests multiple crops, which causes a severe decrease in yield and generates substantial losses in the economy. Palmarosa essential oil (PEO) is a primary aromatic compound extracted from palmarosa that is commonly used for scent, medicine, and flavoring foods due to its diverse bioactive properties. In this study, we explored the antifungal activity and the main mechanism of action of PEO against B. cinerea. In addition, the components and control effects of PEO were also studied. METHODS AND RESULTS The antifungal assay was tested using the mycelial growth rate method and colony morphology. The constituents of PEO were identified according to gas chromatography/mass spectrometry (GC-MS). The main mechanism of action of PEO was evaluated by measuring representative indicators, which consist of cell contents leakage, excess reactive oxygen species (ROS), and other related indicators. The results indicated that at a concentration of 0.60 ml l-1, PEO exhibits strong antifungal activity against B. cinerea. The PEO mainly included 13 compounds, of which citronellol (44.67%), benzyl benzoate (14.66%), and acetyl cedrene (9.63%) might be the main antifungal ingredients. The study elucidated the main mechanism of action of PEO against B. cinerea, which involved the disruption of cell membrane structure, resulting in altered the cell membrane permeability, leakage of cell contents, and accumulation of excess ROS. CONCLUSIONS PEO is a satisfactory biological control agent that inhibits B. cinerea in postharvest onions. PEO (0.60 ml l-1) exhibited strong antifungal activity by disrupting the cell membrane structure, altering cell membrane permeability, leading to the cell contents leakage, accumulation of excess ROS and increased level of Malondialdehyde (MDA) compared to the control group.
Collapse
Affiliation(s)
- Zhian Kou
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jinfeng Zhang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Qingqing Lan
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Lu Liu
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xu Su
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, Xining 810008, China
| | - Rehmat Islam
- Key Laboratory of Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yongqiang Tian
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
9
|
Qian M, Ismail BB, He Q, Zhang X, Yang Z, Ding T, Ye X, Liu D, Guo M. Inhibitory mechanisms of promising antimicrobials from plant byproducts: A review. Compr Rev Food Sci Food Saf 2023; 22:2523-2590. [PMID: 37070214 DOI: 10.1111/1541-4337.13152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 04/19/2023]
Abstract
Plant byproducts and waste present enormous environmental challenges and an opportunity for valorization and industrial application. Due to consumer demands for natural compounds, the evident paucity of novel antimicrobial agents against foodborne pathogens, and the urgent need to improve the arsenal against infectious diseases and antimicrobial resistance (AMR), plant byproduct compounds have attracted significant research interest. Emerging research highlighted their promising antimicrobial activity, yet the inhibitory mechanisms remain largely unexplored. Therefore, this review summarizes the overall research on the antimicrobial activity and inhibitory mechanisms of plant byproduct compounds. A total of 315 natural antimicrobials from plant byproducts, totaling 1338 minimum inhibitory concentrations (MIC) (in μg/mL) against a broad spectrum of bacteria, were identified, and a particular emphasis was given to compounds with high or good antimicrobial activity (typically <100 μg/mL MIC). Moreover, the antimicrobial mechanisms, particularly against bacterial pathogens, were discussed in-depth, summarizing the latest research on using natural compounds to combat pathogenic microorganisms and AMR. Furthermore, safety concerns, relevant legislation, consumer perspective, and current gaps in the valorization of plant byproducts-derived compounds were comprehensively discussed. This comprehensive review covering up-to-date information on antimicrobial activity and mechanisms represents a powerful tool for screening and selecting the most promising plant byproduct compounds and sources for developing novel antimicrobial agents.
Collapse
Affiliation(s)
- Mengyan Qian
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Balarabe B Ismail
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Department of Food Science and Technology, Bayero University Kano, Kano, Nigeria
| | - Qiao He
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Xinhui Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Zhehao Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Mingming Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
10
|
Liu R, Li Z, Liu S, Zheng J, Zhu P, Cheng B, Yu R, Geng H. Synthesis, Structure-Activity Relationship, and Mechanism of a Series of Diarylhydrazide Compounds as Potential Antifungal Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6803-6817. [PMID: 37104678 DOI: 10.1021/acs.jafc.2c08027] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A series of simple diarylhydrazide derivatives (45 examples) were well-designed, prepared, and screened for their antifungal activities both in vitro and in vivo. Bioassay results suggested that all designed compounds had significant activity against Alternaria brassicae (EC50 = 0.30-8.35 μg/mL). Among of them, 2c, as the highest activity compound, could effectively inhibit the growth of plant pathogens Pyricularia oryza, Fusarium solani, Alternaria solani, Alternaria brassicae, and Alternaria alternate and was more potent than carbendazim and thiabendazole. 2c showed almost 100% protection at 200 μg/mL in vivo activity against A. solani in tomato. Moreover, 2c did not affect the germination of cowpea seed and the growth of normal human hepatocytes. The preliminary mechanistic exploration documented that 2c could result in the abnormal morphology and irregular structure of the cell membrane, destroy the function of mitochondria, increase the reactive oxygen species, and inhibit the proliferation of hypha cell. The above results manifested that target compound 2c could be a potential fungicidal candidate against phytopathogenic diseases for its excellent fungicidal activities.
Collapse
Affiliation(s)
- Ruiyuan Liu
- College of Chemistry & Pharmacy, Northwest A&F University, 22# Xi'nong Road, Yangling 712100, Shaanxi, China
| | - Zhuangzhuang Li
- College of Chemistry & Pharmacy, Northwest A&F University, 22# Xi'nong Road, Yangling 712100, Shaanxi, China
| | - Sifan Liu
- College of Chemistry & Pharmacy, Northwest A&F University, 22# Xi'nong Road, Yangling 712100, Shaanxi, China
| | - Jinshuo Zheng
- College of Chemistry & Pharmacy, Northwest A&F University, 22# Xi'nong Road, Yangling 712100, Shaanxi, China
| | - PanPan Zhu
- College of Chemistry & Pharmacy, Northwest A&F University, 22# Xi'nong Road, Yangling 712100, Shaanxi, China
| | - Bin Cheng
- College of Chemistry & Pharmacy, Northwest A&F University, 22# Xi'nong Road, Yangling 712100, Shaanxi, China
| | - Ruijin Yu
- College of Chemistry & Pharmacy, Northwest A&F University, 22# Xi'nong Road, Yangling 712100, Shaanxi, China
| | - Huiling Geng
- College of Chemistry & Pharmacy, Northwest A&F University, 22# Xi'nong Road, Yangling 712100, Shaanxi, China
| |
Collapse
|
11
|
Li SR, Tan YM, Zhang L, Zhou CH. Comprehensive Insights into Medicinal Research on Imidazole-Based Supramolecular Complexes. Pharmaceutics 2023; 15:1348. [PMID: 37242590 PMCID: PMC10222694 DOI: 10.3390/pharmaceutics15051348] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The electron-rich five-membered aromatic aza-heterocyclic imidazole, which contains two nitrogen atoms, is an important functional fragment widely present in a large number of biomolecules and medicinal drugs; its unique structure is beneficial to easily bind with various inorganic or organic ions and molecules through noncovalent interactions to form a variety of supramolecular complexes with broad medicinal potential, which is being paid an increasing amount of attention regarding more and more contributions to imidazole-based supramolecular complexes for possible medicinal application. This work gives systematical and comprehensive insights into medicinal research on imidazole-based supramolecular complexes, including anticancer, antibacterial, antifungal, antiparasitic, antidiabetic, antihypertensive, and anti-inflammatory aspects as well as ion receptors, imaging agents, and pathologic probes. The new trend of the foreseeable research in the near future toward imidazole-based supramolecular medicinal chemistry is also prospected. It is hoped that this work provides beneficial help for the rational design of imidazole-based drug molecules and supramolecular medicinal agents and more effective diagnostic agents and pathological probes.
Collapse
Affiliation(s)
- Shu-Rui Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yi-Min Tan
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ling Zhang
- School of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
12
|
Singh N, Pandey AK, Pal RR, Parashar P, Singh P, Mishra N, Kumar D, Raj R, Singh S, Saraf SA. Assessment of Anti-Arthritic Activity of Lipid Matrix Encased Berberine in Rheumatic Animal Model. J Microencapsul 2023; 40:263-278. [PMID: 36989347 DOI: 10.1080/02652048.2023.2194414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
AIM The purpose of this study was to evaluate the drug delivery and therapeutic potential of berberine (Br) loaded nanoformulation in rheumatoid arthritis (RA)-induced animal model. METHOD The Br-loaded NLCs (nanostructured lipid carriers) were prepared employing melt-emulsification process, and optimized through box-behnken design. The prepared NLCs were assessed for in-vitro and in-vivo evaluations. RESULT The optimized NLCs exhibited a mean diameter of 180.2 ± 0.31nm with 88.32 ± 2.43% entrapment efficiency. An enhanced anti-arthritic activity with reduced arthritic scores to 0.66 ± 0.51, reduction in ankle diameter to 5.80 ± 0.27mm, decline in paw withdrawal timing, and improvements in walking behavior were observed in the Br-NLCs treated group. The radiographic images revealed a reduction in bone and cartilage deformation. CONCLUSION The Br-NLCs showed promising results in the management of RA disease, can be developed as an efficient delivery system at commercial levels, and may be explored for clinical application after suitable experiments in the future.
Collapse
Affiliation(s)
- Neelu Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, VidyaVihar, Raebareli Road, Lucknow 226025, India
| | - Amit Kumar Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, VidyaVihar, Raebareli Road, Lucknow 226025, India
| | - Ravi Raj Pal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, VidyaVihar, Raebareli Road, Lucknow 226025, India
| | - Poonam Parashar
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Priya Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, VidyaVihar, Raebareli Road, Lucknow 226025, India
| | - Nidhi Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, VidyaVihar, Raebareli Road, Lucknow 226025, India
| | - Dinesh Kumar
- Centre of Biomedical Research (CBMR), Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS) Campus, Uttar Pradesh, Raebareli Road, Lucknow, 226014, India
| | - Ritu Raj
- Centre of Biomedical Research (CBMR), Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS) Campus, Uttar Pradesh, Raebareli Road, Lucknow, 226014, India
| | - Sukhveer Singh
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Uttar Pradesh, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, India
| | - Shubhini A Saraf
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, VidyaVihar, Raebareli Road, Lucknow 226025, India
| |
Collapse
|
13
|
Zhao M, Guo W, Wu L, Qiu FG. I
2
‐Promoted Oxidative Metal‐Free [3+2] Tandem Annulation for the Synthesis of Multisubstituted Imidazoles in the Presence of Base. ChemistrySelect 2022. [DOI: 10.1002/slct.202203729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mingming Zhao
- Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou 510530 (P. R. China) University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wei Guo
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Linping Wu
- Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou 510530 (P. R. China) University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Fayang G. Qiu
- Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou 510530 (P. R. China) University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
14
|
Zhou Y, Yang CJ, Luo XF, Li AP, Zhang SY, An JX, Zhang ZJ, Ma Y, Zhang BQ, Liu YQ. Design, synthesis, and biological evaluation of novel berberine derivatives against phytopathogenic fungi. PEST MANAGEMENT SCIENCE 2022; 78:4361-4376. [PMID: 35758905 DOI: 10.1002/ps.7055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/01/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The abuse of chemical fungicides not only leads to toxic residues and resistance in plant pathogenic fungi, but also causes environmental pollution and side effects on in humans and animals. Based on the antifungal activities of berberine, seven different types of berberine derivatives (A1-G1) were synthesized, and their antifungal activities against six plant pathogenic fungi were evaluated (Rhizoctonia solani, Botrytis cinerea, Fusarium graminearum, Phytophthora capsici, Sclerotinia sclerotiorum, and Magnaporthe oryzae). RESULTS The results for antifungal activities in vitro showed that berberine derivative E1 displayed good antifungal activity against R. solani with a median effective concentration (EC50 ) of 1.77 μg ml-1 , and berberine derivatives F1 and G1 demonstrated broad-spectrum antifungal activities with EC50 values ranging from 4.43 to 42.23 μg ml-1 against six plant pathogenic fungi. Berberine derivatives (E2-E29, F2-F18, and G2-G9) were further synthesized to investigate the structure-activity relationship (SAR), and compound E20 displayed significant antifungal activity against R. solani with an EC50 value of 0.065 μg ml-1 . Preliminary mechanism studies showed that E20 could cause mycelial shrinkage, cell membrane damage, mitochondrial abnormalities and the accumulation of harmful reactive oxygen species, resulting in cell death in R. solani. Moreover, in vivo experimental results showed that the protective effect of E20 was 97.31% at 5 μg ml-1 , which was better than that of the positive control thifluzamide (50.13% at 5 μg ml-1 ). CONCLUSION Berberine derivative E20 merits further development as a new drug candidate with selective and excellent antifungal activity against R. solani. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yong Zhou
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Cheng-Jie Yang
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Xiong-Fei Luo
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - An-Ping Li
- Gansu Institute for Drug Control, Lanzhou, People's Republic of China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, People's Republic of China
| | - Jun-Xia An
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Yue Ma
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Bao-Qi Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, People's Republic of China
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou, People's Republic of China
| |
Collapse
|
15
|
Jiang Y, Qiu H, Liang W, Lin J, Lin J, Liu W, Wang X, Cui W, Chen X, Wang H, Zhao L, Liang H. Derivatization of Marine‐Derived Fascaplysin via Highly Regioselective Suzuki‐Miyaura Coupling Contributing to the Enhanced Antibacterial Activity. ChemistrySelect 2022. [DOI: 10.1002/slct.202201441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yinli Jiang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province School of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 China
| | - Hongda Qiu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province School of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 China
| | - Weida Liang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province School of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 China
| | - Junhao Lin
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province School of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 China
| | - Jiayu Lin
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province School of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 China
| | - Wan Liu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province School of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 China
| | - Xiao Wang
- Immunology Innovation Team School of Medicine Ningbo University Ningbo Zhejiang 315211 China
| | - Wei Cui
- Immunology Innovation Team School of Medicine Ningbo University Ningbo Zhejiang 315211 China
| | - Xiaowei Chen
- Immunology Innovation Team School of Medicine Ningbo University Ningbo Zhejiang 315211 China
| | - Huifei Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province School of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 China
| | - Lingling Zhao
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province School of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 China
| | - Hongze Liang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province School of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 China
| |
Collapse
|
16
|
Wierzchowski M, Ziental D, Łażewski D, Korzanski A, Gielara-Korzanska A, Tykarska E, Dlugaszewska J, Sobotta L. New Metallophthalocyanines Bearing 2-Methylimidazole Moieties-Potential Photosensitizers against Staphylococcus aureus. Int J Mol Sci 2022; 23:ijms23115910. [PMID: 35682587 PMCID: PMC9180345 DOI: 10.3390/ijms23115910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 02/04/2023] Open
Abstract
Newly developed tetra- and octasubstituted methimazole-phthalocyanine conjugates as potential photosensitizers have been obtained. Synthesized intermediates and final products were characterized by the MALD-TOF technique and various NMR techniques, including 2D methods. Single-crystal X-ray diffraction was used to determine the crystal structures of dinitriles. The studied phthalocyanines revealed two typical absorption bands—the Soret band and the Q band. The most intense fluorescence was observed for octasubstituted magnesium(II) phthalocyanine in DMF (ΦFL = 0.022). The best singlet oxygen generators were octasubstituted magnesium(II) and zinc(II) phthalocyanines (Φ∆ 0.56 and 0.81, respectively). The studied compounds presented quantum yields of photodegradation at the level between 10−5 and 10−6. Due to their low solubility in a water environment, the liposomal formulations were prepared. Within the studied group, octasubstituted zinc(II) phthalocyanine at the concentration of 100 µM activated with red light showed the highest antibacterial activity against S. aureus equal to a 5.68 log reduction of bacterial growth.
Collapse
Affiliation(s)
- Marcin Wierzchowski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (M.W.); (D.Ł.); (A.G.-K.); (E.T.)
| | - Daniel Ziental
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Dawid Łażewski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (M.W.); (D.Ł.); (A.G.-K.); (E.T.)
| | - Artur Korzanski
- Department of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland;
| | - Agnieszka Gielara-Korzanska
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (M.W.); (D.Ł.); (A.G.-K.); (E.T.)
| | - Ewa Tykarska
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (M.W.); (D.Ł.); (A.G.-K.); (E.T.)
| | - Jolanta Dlugaszewska
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Lukasz Sobotta
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
- Correspondence:
| |
Collapse
|
17
|
Razavi MS, Ebrahimnejad P, Fatahi Y, D’Emanuele A, Dinarvand R. Recent Developments of Nanostructures for the Ocular Delivery of Natural Compounds. Front Chem 2022; 10:850757. [PMID: 35494641 PMCID: PMC9043530 DOI: 10.3389/fchem.2022.850757] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Ocular disorders comprising various diseases of the anterior and posterior segments are considered as the main reasons for blindness. Natural products have been identified as potential treatments for ocular diseases due to their anti-oxidative, antiangiogenic, and anti-inflammatory effects. Unfortunately, most of these beneficial compounds are characterised by low solubility which results in low bioavailability and rapid systemic clearance thus requiring frequent administration or requiring high doses, which hinders their therapeutic applications. Additionally, the therapeutic efficiency of ocular drug delivery as a popular route of drug administration for the treatment of ocular diseases is restricted by various anatomical and physiological barriers. Recently, nanotechnology-based strategies including polymeric nanoparticles, micelles, nanofibers, dendrimers, lipid nanoparticles, liposomes, and niosomes have emerged as promising approaches to overcome limitations and enhance ocular drug bioavailability by effective delivery to the target sites. This review provides an overview of nano-drug delivery systems of natural compounds such as thymoquinone, catechin, epigallocatechin gallate, curcumin, berberine, pilocarpine, genistein, resveratrol, quercetin, naringenin, lutein, kaempferol, baicalin, and tetrandrine for ocular applications. This approach involves increasing drug concentration in the carriers to enhance drug movement into and through the ocular barriers.
Collapse
Affiliation(s)
- Malihe Sadat Razavi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Pharmaceutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Yousef Fatahi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Antony D’Emanuele
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| | - Rassoul Dinarvand
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| |
Collapse
|
18
|
Li H, Wu Z, Chu QR, Liang HJ, Liu Y, Wu TL, Ma Y. Potential application value of hydroxychalcones based on isoliquiritigenin in agricultural plant diseases. NEW J CHEM 2022. [DOI: 10.1039/d2nj03261a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To improve the fungicidal activity of lead compound isoliquiritigenin, 33 hydroxychalcones were designed and prepared. Their in vitro antifungal activity against four pathogenic fungi (Rhizoctonia solani, Botrytis cinerea, Fusarium graminearum,...
Collapse
|
19
|
Access to new Schiff bases tethered with pyrazolopyrimidinone as antibacterial agents: Design and synthesis, molecular docking and DFT analysis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Chen YJ, Ma KY, Du SS, Zhang ZJ, Wu TL, Sun Y, Liu YQ, Yin XD, Zhou R, Yan YF, Wang RX, He YH, Chu QR, Tang C. Antifungal Exploration of Quinoline Derivatives against Phytopathogenic Fungi Inspired by Quinine Alkaloids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12156-12170. [PMID: 34623798 DOI: 10.1021/acs.jafc.1c05677] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Enlightened from our previous work of structural simplification of quinine and innovative application of natural products against phytopathogenic fungi, lead structure 2,8-bis(trifluoromethyl)-4-quinolinol (3) was selected to be a candidate and its diversified design, synthesis, and antifungal evaluation were carried out. All of the synthesized compounds Aa1-Db1 were evaluated for their antifungal activity against four agriculturally important fungi, Botrytis cinerea, Fusarium graminearum, Rhizoctonia solani, and Sclerotinia sclerotiorum. Results showed that compounds Ac3, Ac4, Ac7, Ac9, Ac12, Bb1, Bb10, Bb11, Bb13, Cb1. and Cb3 exhibited a good antifungal effect, especially Ac12 had the most potent activity with EC50 values of 0.52 and 0.50 μg/mL against S. sclerotiorum and B. cinerea, respectively, which were more potent than those of the lead compound 3 (1.72 and 1.89 μg/mL) and commercial fungicides azoxystrobin (both >30 μg/mL) and 8-hydroxyquinoline (2.12 and 5.28 μg/mL). Moreover, compound Ac12 displayed excellent in vivo antifungal activity, which was comparable in activity to the commercial fungicide boscalid. The preliminary mechanism revealed that compound Ac12 might cause an abnormal morphology of cell membranes, an increase in membrane permeability, and release of cellular contents. These results indicated that compound Ac12 displayed superior in vitro and in vivo fungicidal activities and could be a potential fungicidal candidate against plant fungal diseases.
Collapse
Affiliation(s)
- Yong-Jia Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Kun-Yuan Ma
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Sha-Sha Du
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Tian-Lin Wu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yu Sun
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xiao-Dan Yin
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Rui Zhou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yin-Fang Yan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ren-Xuan Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ying-Hui He
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Qing-Ru Chu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Chen Tang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
21
|
Li H, He YH, Hu YM, Chu QR, Chen YJ, Wu ZR, Zhang ZJ, Liu YQ, Yang CJ, Liang HJ, Yan YF. Design, Synthesis, and Structure-Activity Relationship Studies of Magnolol Derivatives as Antifungal Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11781-11793. [PMID: 34582205 DOI: 10.1021/acs.jafc.1c01838] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plant pathogenic fungi seriously affect agricultural production and are difficult to control. The discovery of new leads based on natural products is an important way to innovate fungicides. In this study, 30 natural-product-based magnolol derivatives were synthesized and characterized on the basis of NMR and mass spectroscopy. Bioactivity tests on phytopathogenic fungi (Rhizoctonia solani, Fusarium graminearum, Botrytis cinerea, and Sclerotinia sclerotiorum) in vitro of these compounds were performed systematically. The results showed that 11 compounds were active against four kinds of phytopathogenic fungi with EC50 values in the range of 1.40-20.00 μg/mL, especially compound L5 that exhibited excellent antifungal properties against B. cinerea with an EC50 value of 2.86 μg/mL, approximately 2.8-fold more potent than magnolol (EC50 = 8.13 μg/mL). Moreover, compound L6 showed the highest antifungal activity against F. graminearum and Rhophitulus solani with EC50 values of 4.39 and 1.40 μg/mL, respectively, and compound L7 showed good antifungal activity against S. sclerotiorum. Then, an in vivo experiment of compound L5 against B. cinerea was further investigated in vivo using infected tomatoes (curative effect, 50/200 and 36%/100 μg/mL). The physiological and biochemical studies illustrated that the primary action mechanism of compound L5 on B. cinerea might change the mycelium morphology, increase cell membrane permeability, and destroy the function of mitochondria. Furthermore, structure-activity relationship (SAR) studies revealed that hydroxyl groups play a key role in antifungal activity. To sum up, this study provides a reference for understanding the application of magnolol-based antifungal agents in crop protection.
Collapse
Affiliation(s)
- Hu Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ying-Hui He
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yong-Mei Hu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Qing-Ru Chu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yong-Jia Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhen-Rong Wu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Cheng-Jie Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Hong-Jie Liang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yin-Fang Yan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
22
|
|
23
|
Study on the mechanisms of the cross-resistance to TET, PIP, and GEN in Staphylococcus aureus mediated by the Rhizoma Coptidis extracts. J Antibiot (Tokyo) 2021; 74:330-336. [PMID: 33500562 DOI: 10.1038/s41429-021-00407-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 01/30/2023]
Abstract
The purpose of this study was focused on the mechanisms of the cross-resistance to tetracycline (TET), piperacillin Sodium (PIP), and gentamicin (GEN) in Staphylococcus aureus (SA) mediated by Rhizoma Coptidis extracts (RCE). The selected strains were exposed continuously to RCE at the sublethal concentrations for 12 days, respectively. The susceptibility change of the drug-exposed strains was determined by analysis of the minimum inhibitory concentration. The 16S rDNA sequencing method was used to identify the RCE-exposed strain. Then the expression of resistant genes in the selected isolates was analyzed by transcriptome sequencing. The results indicated that RCE could trigger the preferential cross-resistance to TET, PIP, and GEN in SA. The correlative resistant genes to the three kinds of antibiotics were upregulated in the RCE-exposed strain, and the mRNA levels of the resistant genes determined by RT-qPCR were consistent with those from the transcriptome analysis. It was suggested from these results that the antibacterial Traditional Chinese Medicines might be a significant factor of causing the bacterial antibiotic-resistance.
Collapse
|
24
|
Liang XY, Battini N, Sui YF, Ansari MF, Gan LL, Zhou CH. Aloe-emodin derived azoles as a new structural type of potential antibacterial agents: design, synthesis, and evaluation of the action on membrane, DNA, and MRSA DNA isomerase. RSC Med Chem 2021; 12:602-608. [PMID: 34046631 PMCID: PMC8128066 DOI: 10.1039/d0md00429d] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/25/2021] [Indexed: 12/30/2022] Open
Abstract
As serious global drug resistance motivated the exploration of new structural drugs, we developed a type of novel structural aloe-emodin azoles as potential antibacterial agents in this work. Some target aloe-emodin azoles displayed effective activity against the tested strains, especially tetrazolyl aloe-emodin 4b showed a low MIC value of 2 μg mL-1 towards MRSA, being more efficient than the reference drug norfloxacin (MIC = 8 μg mL-1). Also, the active molecule 4b exhibited low cytotoxicity against LO2 cells with no distinct tendency to induce the concerned resistance towards MRSA. The tetrazolyl derivative 4b was preliminarily investigated for the possible mechanism; it was revealed that tetrazolyl derivative 4b could both disrupt the integrity of MRSA membrane and form 4b-DNA supramolecular complex by intercalating into DNA. Moreover, tetrazolyl aloe-emodin 4b could bind with MRSA DNA isomerase at multiple sites through hydrogen bonds in molecular simulation.
Collapse
Affiliation(s)
- Xin-Yuan Liang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 PR China +86 23 68254967 +86 23 68254967
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 PR China +86 23 68254967 +86 23 68254967
| | - Yan-Fei Sui
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 PR China +86 23 68254967 +86 23 68254967
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 PR China +86 23 68254967 +86 23 68254967
| | - Lin-Ling Gan
- Chongqing Engineering Research Center of Pharmaceutical Sciences, School of Pharmacy, Chongqing Medical and Pharmaceutical College Chongqing 401331 PR China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 PR China +86 23 68254967 +86 23 68254967
| |
Collapse
|
25
|
Milani G, Cavalluzzi MM, Solidoro R, Salvagno L, Quintieri L, Di Somma A, Rosato A, Corbo F, Franchini C, Duilio A, Caputo L, Habtemariam S, Lentini G. Molecular Simplification of Natural Products: Synthesis, Antibacterial Activity, and Molecular Docking Studies of Berberine Open Models. Biomedicines 2021; 9:452. [PMID: 33922200 PMCID: PMC8146520 DOI: 10.3390/biomedicines9050452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 02/08/2023] Open
Abstract
Berberine, the main bioactive component of many medicinal plants belonging to various genera such as Berberis, Coptis, and Hydrastis is a multifunctional compound. Among the numerous interesting biological properties of berberine is broad antimicrobial activity including a range of Gram-positive and Gram-negative bacteria. With the aim of identifying berberine analogues possibly endowed with higher lead-likeness and easier synthetic access, the molecular simplification approach was applied to the secondary metabolite and a series of analogues were prepared and screened for their antimicrobial activity against Gram-positive and Gram-negative bacterial test species. Rewardingly, the berberine simplified analogues displayed 2-20-fold higher potency with respect to berberine. Since our berberine simplified analogues may be easily synthesized and are characterized by lower molecular weight than the parent compound, they are further functionalizable and should be more suitable for oral administration. Molecular docking simulations suggested FtsZ, a well-known protein involved in bacterial cell division, as a possible target.
Collapse
Affiliation(s)
- Gualtiero Milani
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona n. 4, 70126 Bari, Italy; (G.M.); (R.S.); (L.S.); (A.R.); (F.C.); (C.F.); (G.L.)
| | - Maria Maddalena Cavalluzzi
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona n. 4, 70126 Bari, Italy; (G.M.); (R.S.); (L.S.); (A.R.); (F.C.); (C.F.); (G.L.)
| | - Roberta Solidoro
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona n. 4, 70126 Bari, Italy; (G.M.); (R.S.); (L.S.); (A.R.); (F.C.); (C.F.); (G.L.)
| | - Lara Salvagno
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona n. 4, 70126 Bari, Italy; (G.M.); (R.S.); (L.S.); (A.R.); (F.C.); (C.F.); (G.L.)
| | - Laura Quintieri
- Institute of Sciences of Food Production (CNR-ISPA) National Council of Research, Via G. Amendola, 122/O, 70126 Bari, Italy; (L.Q.); (L.C.)
| | - Angela Di Somma
- Department of Chemical Sciences, University of Naples “Federico II” Via Cinthia 4, 80126 Napoli, Italy; (A.D.S.); (A.D.)
| | - Antonio Rosato
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona n. 4, 70126 Bari, Italy; (G.M.); (R.S.); (L.S.); (A.R.); (F.C.); (C.F.); (G.L.)
| | - Filomena Corbo
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona n. 4, 70126 Bari, Italy; (G.M.); (R.S.); (L.S.); (A.R.); (F.C.); (C.F.); (G.L.)
| | - Carlo Franchini
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona n. 4, 70126 Bari, Italy; (G.M.); (R.S.); (L.S.); (A.R.); (F.C.); (C.F.); (G.L.)
| | - Angela Duilio
- Department of Chemical Sciences, University of Naples “Federico II” Via Cinthia 4, 80126 Napoli, Italy; (A.D.S.); (A.D.)
| | - Leonardo Caputo
- Institute of Sciences of Food Production (CNR-ISPA) National Council of Research, Via G. Amendola, 122/O, 70126 Bari, Italy; (L.Q.); (L.C.)
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services, University of Greenwich, Chatham-Maritime, Kent ME4 4TB, UK;
| | - Giovanni Lentini
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona n. 4, 70126 Bari, Italy; (G.M.); (R.S.); (L.S.); (A.R.); (F.C.); (C.F.); (G.L.)
| |
Collapse
|
26
|
Gaba S, Saini A, Singh G, Monga V. An insight into the medicinal attributes of berberine derivatives: A review. Bioorg Med Chem 2021; 38:116143. [PMID: 33848698 DOI: 10.1016/j.bmc.2021.116143] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/27/2021] [Accepted: 03/28/2021] [Indexed: 12/13/2022]
Abstract
In the last few decades, traditional natural products have been the center of attention for the scientific community and exploration of their therapeutic abilities is proceeding perpetually. Berberine, with remarkable therapeutic diversity, is a plant derived isoquinoline alkaloid which is widely used as a traditional medicine in China. Berberine has been tackled as a fascinating pharmacophore to make great contributions to the discovery and development of new therapeutic agents against variegated diseases. Despite its tremendous therapeutic potential, clinical utility of this alkaloid was significantly compromised due to undesirable pharmacokinetic properties. To overcome this limitation, several structural modifications were performed on this scaffold to improve its therapeutic efficacy. The collective efforts of the community have achieved the tremendous advancements, bringing berberine to clinical use and discovering new therapeutic opportunities by structural modifications on the berberine scaffold. In this review, recent advancements in the medicinal chemistry of berberine and its derivatives in the last few years (2016-2020) have been compiled to represent inclusive data associated with various biological activities of this alkaloid. The comprehensive structure-activity relationship studies along with molecular modelling and mechanistic studies have also been summarized. This article would be highly helpful for the scientific community to get better insight into medicinal research of berberine and become a compelling guide for the rational design of berberine based compounds.
Collapse
Affiliation(s)
- Sobhi Gaba
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Anjali Saini
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India.
| |
Collapse
|
27
|
Chen YJ, Liu H, Zhang SY, Li H, Ma KY, Liu YQ, Yin XD, Zhou R, Yan YF, Wang RX, He YH, Chu QR, Tang C. Design, Synthesis, and Antifungal Evaluation of Cryptolepine Derivatives against Phytopathogenic Fungi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1259-1271. [PMID: 33496176 DOI: 10.1021/acs.jafc.0c06480] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Inspired by the widely antiphytopathogenic application of diversified derivatives from natural sources, cryptolepine and its derivatives were subsequently designed, synthesized, and evaluated for their antifungal activities against four agriculturally important fungi Rhizoctonia solani, Botrytis cinerea, Fusarium graminearum, and Sclerotinia sclerotiorum. The results obtained from in vitro assay indicated that compounds a1-a24 showed great fungicidal property against B. cinerea (EC50 < 4 μg/mL); especially, a3 presented significantly prominent inhibitory activity with an EC50 of 0.027 μg/mL. In the pursuit of further expanding the antifungal spectrum of cryptolepine, ring-opened compound f1 produced better activity with an EC50 of 3.632 μg/mL against R. solani and an EC50 of 5.599 μg/mL against F. graminearum. Furthermore, a3 was selected to be a candidate to investigate its preliminary antifungal mechanism to B. cinerea, revealing that not only spore germination was effectively inhibited and the normal physiological structure of mycelium was severely undermined but also detrimental reactive oxygen was obviously accumulated and the normal function of the nucleus was fairly disordered. Besides, in vivo curative experiment against B. cinerea found that the therapeutic action of a3 was comparable to that of the positive control azoxystrobin. These results suggested that compound a3 could be regarded as a novel and promising agent against B. cinerea for its valuable potency.
Collapse
Affiliation(s)
- Yong-Jia Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Hua Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Hu Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Kun-Yuan Ma
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xiao-Dan Yin
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Rui Zhou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yin-Fang Yan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ren-Xuan Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ying-Hui He
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Qing-Ru Chu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Chen Tang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
28
|
Malasala S, Ahmad MN, Akunuri R, Shukla M, Kaul G, Dasgupta A, Madhavi YV, Chopra S, Nanduri S. Synthesis and evaluation of new quinazoline-benzimidazole hybrids as potent anti-microbial agents against multidrug resistant Staphylococcus aureus and Mycobacterium tuberculosis. Eur J Med Chem 2020; 212:112996. [PMID: 33190958 DOI: 10.1016/j.ejmech.2020.112996] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/12/2020] [Accepted: 11/02/2020] [Indexed: 12/17/2022]
Abstract
Owing to the rapid rise in antibiotic resistance, infectious diseases have become serious threat to public health. There is an urgent need to develop new antimicrobial agents with diverse chemical structures and novel mechanisms of action to overcome the resistance. In recent years, Quinazoline-benzimidazole hybrids have emerged as a new class of antimicrobial agents active against S. aureus and M. tuberculosis. In the current study, we designed and synthesized fifteen new Quinazoline-benzimidazole hybrids and evaluated them for their antimicrobial activity against S. aureus ATCC 29213 and M. tuberculosis H37Rv. These studies led to the identification of nine potent antibacterial agents 8a, 8b, 8c, 8d, 8f, 8g, 8h, 8i and 10c with MICs in the range of 4-64 μg/mL. Further, these selected compounds were found to possess potent antibacterial potential against a panel of drug-resistant clinical isolates which include methicillin and vancomycin-resistant S. aureus. The selected compounds were found to be less toxic to Vero cells (CC50 = 40-≥200 μg/mL) and demonstrated a favourable selectivity index. Based on the encouraging results obtained these new benzimidazol-2-yl quinazoline derivatives have emerged as promising antimicrobial agents for the treatment of MDR- S. aureus and Mycobacterial infections.
Collapse
Affiliation(s)
- Satyaveni Malasala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, Telangana, India
| | - Md Naiyaz Ahmad
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, 226031, Uttar Pradesh, India; AcSIR, Ghaziabad, Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| | - Ravikumar Akunuri
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, Telangana, India
| | - Manjulika Shukla
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, 226031, Uttar Pradesh, India
| | - Grace Kaul
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, 226031, Uttar Pradesh, India; AcSIR, Ghaziabad, Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| | - Arunava Dasgupta
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, 226031, Uttar Pradesh, India; AcSIR, Ghaziabad, Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| | - Y V Madhavi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, Telangana, India
| | - Sidharth Chopra
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, 226031, Uttar Pradesh, India; AcSIR, Ghaziabad, Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India.
| | - Srinivas Nanduri
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, Telangana, India.
| |
Collapse
|
29
|
Rossi R, Ciofalo M. An Updated Review on the Synthesis and Antibacterial Activity of Molecular Hybrids and Conjugates Bearing Imidazole Moiety. Molecules 2020; 25:molecules25215133. [PMID: 33158247 PMCID: PMC7663458 DOI: 10.3390/molecules25215133] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 01/28/2023] Open
Abstract
The rapid growth of serious infections caused by antibiotic resistant bacteria, especially the nosocomial ESKAPE pathogens, has been acknowledged by Governments and scientists and is one of the world's major health problems. Various strategies have been and are currently investigated and developed to reduce and/or delay the bacterial resistance. One of these strategies regards the design and development of antimicrobial hybrids and conjugates. This unprecedented critical review, in which our continuing interest in the synthesis and evaluation of the bioactivity of imidazole derivatives is testified, aims to summarise and comment on the results obtained from the end of the 1900s until February 2020 in studies conducted by numerous international research groups on the synthesis and evaluation of the antibacterial properties of imidazole-based molecular hybrids and conjugates in which the pharmacophoric constituents of these compounds are directly covalently linked or connected through a linker or spacer. In this review, significant attention was paid to summarise the strategies used to overcome the antibiotic resistance of pathogens whose infections are difficult to treat with conventional antibiotics. However, it does not include literature data on the synthesis and evaluation of the bioactivity of hybrids and conjugates in which an imidazole moiety is fused with a carbo- or heterocyclic subunit.
Collapse
Affiliation(s)
- Renzo Rossi
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via G. Moruzzi, 3, I-56124 Pisa, Italy
- Correspondence: (R.R.); (M.C.)
| | - Maurizio Ciofalo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, Viale delle Scienze, Edificio 4, I-90128 Palermo, Italy
- Correspondence: (R.R.); (M.C.)
| |
Collapse
|
30
|
An unexpected discovery toward novel membrane active sulfonyl thiazoles as potential MRSA DNA intercalators. Future Med Chem 2020; 12:1709-1727. [DOI: 10.4155/fmc-2019-0303] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: With the increasing emergence of drug-resistant bacteria, the need for new antimicrobial agents has become extremely urgent. This work was to develop sulfonyl thiazoles as potential antibacterial agents. Results & methodology: Novel hybrids of sulfonyl thiazoles were developed from commercial acetanilide and acetylthiazole. Hybrids 6e and 6f displayed excellent inhibitory efficacy against clinical methicillin-resistant Staphylococcus aureus (MRSA) (minimum inhibitory concentration = 1 μg/ml) without obvious toxicity toward normal mammalian cells (RAW 264.7). The combination uses were found to improve the antimicrobial ability. Further preliminary antibacterial mechanism experiments showed that the active molecule 6f could effectively interfere with MRSA membrane and insert into MRSA DNA. Conclusion: Compounds 6e and 6f could serve as potential DNA-targeting templates toward the development of promising antimicrobial agents.
Collapse
|
31
|
Dastmard S, Mamaghani M, Rassa M. Ultrasound‐assisted efficient synthesis of polyfunctional 1,2,4‐triazoles as novel antibacterial and antioxidant agents. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.201900430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sahar Dastmard
- Department of Chemistry, Faculty of SciencesUniversity of Guilan Rasht Iran
| | | | - Mehdi Rassa
- Department of Biology, Faculty of SciencesUniversity of Guilan Rasht Iran
| |
Collapse
|
32
|
Kerru N, Gummidi L, Maddila SN, Gangu KK, Jonnalagadda SB. Four-component rapid protocol with nickel oxide loaded on fluorapatite as a sustainable catalyst for the synthesis of novel imidazole analogs. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107935] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Song D, Hao J, Fan D. Biological properties and clinical applications of berberine. Front Med 2020; 14:564-582. [DOI: 10.1007/s11684-019-0724-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 10/12/2019] [Indexed: 02/06/2023]
|
34
|
Fesatidou M, Petrou A, Athina G. Heterocycle Compounds with Antimicrobial Activity. Curr Pharm Des 2020; 26:867-904. [DOI: 10.2174/1381612826666200206093815] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/19/2019] [Indexed: 12/19/2022]
Abstract
Background:Bacterial infections are a growing problem worldwide causing morbidity and mortality mainly in developing countries. Moreover, the increased number of microorganisms, developing multiple resistances to known drugs, due to abuse of antibiotics, is another serious problem. This problem becomes more serious for immunocompromised patients and those who are often disposed to opportunistic fungal infections.Objective:The objective of this manuscript is to give an overview of new findings in the field of antimicrobial agents among five-membered heterocyclic compounds. These heterocyclic compounds especially five-membered attracted the interest of the scientific community not only for their occurrence in nature but also due to their wide range of biological activities.Method:To reach our goal, a literature survey that covers the last decade was performed.Results:As a result, recent data on the biological activity of thiazole, thiazolidinone, benzothiazole and thiadiazole derivatives are mentioned.Conclusion:It should be mentioned that despite the progress in the development of new antimicrobial agents, there is still room for new findings. Thus, research still continues.
Collapse
Affiliation(s)
- Maria Fesatidou
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Anthi Petrou
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Geronikaki Athina
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
35
|
Venkatapathy K, Magesh CJ, Lavanya G, Perumal PT, Prema S. Design, synthesis, molecular docking, and spectral studies of new class of carbazolyl polyhydroquinoline derivatives as promising antibacterial agents with noncytotoxicity towards human mononuclear cells from peripheral blood. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Karuppan Venkatapathy
- PG & Research Department of ChemistryArignar Anna Government Arts and Science College Cheyyar India
| | - Chinnaiyan J. Magesh
- PG & Research Department of ChemistryArignar Anna Government Arts and Science College Cheyyar India
| | - Gnanamani Lavanya
- PG & Research Department of ChemistryArignar Anna Government Arts and Science College Cheyyar India
| | - Paramasivam T. Perumal
- Department of ChemistryB.S. Abdur Rahman Crescent Institute of Science and Technology Chennai India
| | - Sekar Prema
- PG & Research Department of ChemistryArignar Anna Government Arts and Science College Cheyyar India
| |
Collapse
|
36
|
Wei QH, Cui DZ, Liu XF, Chai YY, Zhao N, Wang JY, Zhao M. In vitro antifungal activity and possible mechanisms of action of chelerythrine. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 164:140-148. [PMID: 32284120 DOI: 10.1016/j.pestbp.2020.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 06/11/2023]
Abstract
Chelerythrine (CHE) possesses broad pharmacological activities. In this study, the extract of Chelidonium majus L. were characterized by high performance liquid chromatography (HPLC), infrared radiation (IR) spectroscopy and nuclear magnetic resonance (NMR). It was proved that the extract was CHE. The antifungal activity of CHE against five fungal pathogens of rice was researched in vitro, revealing that CHE inhibited Ustilaginoidea virens (U. virens) and Cochliobolus miyabeanus (C. miyabeanus) with 50% effective concentrations (EC50) of 6.53 × 10-3 mg/mL and 5.62 × 10-3 mg/mL, respectively. When the concentration of CHE was 7.5 × 10-3 mg/mL, the inhibition rate of U. virens reached 56.1%. Moreover, CHE (4 × 10-3 mg/mL) exhibited the greatest efficacy in inhibiting spore of U. virens growth with an inhibition rate as high as 86.7%. CHE displayed the best inhibitory activity against U. virens at the concentration of 7.5 × 10-3 mg/mL, compared with the other two isoquinoline alkaloids and commercial fungicide validamycin. After treating U. virens mycelia with CHE, twisted and atrophied mycelia were observed by optical microscopy. SEM results demonstrated narrow and locally fractured mycelium. TEM observations showed that the cell wall had become thin and broken, and most organelles were difficult to recognize. Furthermore, membrane of mycelia was destroyed and reactive oxygen species (ROS) of spores was accumulated, which induced apoptosis of pathogenic fungi. From these results, our understanding of the mechanisms of antifungal activity of CHE against U. virens was enriched and this research is relevant for developing novel pesticides.
Collapse
Affiliation(s)
- Qing-Hui Wei
- Northeast Forestry University, Harbin 150040, China
| | - Dai-Zong Cui
- Northeast Forestry University, Harbin 150040, China
| | - Xue-Feng Liu
- Northeast Forestry University, Harbin 150040, China
| | | | - Na Zhao
- Northeast Forestry University, Harbin 150040, China
| | - Jue-Yu Wang
- Northeast Forestry University, Harbin 150040, China
| | - Min Zhao
- Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
37
|
Mani Chandrika KVS, Sharma S. Promising antifungal agents: A minireview. Bioorg Med Chem 2020; 28:115398. [PMID: 32115335 DOI: 10.1016/j.bmc.2020.115398] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 11/24/2022]
Abstract
In the recent past, prevalence of life threatening fungal diseases have increased rapidly in immune-compromised cases such as acquired immunodeficiency syndrome (AIDS), cancer, organ transplant etc. Side by side, the appearance of drug resistance to the presently available antifungal therapeutics is on a rapid rise. It has become a top priority for the academia and pharmaceutical industries to develop new antifungal agents able to combat this resistance, and at the same time, possess potential broad spectrum of activity and minimum toxicity. An understanding of the pharmacological interactions between antifungal agents and their targets offers opportunities for design of new therapeutics. This review discusses the various methodology of drug design, structure activity relationships (SARs), and mode of action of variety of new antifungal agents.
Collapse
Affiliation(s)
- K V S Mani Chandrika
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Anantapur Campus, Anantapur 515001, A.P., India
| | - Sahida Sharma
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Anantapur Campus, Anantapur 515001, A.P., India.
| |
Collapse
|
38
|
Li JC, Wang RX, Sun Y, Zhu JK, Hu GF, Wang YL, Zhou R, Zhao ZM, Liu YQ, Peng JW, Yan YF, Shang XF. Design, synthesis and antifungal activity evaluation of isocryptolepine derivatives. Bioorg Chem 2019; 92:103266. [DOI: 10.1016/j.bioorg.2019.103266] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/02/2019] [Accepted: 09/08/2019] [Indexed: 12/21/2022]
|
39
|
Green synthesis and characterization of novel 1,2,4,5-tetrasubstituted imidazole derivatives with eco-friendly red brick clay as efficacious catalyst. Mol Divers 2019; 24:889-901. [PMID: 31598820 DOI: 10.1007/s11030-019-10000-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 09/30/2019] [Indexed: 12/22/2022]
Abstract
Use of cheaper and recyclable materials contributes positively to economic growth with environmental sustainability. We report the prospect of utilizing red brick clay as catalyst, which exhibited excellent activity in rapid one-pot four-component condensation of 1,2,4,5-tetrasubstituted imidazoles with high conversion and yields (91-96%) in aqueous medium at 60 °C in short reaction times (25-40 min). The red brick clay material was fully characterized by XRD, FT-IR, SEM, TEM, EDX and BET analyses. Red brick clay consisted of oxides of Si (20.38%), Fe (19.55%), Al (14.30%) and minor amounts of Ca (3.60%) and Mg (1.68%). The slate-like-shaped structure morphology and flaky appearance of inexpensive solid clay material proved competent material for the synthesis of 15 novel 1,2,4,5-tetrasubstituted imidazole derivatives. In addition, the advantages of the eco-friendly method are non-toxicity and re-usability of the catalyst. Reaction offers 78% atom economy and 84% carbon capture.
Collapse
|
40
|
Zhao ZM, Shang XF, Lawoe RK, Liu YQ, Zhou R, Sun Y, Yan YF, Li JC, Yang GZ, Yang CJ. Anti-phytopathogenic activity and the possible mechanisms of action of isoquinoline alkaloid sanguinarine. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 159:51-58. [PMID: 31400784 DOI: 10.1016/j.pestbp.2019.05.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 06/10/2023]
Abstract
Isoquinoline alkaloids possess broad pharmacological activities. In this study, the antifungal activity of twelve isoquinoline alkaloids, including berberine (1), jatrorrhizine (2), coptisine (3), corydaline (4), tetrahydroberberine (5), chelidonine (6), dihydrosanguinarine (7), chelerythrine (8), sanguinarine (9), palmatine (10), tetrahydropalmatine (11) and columbamine (12) were evaluated against eight plant pathogenic fungi in vitro. All the tested compounds showed varying degrees of inhibition against the eight tested plant fungi. Among them, sanguinarine exhibited high antifungal activity (EC50 ranging from 6.96-59.36 μg/mL). It displayed the best inhibitory activity against Magnaporthe oryzae (EC50 = 6.96 μg/mL), compared with azoxystrobin (EC50 = 12.04 μg/mL), and significantly suppressed spore germination of M. oryzae with the inhibition rate reaching 100% (50 μg/mL). The optical microscopy and scanning electron microscopy observations revealed that after treating M. oryzae mycelia with sanguinarine at 10 μg/mL, the mycelia appeared curved, collapsed and the cell membrane integrity was eventually damaged. Furthermore, the reactive oxygen species production, mitochondrial membrane potential and nuclear morphometry of mycelia had been changed, and the membrane function and cell proliferation of mycelia were destroyed. These results will enrich our insights into action mechanisms of antifungal activity of sanguinarine against M. oryzae.
Collapse
Affiliation(s)
- Zhong-Min Zhao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xiao-Fei Shang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China; Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, People's Republic of China
| | - Raymond Kobla Lawoe
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China.
| | - Rui Zhou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yu Sun
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yin-Fang Yan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jun-Cai Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Guan-Zhou Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Cheng-Jie Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
41
|
Kerru N, Bhaskaruni SVHS, Gummidi L, Maddila SN, Maddila S, Jonnalagadda SB. Recent advances in heterogeneous catalysts for the synthesis of imidazole derivatives. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1639755] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nagaraju Kerru
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | | | - Lalitha Gummidi
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | | | - Suresh Maddila
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | | |
Collapse
|
42
|
Han RY, Ge Y, Zhang L, Wang QM. Design and Biological Evaluation of Novel Imidazolyl Flavonoids as Potent and Selective Protein Tyrosine Phosphatase Inhibitors. Med Chem 2019; 16:563-574. [PMID: 31208312 DOI: 10.2174/1573406415666190430125547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Protein tyrosine phosphatases 1B are considered to be a desirable validated target for therapeutic development of type II diabetes and obesity. METHODS A new series of imidazolyl flavonoids as potential protein tyrosine phosphatase inhibitors were synthesized and evaluated. RESULTS Bioactive results indicated that some synthesized compounds exhibited potent protein phosphatase 1B (PTP1B) inhibitory activities at the micromolar range. Especially, compound 8b showed the best inhibitory activity (IC50=1.0 µM) with 15-fold selectivity for PTP1B over the closely related T-cell protein tyrosine phosphatase (TCPTP). Cell viability assays indicated that 8b is cell permeable with lower cytotoxicity. Molecular modeling and dynamics studies revealed the reason for selectivity of PTP1B over TCPTP. Quantum chemical studies were carried out on these compounds to understand the structural features essential for activity. CONCLUSION Compound 8b should be a potential selective PTP1B inhibitor.
Collapse
Affiliation(s)
- Rong Y Han
- School of Pharmacy, Yancheng Teacher's University, Yancheng, Jiangsu 224051, China
| | - Yu Ge
- School of Pharmacy, Yancheng Teacher's University, Yancheng, Jiangsu 224051, China
| | - Ling Zhang
- School of Pharmacy, Yancheng Teacher's University, Yancheng, Jiangsu 224051, China
| | - Qing M Wang
- School of Pharmacy, Yancheng Teacher's University, Yancheng, Jiangsu 224051, China
| |
Collapse
|
43
|
Lai S, Wei Y, Wu Q, Zhou K, Liu T, Zhang Y, Jiang N, Xiao W, Chen J, Liu Q, Yu Y. Liposomes for effective drug delivery to the ocular posterior chamber. J Nanobiotechnology 2019; 17:64. [PMID: 31084611 PMCID: PMC6515668 DOI: 10.1186/s12951-019-0498-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/04/2019] [Indexed: 01/03/2023] Open
Abstract
Background Age-related macular degeneration (AMD) is a leading cause of severe visual deficits and blindness. Meanwhile, there is convincing evidence implicating oxidative stress, inflammation, and neovascularization in the onset and progression of AMD. Several studies have identified berberine hydrochloride and chrysophanol as potential treatments for ocular diseases based on their antioxidative, antiangiogenic, and anti-inflammatory effects. Unfortunately, their poor stability and bioavailability have limited their application. In order to overcome these disadvantages, we prepared a compound liposome system that can entrap these drugs simultaneously using the third polyamidoamine dendrimer (PAMAM G3.0) as a carrier. Results PAMAM G3.0-coated compound liposomes exhibited appreciable cellular permeability in human corneal epithelial cells and enhanced bio-adhesion on rabbit corneal epithelium. Moreover, coated liposomes greatly improved BBH bioavailability. Further, coated liposomes exhibited obviously protective effects in human retinal pigment epithelial cells and rat retinas after photooxidative retinal injury. Finally, administration of P-CBLs showed no sign of side effects on ocular surface structure in rabbits model. Conclusions The PAMAM G3.0-liposome system thus displayed a potential use for treating various ocular diseases. Electronic supplementary material The online version of this article (10.1186/s12951-019-0498-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sisi Lai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Yanyan Wei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Quanwu Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Kang Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Tuo Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Yingfeng Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Ning Jiang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Wen Xiao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Junjie Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Qiuhong Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Yang Yu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
44
|
Identification of novel imidazole flavonoids as potent and selective inhibitors of protein tyrosine phosphatase. Bioorg Chem 2019; 88:102900. [PMID: 30991192 DOI: 10.1016/j.bioorg.2019.03.074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/18/2019] [Accepted: 03/30/2019] [Indexed: 01/12/2023]
Abstract
A series of imidazole flavonoids as new type of protein tyrosine phosphatase inhibitors were synthesized and characterized. Most of them gave potent protein phosphatase 1B (PTP1B) inhibitory activities. Especially, compound 11a could effectively inhibit PTP1B with an IC50 value of 0.63 μM accompanied with high selectivity ratio (9.5-fold) over T-cell protein tyrosine phosphatase (TCPTP). This compound is cell permeable with relatively low cytotoxicity. The high binding affinity and selectivity was disclosed by molecular modeling and dynamics studies. The structural features essential for activity were confirmed by quantum chemical studies.
Collapse
|
45
|
Imidazole-pyrazole hybrids: Synthesis, characterization and in-vitro bioevaluation against α-glucosidase enzyme with molecular docking studies. Bioorg Chem 2019; 82:267-273. [DOI: 10.1016/j.bioorg.2018.10.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/27/2018] [Accepted: 10/23/2018] [Indexed: 01/06/2023]
|
46
|
Sun H, Ansari MF, Battini N, Bheemanaboina RRY, Zhou CH. Novel potential artificial MRSA DNA intercalators: synthesis and biological evaluation of berberine-derived thiazolidinediones. Org Chem Front 2019. [DOI: 10.1039/c8qo01180j] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Novel berberine-derived thiazolidinediones as potential artificial DNA intercalators were synthesized, and the preliminary mechanism suggested that active compound 6b could intercalate into MRSA DNA.
Collapse
Affiliation(s)
- Hang Sun
- Institute of Bioorganic & Medicinal Chemistry
- Key Laboratory of Applied Chemistry of Chongqing Municipality
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry
- Key Laboratory of Applied Chemistry of Chongqing Municipality
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry
- Key Laboratory of Applied Chemistry of Chongqing Municipality
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Rammohan R. Yadav Bheemanaboina
- Institute of Bioorganic & Medicinal Chemistry
- Key Laboratory of Applied Chemistry of Chongqing Municipality
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry
- Key Laboratory of Applied Chemistry of Chongqing Municipality
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|
47
|
Li J, Yang L, Shen R, Gong L, Tian Z, Qiu H, Shi Z, Gao L, Sun H, Zhang G. Self-nanoemulsifying system improves oral absorption and enhances anti-acute myeloid leukemia activity of berberine. J Nanobiotechnology 2018; 16:76. [PMID: 30290822 PMCID: PMC6172716 DOI: 10.1186/s12951-018-0402-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/18/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Recently, we found that berberine (BBR) exerts anti-acute myeloid leukemia activity, particularly toward high-risk and relapsed/refractory acute myeloid leukemia MV4-11 cells in vitro. However, the poor water solubility and low bioavailability observed with oral BBR administration has limited its clinical use. Therefore, we design and develop a novel oil-in-water self-nanoemulsifying system for BBR (BBR SNE) to improve oral bioavailability and enhance BBR efficacy against acute myeloid leukemia by greatly improving its solubility. RESULTS This system (size 23.50 ± 1.67 nm, zeta potential - 3.35 ± 0.03 mV) was prepared with RH40 (surfactant), 1,2-propanediol (co-surfactant), squalene (oil) and BBR using low-energy emulsification methods. The system loaded BBR successfully according to thermal gravimetric, differential scanning calorimetry, and Fourier transform infrared spectroscopy analyses. The release profile results showed that BBR SNE released BBR more slowly than BBR solution. The relative oral bioavailability of this novel system in rabbits was significantly enhanced by 3.41-fold over that of BBR. Furthermore, Caco-2 cell monolayer transport studies showed that this system could help enhance permeation and prevent efflux of BBR. Importantly, mice with BBR SNE treatment had significantly longer survival time than BBR-treated mice (P < 0.001) in an MV4-11 engrafted leukemia murine model. CONCLUSIONS These studies confirmed that BBR SNE is a promising therapy for acute myeloid leukemia.
Collapse
Affiliation(s)
- Jieping Li
- Department of Hematology, Changsha Central Hospital, Changsha, 410004 Hunan People’s Republic of China
| | - Li Yang
- Department of Hematology, Changsha Central Hospital, Changsha, 410004 Hunan People’s Republic of China
| | - Rui Shen
- Department of Hematology, Changsha Central Hospital, Changsha, 410004 Hunan People’s Republic of China
| | - Li Gong
- Department of Clinical Laboratory, The Third Affiliated Hospital, Chongqing Medical University, Chongqing, 401120 People’s Republic of China
| | - Zhiqiang Tian
- Army Military Medical University of Chinese PLA, Chongqing, 400038 People’s Republic of China
| | - Huarong Qiu
- Air Force Military Medical University of Chinese PLA, Xi’an, 710000 Shanxi People’s Republic of China
| | - Zhe Shi
- Department of Hematology, Changsha Central Hospital, Changsha, 410004 Hunan People’s Republic of China
| | - Lichen Gao
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial, Changsha Central Hospital, Changsha, 410004 Hunan People’s Republic of China
| | - Hongwu Sun
- Army Military Medical University of Chinese PLA, Chongqing, 400038 People’s Republic of China
| | - Guangsen Zhang
- Department of Hematology, The Second Xiangya Hospital of Central South University, Changsha, 410008 Hunan People’s Republic of China
| |
Collapse
|
48
|
Patil MD, Grogan G, Yun H. Biocatalyzed C−C Bond Formation for the Production of Alkaloids. ChemCatChem 2018. [DOI: 10.1002/cctc.201801130] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mahesh D. Patil
- Department of Systems BiotechnologyKonkuk University Seoul 143-701 Korea
| | - Gideon Grogan
- Department of ChemistryUniversity of York Heslington York, YO10 5DD UK
| | - Hyungdon Yun
- Department of Systems BiotechnologyKonkuk University Seoul 143-701 Korea
| |
Collapse
|
49
|
Maddili SK, Li ZZ, Kannekanti VK, Bheemanaboina RRY, Tuniki B, Tangadanchu VKR, Zhou CH. Azoalkyl ether imidazo[2,1- b ]benzothiazoles as potentially antimicrobial agents with novel structural skeleton. Bioorg Med Chem Lett 2018; 28:2426-2431. [DOI: 10.1016/j.bmcl.2018.06.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/08/2018] [Accepted: 06/10/2018] [Indexed: 12/30/2022]
|
50
|
Li D, Bheemanaboina RRY, Battini N, Tangadanchu VKR, Fang XF, Zhou CH. Novel organophosphorus aminopyrimidines as unique structural DNA-targeting membrane active inhibitors towards drug-resistant methicillin-resistant Staphylococcus aureus. MEDCHEMCOMM 2018; 9:1529-1537. [PMID: 30288226 DOI: 10.1039/c8md00301g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/29/2018] [Indexed: 12/18/2022]
Abstract
A series of novel unique structural organophosphorus aminopyrimidines were developed as potential DNA-targeting membrane active inhibitors through an efficient one-pot procedure from aldehydes, phosphonate and aminopyrimidine. The biological assay revealed that some of the prepared compounds displayed antibacterial activities. In particular, imidazole derivative 2c exhibited more potent inhibitory activity against MRSA with an MIC value of 4 μg mL-1 in comparison with the clinical drugs chloromycin and norfloxacin. Experiments revealed that the active molecule 2c had the ability to rapidly kill the tested strains without obviously triggering the development of bacterial resistance, showed low toxicity to L929 cells and could disturb the cell membrane. The molecular docking study discovered that compound 2c could bind with DNA gyrase via hydrogen bonds and other weak interactions. Further exploration disclosed that the active molecule 2c could also effectively intercalate into MRSA DNA and form a steady 2c-DNA supramolecular complex, which might further block DNA replication to exert powerful antibacterial effects.
Collapse
Affiliation(s)
- Di Li
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| | - Rammohan R Yadav Bheemanaboina
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| | - Vijai Kumar Reddy Tangadanchu
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| | - Xian-Fu Fang
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| |
Collapse
|