1
|
Ning J, Zhan N, Wu Z, Li Y, Zhang D, Shi Y, Zhou Y, Chen CH, Jin W. In vitro identification of oridonin hybrids as potential anti-TNBC agents inducing cell cycle arrest and apoptosis by regulation of p21, γH2AX and cleaved PARP. RSC Med Chem 2024:d4md00580e. [PMID: 39246742 PMCID: PMC11376098 DOI: 10.1039/d4md00580e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 08/15/2024] [Indexed: 09/10/2024] Open
Abstract
TNBC has been recognized as the most highly aggressive breast cancer without chemotherapeutic drugs. A collection of oridonin hybrids consisting of conventional antitumor pharmacophores including nitrogen mustards and adamantane-1-carboxylic acid were synthesized by deletion or blockade of multiple hydroxyl groups and structural rearrangement. Compound 11a showed the most promising anti-TNBC activity with nearly 15-fold more potent antiproliferative effects than oridonin against MDA-MB-231 and HCC1806. Moreover, 11a significantly inhibited HCC1806, MDA-MB-231 and MDA-MB-468 cell proliferation by arresting cells at the G2/M phase in a dose-dependent manner. Furthermore, 11a could trigger dose-dependently early and late apoptosis in those indicated cell lines. More importantly, 11a could significantly increase p21, γH2AX and cleaved PARP accumulation in a dose-dependent manner. Furthermore, compound 11a exhibited better stability than oridonin in a plasma assay. Taken together, all results demonstrated that 11a may warrant further investigation as a promising anticancer drug candidate for the treatment of TNBC.
Collapse
Affiliation(s)
- Jinhua Ning
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan, and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming Yunnan China
| | - Nini Zhan
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan, and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming Yunnan China
| | - Zhanpan Wu
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan, and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming Yunnan China
| | - Yuzhe Li
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan, and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming Yunnan China
| | - Die Zhang
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan, and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming Yunnan China
| | - Yadian Shi
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan, and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming Yunnan China
| | - Yingxun Zhou
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan, and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming Yunnan China
| | - Chuan-Huizi Chen
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan, and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming Yunnan China
| | - Wenbin Jin
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan, and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming Yunnan China
| |
Collapse
|
2
|
Ali MA, Khan N, Ali A, Akram H, Zafar N, Imran K, Khan T, Khan K, Armaghan M, Palma‐Morales M, Rodríguez‐Pérez C, Caunii A, Butnariu M, Habtemariam S, Sharifi‐Rad J. Oridonin from Rabdosia rubescens: An emerging potential in cancer therapy - A comprehensive review. Food Sci Nutr 2024; 12:3046-3067. [PMID: 38726411 PMCID: PMC11077219 DOI: 10.1002/fsn3.3986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 05/12/2024] Open
Abstract
Cancer incidences are rising each year. In 2020, approximately 20 million new cancer cases and 10 million cancer-related deaths were recorded. The World Health Organization (WHO) predicts that by 2024 the incidence of cancer will increase to 30.2 million individuals annually. Considering the invasive characteristics of its diagnostic procedures and therapeutic methods side effects, scientists are searching for different solutions, including using plant-derived bioactive compounds, that could reduce the probability of cancer occurrence and make its treatment more comfortable. In this regard, oridonin (ORI), an ent-kaurane diterpenoid, naturally found in the leaves of Rabdosia rubescens species, has been found to have antitumor, antiangiogenesis, antiasthmatic, antiinflammatory, and apoptosis induction properties. Extensive research has been performed on ORI to find various mechanisms involved in its anticancer activities. This review article provides an overview of ORI's effectiveness on murine and human cancer populations from 1976 to 2022 and provides insight into the future application of ORI in different cancer therapies.
Collapse
Affiliation(s)
| | - Noohela Khan
- Department of Nutrition SciencesRashid Latif Medical CollegeLahorePakistan
| | - Ahmad Ali
- Department of Food Science and Human NutritionUVASLahorePakistan
| | - Hira Akram
- Department of Food Science and Human NutritionUVASLahorePakistan
| | - Noushaba Zafar
- Department of Food Science and Human NutritionUVASLahorePakistan
| | - Kinza Imran
- Department of Food Science and Human NutritionUVASLahorePakistan
| | - Tooba Khan
- Department of Healthcare Biotechnology, Atta‐ur‐Rahman School of Applied BiosciencesNational University of Sciences and TechnologyIslamabadPakistan
| | | | - Muhammad Armaghan
- Department of Healthcare Biotechnology, Atta‐ur‐Rahman School of Applied BiosciencesNational University of Sciences and TechnologyIslamabadPakistan
| | - Marta Palma‐Morales
- Departamento de Nutrición y Bromatología, Facultad de FarmaciaUniversidad de GranadaGranadaSpain
- Instituto de Nutrición y Tecnología de los Alimentos ‘José Mataix’Universidad de GranadaGranadaSpain
| | - Celia Rodríguez‐Pérez
- Departamento de Nutrición y Bromatología, Facultad de FarmaciaUniversidad de GranadaGranadaSpain
- Instituto de Nutrición y Tecnología de los Alimentos ‘José Mataix’Universidad de GranadaGranadaSpain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
| | - Angela Caunii
- “Victor Babes” University of Medicine and PharmacyTimisoaraRomania
| | - Monica Butnariu
- University of Life Sciences "King Mihai I" from TimisoaraTimisoaraRomania
| | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UKUniversity of GreenwichKentUK
| | | |
Collapse
|
3
|
Wang N, Zheng Z, Jia X, Zhao M, Wang Y, Zhou C, Wang Z, Xiao Z, Liu H, Ke Y. Study on Synthesis and Pharmacological Research of Jiyuan Oridonin A Derivatives as Potential Anti-tumor Drugs. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202207033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
4
|
Abinaya R, Srinath S, Soundarya S, Sridhar R, Balasubramanian KK, Baskar B. Recent Developments on Synthesis Strategies, SAR Studies and Biological Activities of β-Carboline Derivatives – An Update. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Hu X, Gao X, Gao G, Wang Y, Cao H, Li D, Hua H. Discovery of β-carboline-(phenylsulfonyl)furoxan hybrids as potential anti-breast cancer agents. Bioorg Med Chem Lett 2021; 40:127952. [DOI: 10.1016/j.bmcl.2021.127952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/26/2021] [Accepted: 03/07/2021] [Indexed: 12/11/2022]
|
6
|
Xu YL, Qin ZZ, Wang YX, Zhao PF, Li HF, Du ZH, Da CS. Highly enantioselective one-pot sequential synthesis of valerolactones and pyrazolones bearing all-carbon quaternary stereocentres. Org Biomol Chem 2021; 19:1610-1615. [PMID: 33528484 DOI: 10.1039/d0ob02489a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Highly enantiopure and bioactive δ-valerolactones and pyrazolones, bearing α-all-carbon quaternary stereocentres, were successfully and sequentially prepared via a one-pot procedure starting from readily available, inexpensive materials, catalysed by a new chiral squaramide under mild reaction conditions. An organocatalytic Michael reaction afforded the valerolactones, while a one-pot Michael-hydrazinolysis-imidization cascade yielded the pyrazolones. This procedure is economically efficient and environmentally benign.
Collapse
Affiliation(s)
- Yan-Li Xu
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Zhou-Zhou Qin
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Yu-Xia Wang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Peng-Fei Zhao
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Hong-Feng Li
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Zhi-Hong Du
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Chao-Shan Da
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China. and State Key Laboratory of Applied Organic Chemistry, Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
7
|
Hu X, Wang Y, Gao X, Xu S, Zang L, Xiao Y, Li Z, Hua H, Xu J, Li D. Recent Progress of Oridonin and Its Derivatives for the Treatment of Acute Myelogenous Leukemia. Mini Rev Med Chem 2020; 20:483-497. [PMID: 31660811 DOI: 10.2174/1389557519666191029121809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/13/2019] [Accepted: 09/06/2019] [Indexed: 01/03/2023]
Abstract
First stage human clinical trial (CTR20150246) for HAO472, the L-alanine-(14-oridonin) ester trifluoroacetate, was conducted by a Chinese company, Hengrui Medicine Co. Ltd, to develop a new treatment for acute myelogenous leukemia. Two patents, WO2015180549A1 and CN201410047904.X, covered the development of the I-type crystal, stability experiment, conversion rate research, bioavailability experiment, safety assessment, and solubility study. HAO472 hewed out new avenues to explore the therapeutic properties of oridonin derivatives and develop promising treatment of cancer originated from naturally derived drug candidates. Herein, we sought to overview recent progress of the synthetic, physiological, and pharmacological investigations of oridonin and its derivatives, aiming to disclose the therapeutic potentials and broaden the platform for the discovery of new anticancer drugs.
Collapse
Affiliation(s)
- Xu Hu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yan Wang
- Valiant Co. Ltd., 11 Wuzhishan Road, YEDA Yantai, Shandong 264006, China
| | - Xiang Gao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Shengtao Xu
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Linghe Zang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yan Xiao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Zhanlin Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Jinyi Xu
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| |
Collapse
|
8
|
Liu X, Xu J, Zhou J, Shen Q. Oridonin and its derivatives for cancer treatment and overcoming therapeutic resistance. Genes Dis 2020; 8:448-462. [PMID: 34179309 PMCID: PMC8209342 DOI: 10.1016/j.gendis.2020.06.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the diseases with high morbidity and mortality on a global scale. Chemotherapy remains the primary treatment option for most cancer patients, including patients with progressive, metastatic, and recurrent diseases. To date, hundreds of chemotherapy drugs are used to treat various cancers, however, the anti-cancer efficacy and outcomes are largely hampered by chemotherapy-associated toxicity and acquired therapeutic resistance. The natural product (NP) oridonin has been extensively studied for its anti-cancer efficacy. More recently, oridonin has been shown to overcome drug resistance through multiple mechanisms, with yet-to-be-defined bona fide targets. Hundreds of oridonin derivative analogs (oridonalogs) have been synthesized and screened for improved potency, bioavailability, and other drug properties. Particularly, many of these oridonalogs have been tested against oridonin for tumor growth inhibition, potential for overcoming therapeutic resistance, and immunity modulation. This concise review seeks to summarize the advances in this field in light of identifying clinical-trial level drug candidates with the promise for treating progressive cancers and reversing chemoresistance.
Collapse
Affiliation(s)
- Xi Liu
- Department of Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Jimin Xu
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
- Corresponding author. Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Basic Science Building, 301 University Blvd., Galveston, TX, 77555, USA.
| | - Qiang Shen
- Department of Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
- Corresponding author. Department of Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, 1700 Tulane Avenue, New Orleans, LA, 70112, USA.
| |
Collapse
|
9
|
Li H, Gao X, Huang X, Wang X, Xu S, Uchita T, Gao M, Xu J, Hua H, Li D. Hydrogen sulfide donating ent-kaurane and spirolactone-type 6,7-seco-ent-kaurane derivatives: Design, synthesis and antiproliferative properties. Eur J Med Chem 2019; 178:446-457. [PMID: 31202992 DOI: 10.1016/j.ejmech.2019.06.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 01/15/2023]
Abstract
Motivated by our interest in hydrogen sulfide bio-chemistry and ent-kaurane diterpenoid chemistry, 14 hydrogen sulfide donating derivatives (9, 11a-c, 12a-c, 13, 14, 16a-c and 17a-b) of ent-kaurane and spirolactone-type 6,7-seco-ent-kaurane were designed and synthesized. Four human cancer cell lines (K562, Bel-7402, SGC-7901 and A549) and two normal cell lines (L-02 and PBMC) were selected for antiproliferative assay. Most derivatives showed more potent activities than the lead ent-kaurane oridonin. Among them, compound 12b exhibited the most potent antiproliferative activities, with IC50 values of 1.01, 0.88, 4.36 and 5.21 μM against above human cancer cell lines, respectively. Further apoptosis-related mechanism study indicated that 12b could arrest Bel-7402 cell cycle at G1 phase and induce apoptosis through mitochondria related pathway. Through Western blot assay, 12b was shown to influence the intrinsic pathway by increasing the expression of Bax, cleaved caspase-3, cytochrome c and cleaved PARP, meanwhile suppressing procaspase-3, Bcl-2, Bcl-xL and PARP.
Collapse
Affiliation(s)
- Haonan Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Xiang Gao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Xiaofang Huang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Xianhua Wang
- School of Public Health, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, PR China
| | - Shengtao Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Takahiro Uchita
- School of Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien, Nishinomiya, 663-8179, Japan
| | - Ming Gao
- School of Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien, Nishinomiya, 663-8179, Japan
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China.
| |
Collapse
|
10
|
Hu X, Bai Z, Qiao J, Li H, Xu S, Wang X, Xu Y, Xu J, Hua H, Li D. Effective enmein-type mimics of clinical candidate HAO472: Design, synthesis and biological evaluation. Eur J Med Chem 2019; 171:169-179. [DOI: 10.1016/j.ejmech.2019.03.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/05/2019] [Accepted: 03/18/2019] [Indexed: 12/20/2022]
|
11
|
Li H, Jiao R, Mu J, Xu S, Li X, Wang X, Li Z, Xu J, Hua H, Li D. Bioactive Natural Spirolactone-Type 6,7- seco- ent-Kaurane Diterpenoids and Synthetic Derivatives. Molecules 2018; 23:molecules23112914. [PMID: 30413071 PMCID: PMC6278314 DOI: 10.3390/molecules23112914] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023] Open
Abstract
Diterpenoids are widely distributed natural products and have caused considerable interest because of their unique skeletons and antibacterial and antitumor activities and so on. In light of recent discoveries, ent-kaurane diterpenoids, which exhibit a wide variety of biological activities, such as anticancer and anti-inflammatory activities, pose enormous potential to serve as a promising candidate for drug development. Among them, spirolactone-type 6,7-seco-ent-kaurane diterpenoids, with interesting molecular skeleton, complex oxidation patterns, and bond formation, exhibit attractive activities. Furthermore, spirolactone-type diterpenoids have many modifiable sites, which allows for linking to various substituents, suitable for further medicinal study. Hence, some structurally modified derivatives with improved cytotoxicity activities are also achieved. In this review, natural bioactive spirolactone-type diterpenoids and their synthetic derivatives were summarized.
Collapse
Affiliation(s)
- Haonan Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Runwei Jiao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Jiahui Mu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Shengtao Xu
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Xu Li
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China.
| | - Xianhua Wang
- School of Public Health, Qingdao University, Qingdao 266021, China.
| | - Zhanlin Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Jinyi Xu
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
12
|
Ronchi RJ, Beaufay C, Bero J, Robirosa JB, Mazzuca M, Palermo JA, Quetin-Leclercq J, Sánchez M. Secochiliolide ester derivatives: Preparation and evaluation of their antitrypanosomal and antimalarial efficacy. Chem Biol Drug Des 2018; 93:147-153. [PMID: 30216685 DOI: 10.1111/cbdd.13392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 08/28/2018] [Accepted: 09/02/2018] [Indexed: 11/30/2022]
Abstract
In the present study, a series of new esters of secochiliolide acid (SA), a diterpene isolated from Nardophyllum bryoides, were synthesized in good yield. All compounds were evaluated for their in vitro antiparasitic properties (on Plasmodium falciparum and Trypanosoma brucei brucei) and cytotoxicity (on WI38, normal mammalian cells). They displayed moderate antitrypanosomal activity with IC50 values between 2.55 and 18.14 μm, with selectivity indices >10, and low antiplasmodial effects with IC50 > 29 μm. The only exception was the n-hexyl ester of SA, which showed a strong and selective antiplasmodial activity (IC50 = 1.99 μm and selectivity index = 117.0). The in vivo antimalarial efficacy of this compound was then assessed according to the 4-day suppressive test of Peters in mice. An intraperitoneal treatment at 50 mg kg-1 day-1 induced a slight parasitaemia reduction by 56% which was statistically significant on day 4 post-infection and an increase in the survival time.
Collapse
Affiliation(s)
- Romina J Ronchi
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Claire Beaufay
- Pharmacognosy Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Joanne Bero
- Pharmacognosy Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Juan B Robirosa
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marcia Mazzuca
- Departamento de Química, Facultad de Ciencias Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigación y Transferencia Golfo San Jorge (CIT-Golfo San Jorge), Comodoro Rivadavia, Chubut, Argentina
| | - Jorge A Palermo
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Joëlle Quetin-Leclercq
- Pharmacognosy Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Marianela Sánchez
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
13
|
Shen QK, Chen ZA, Zhang HJ, Li JL, Liu CF, Gong GH, Quan ZS. Design and synthesis of novel oridonin analogues as potent anticancer agents. J Enzyme Inhib Med Chem 2018; 33:324-333. [PMID: 29303372 PMCID: PMC6054517 DOI: 10.1080/14756366.2017.1419219] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
To identify anticancer agents with higher potency and lower toxicity, a series of oridonin derivatives with substituted benzene moieties at the C17 position were designed, synthesised, and evaluated for their antiproliferative properties. Most of the derivatives exhibited antiproliferative effects against AGS, MGC803, Bel7402, HCT116, A549, and HeLa cells. Compound 2p (IC50 = 1.05 µM) exhibited the most potent antiproliferative activity against HCT116 cells; it was more potent than oridonin (IC50 = 6.84 µM) and 5-fluorouracil (5-FU) (IC50 = 24.80 µM). The IC50 value of 2p in L02 cells was 6.5-fold higher than that in HCT116 cells. Overall, it exhibited better selective antiproliferative activity and specificity than oridonin and 5-FU. Furthermore, compound 2p arrested HCT116 cells at the G2 phase of the cell cycle and increased the percentage of apoptotic cells to a greater extent than oridonin.
Collapse
Affiliation(s)
- Qing-Kun Shen
- a Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy , Yanbian University , Yanji , China
| | - Zheng-Ai Chen
- b Department of Pharmacology , Medical School of Yanbian University , Yanji , China
| | - Hong-Jian Zhang
- a Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy , Yanbian University , Yanji , China
| | - Jia-Li Li
- a Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy , Yanbian University , Yanji , China
| | - Chuan-Feng Liu
- a Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy , Yanbian University , Yanji , China
| | - Guo-Hua Gong
- c Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for the Nationalities , Tongliao , China.,d Inner Mongolia Autonomous Region Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System , Tongliao , China
| | - Zhe-Shan Quan
- a Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy , Yanbian University , Yanji , China
| |
Collapse
|
14
|
Zhang L, Hou S, Li B, Pan J, Jiang L, Zhou G, Gu H, Zhao C, Lu H, Ma F. Combination of betulinic acid with diazen-1-ium-1,2-diolate nitric oxide moiety donating a novel anticancer candidate. Onco Targets Ther 2018; 11:361-373. [PMID: 29391813 PMCID: PMC5774489 DOI: 10.2147/ott.s154412] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Betulinic acid (BA) is a complex lupane triterpenoid with unique antineoplastic activity. However, its antiproliferative activity is far from satisfaction. In order to improve its anticancer efficacy, betulinic acid was conjugated with a nitric oxide (NO)-releasing moiety to get a novel hybrid, BA-78. Methods The antiproliferative activity of BA-78 against 6 cell lines and the ability of releasing nitric oxide were determined. The pro-apoptosis mechanism of BA-78 was investigated as well. Results BA-78 exhibited time-dependent release of NO, and it displayed higher antiproliferative potential than BA through increasing apoptosis and inducing cell cycle arrest at G1 phase. Western blotting results showed that BA-78 increased the expression of Bax, Bid, Bad and cytochrome C and reduced the level of anti-apoptosis proteins including Bcl-2 and Bcl-xl. Conclusion Our study revealed that novel compound BA-78, possessing betulinic acid and nitric oxide (NO)-releasing moiety, could be developed as an antitumor agent.
Collapse
Affiliation(s)
- Laiyin Zhang
- Department of Pharmacy, Linyi People's Hospital, Linyi
| | - Shuangxing Hou
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center
| | - Bo Li
- Department of Hand Surgery, Huashan Hospital, Fudan University
| | - Jianjian Pan
- Department of General Medicine, Fudan University
| | - Liping Jiang
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University
| | - Guiying Zhou
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center
| | - Hong Gu
- Department of Pharmacy, Pudong Hospital, Fudan University, Shanghai, China
| | - Caixing Zhao
- Department of Pharmacy, Pudong Hospital, Fudan University, Shanghai, China
| | - Huiping Lu
- Department of Pharmacy, Pudong Hospital, Fudan University, Shanghai, China
| | - Fenfen Ma
- Department of Pharmacy, Pudong Hospital, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Tian K, Xu F, Gao X, Han T, Li J, Pan H, Zang L, Li D, Li Z, Uchita T, Gao M, Hua H. Nitric oxide-releasing derivatives of brefeldin A as potent and highly selective anticancer agents. Eur J Med Chem 2017; 136:131-143. [DOI: 10.1016/j.ejmech.2017.05.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/01/2017] [Accepted: 05/04/2017] [Indexed: 12/27/2022]
|
16
|
Discovery of novel antitumor nitric oxide-donating β -elemene hybrids through inhibiting the PI3K/Akt pathway. Eur J Med Chem 2017; 135:414-423. [DOI: 10.1016/j.ejmech.2017.04.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/16/2017] [Accepted: 04/19/2017] [Indexed: 12/18/2022]
|