1
|
Duraisamy P, Angusamy A, Ravi S, Krishnan M, Martin LC, Manikandan B, Sundaram J, Ramar M. Phytol from Scoparia dulcis prevents NF-κB-mediated inflammatory responses during macrophage polarization. 3 Biotech 2024; 14:80. [PMID: 38375513 PMCID: PMC10874368 DOI: 10.1007/s13205-024-03924-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/07/2024] [Indexed: 02/21/2024] Open
Abstract
Macrophages are primary immune cells that mediate a wide range of inflammatory diseases through their polarization potential. In this study, phytol isolated from Scoparia dulcis has been explored against 7-ketocholesterol and bacterial lipopolysaccharide-induced macrophage polarization in IC-21 cells. Isolated phytol has been characterized using GC-MS, TLC, HPTLC, FTIR, 1H-NMR, and HPLC analyses. The immunomodulatory effects of viable concentrations of phytol were tested on oxidative stress, arginase activity, nuclear and mitochondrial membrane potentials in IC-21 cells in addition to the modulation of calcium and lipids. Further, gene and protein expression of atherogenic markers were studied. Results showed that the isolated phytol at a viable concentration of 400 µg/ml effectively reduced the production of nitric oxide, superoxide anion (ROS generation), calcium and lipid accumulation, stabilized nuclear and mitochondrial membranes, and increased arginase activity. The atherogenic markers including iNOS, COX-2, IL-6, IL-1β, MMP-9, CD36, and NF-κB were significantly downregulated at the levels of gene and protein expression, while macrophage surface and nuclear receptor markers (CD206, CD163, and PPAR-γ) were significantly upregulated by phytol pre-treatment in macrophages. Therefore, the present pharmacognostic study supports the role of phytol isolated from Scoparia dulcis in preventing M2-M1 macrophage polarization under inflammatory conditions, making it a promising compound. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03924-9.
Collapse
Affiliation(s)
| | - Annapoorani Angusamy
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Sangeetha Ravi
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Mahalakshmi Krishnan
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | | | - Beulaja Manikandan
- Department of Biochemistry, Annai Veilankanni’s College for Women, Chennai, 600015 India
| | - Janarthanan Sundaram
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Manikandan Ramar
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| |
Collapse
|
2
|
Mahore A, Kamboj P, Kaleem M, Amir M. Therapeutic management of arthritis: A review on structural and target‐based approaches. Arch Pharm (Weinheim) 2022; 355:e2200182. [DOI: 10.1002/ardp.202200182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Anjali Mahore
- Department of Pharmaceutical Chemistry School of Pharmaceutical Education and Research New Delhi India
| | - Payal Kamboj
- Department of Pharmaceutical Chemistry School of Pharmaceutical Education and Research New Delhi India
| | - Mohammad Kaleem
- Department of Pharmaceutical Chemistry School of Pharmaceutical Education and Research New Delhi India
| | - Mohammad Amir
- Department of Pharmaceutical Chemistry School of Pharmaceutical Education and Research New Delhi India
| |
Collapse
|
3
|
Synthesis and anti-inflammatory activity of paeonol derivatives with etherized aryl urea by regulating TLR4/MyD88 signaling pathway in RAW264.7 cell. Bioorg Chem 2022; 127:105939. [PMID: 35700569 DOI: 10.1016/j.bioorg.2022.105939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 11/21/2022]
Abstract
Thirty-three novel paeonol etherized aryl urea derivatives (PEUs) were synthesized via a bromination-Williamson Ether Synthesis-deprotection-nucleophilic addition reaction sequence. The structures of PEUs were characterized by LC-MS, HRMS, 1H NMR and 13C NMR spectra. The levels of nitric oxide (NO), tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) in lipopolysaccharide (LPS)-induced RAW264.7 macrophages were initially employed to evaluate the anti-inflammatory effects of all compounds. Remarkably, b16 exhibited a good anti-inflammatory activity at 2.5 μm which is the same as the potency of paeonol at 20 μm. The results of mechanism research displayed that the anti-inflammatory effect of b16 was ascribed to the inhibition of the TLR4/MyD88 signaling pathway and inflammatory factors. Additionally, b16 distinctly reduced the generation of free radicals in macrophages and strikingly increased the mitochondrial membrane potential. According to the structure-activity relationships (SAR) of PEUs, the incorporation of halogens on the benzene ring and the hydrogen of phenol hydroxyl substituted by aryl urea, were beneficial to enhance the anti-inflammatory activities. Molecular docking results illustrated that the binding ability of b16 to TLR4 was stronger than that of paeonol. In summary, the novel aryl urea-derivied paeonol b16 could be a new promising candidate for the treatment of inflammation-related diseases.
Collapse
|
4
|
Wu J, Zhu RD, Cao GM, Du JC, Liu X, Diao LZ, Zhang ZY, Hu YS, Liu XH, Shi JB. Discovery of novel paeonol-based derivatives against skin inflammation in vitro and in vivo. J Enzyme Inhib Med Chem 2022; 37:817-831. [PMID: 35220836 PMCID: PMC8890542 DOI: 10.1080/14756366.2022.2043852] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
T-LAK-cell-originated protein kinase (TOPK), a novel member of the mitogen-activated protein kinase family, is considered an effective therapeutic target for skin inflammation. In this study, a series (A − D) of paeonol derivatives was designed and synthesised using a fragment growing approach, and their anti-inflammatory activities against lipopolysaccharide (LPS)-induced nitric oxide production in RAW264.7 cells were tested. Among them, compound B12 yielded the best results (IC50 = 2.14 μM) with low toxicity (IC50 > 50 µM). Preliminary mechanistic studies indicated that this compound could inhibit the TOPK-p38/JNK signalling pathway and phosphorylate downstream related proteins. A murine psoriasis-like skin inflammation model was used to determine its therapeutic effect.
Collapse
Affiliation(s)
- Jing Wu
- School of Pharmacy, Anhui Medical University, Hefei, P. R. China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, P. R. China
| | - Ren De Zhu
- School of Pharmacy, Anhui Medical University, Hefei, P. R. China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, P. R. China
| | - Guo Min Cao
- School of Pharmacy, Anhui Medical University, Hefei, P. R. China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, P. R. China
| | - Jun Cheng Du
- School of Pharmacy, Anhui Medical University, Hefei, P. R. China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, P. R. China
| | - Xin Liu
- Department of Clinical Medicine, Second Clinical Medical College, Anhui Medical University, Hefei, P. R. China
| | - Liang Zhuo Diao
- School of Pharmacy, Anhui Medical University, Hefei, P. R. China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, P. R. China
| | - Zhao Yan Zhang
- School of Pharmacy, Anhui Medical University, Hefei, P. R. China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, P. R. China
| | - Yang Sheng Hu
- School of Pharmacy, Anhui Medical University, Hefei, P. R. China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, P. R. China
- Department of Medicine, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, P. R. China
| | - Xin Hua Liu
- School of Pharmacy, Anhui Medical University, Hefei, P. R. China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, P. R. China
| | - Jing Bo Shi
- School of Pharmacy, Anhui Medical University, Hefei, P. R. China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, P. R. China
| |
Collapse
|
5
|
Zhou S, Huang G. Some important inhibitors and mechanisms of rheumatoid arthritis. Chem Biol Drug Des 2021; 99:930-943. [PMID: 34942050 DOI: 10.1111/cbdd.14015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 11/29/2022]
Abstract
Rheumatoid arthritis is a chronic disease that seriously affects human health and quality of life, and it is one of the main causes of labor loss and disability. Many countries have listed rheumatoid arthritis as one of the national a key diseases to tackle. The pathogenesis of RA in humans is still unknown, and medical researchers believe that the pathogenesis of RA may be the result of a combination of genetic and environmental factors. RA is an incurable condition that can only be controlled and treated with conventional drugs. In this paper, the pathologic features and pathogenesis of RA were introduced, and the research progress of new anti-rheumatoid arthritis chemical drugs in recent years was reviewed.
Collapse
Affiliation(s)
- Shiyang Zhou
- Chongqing Chemical Industry Vocational College, Chongqing, 401228, China.,College of Chemistry, Chongqing Normal University, Chongqing, 401331, China
| | - Gangliang Huang
- College of Chemistry, Chongqing Normal University, Chongqing, 401331, China
| |
Collapse
|
6
|
Vellasamy S, Murugan D, Abas R, Alias A, Seng WY, Woon CK. Biological Activities of Paeonol in Cardiovascular Diseases: A Review. Molecules 2021; 26:4976. [PMID: 34443563 PMCID: PMC8400614 DOI: 10.3390/molecules26164976] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 11/16/2022] Open
Abstract
Paeonol is a naturally existing bioactive compound found in the root bark of Paeonia suffruticosa and it is traditionally used in Chinese medicine for the prevention and management of cardiovascular diseases. To date, a great deal of studies has been reported on the pharmacological effects of paeonol and its mechanisms of action in various diseases and conditions. In this review, the underlying mechanism of action of paeonol in cardiovascular disease has been elucidated. Recent studies have revealed that paeonol treatment improved endothelium injury, demoted inflammation, ameliorated oxidative stress, suppressed vascular smooth muscle cell proliferation, and repressed platelet activation. Paeonol has been reported to effectively protect the cardiovascular system either employed alone or in combination with other traditional medicines, thus, signifying it could be a hypothetically alternative or complementary atherosclerosis treatment. This review summarizes the biological and pharmacological activities of paeonol in the treatment of cardiovascular diseases and its associated underlying mechanisms for a better insight for future clinical practices.
Collapse
Affiliation(s)
- Shalini Vellasamy
- Department of Microbiology and Parasitology, School of Medicine, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarum 42610, Selangor, Malaysia;
| | - Dharmani Murugan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Razif Abas
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan 43400, Selangor, Malaysia;
| | - Aspalilah Alias
- Department of Basic Sciences and Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Kuala Lumpur 55100, Malaysia;
- Fakultas Kedokteran Gigi, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Wu Yuan Seng
- Centre for Virus and Vaccine Research, Sunway University, Bandar Sunway 47500, Selangor, Malaysia;
- Department of Biological Sciences, Sunway University, Bandar Sunway 47500, Selangor, Malaysia
| | - Choy Ker Woon
- Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
| |
Collapse
|
7
|
Wu M, Yu Z, Li X, Zhang X, Wang S, Yang S, Hu L, Liu L. Paeonol for the Treatment of Atherosclerotic Cardiovascular Disease: A Pharmacological and Mechanistic Overview. Front Cardiovasc Med 2021; 8:690116. [PMID: 34368250 PMCID: PMC8333700 DOI: 10.3389/fcvm.2021.690116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022] Open
Abstract
With improvement in living standards and average life expectancy, atherosclerotic cardiovascular disease incidences and mortality have been increasing annually. Paeonia suffruticosa, a natural herb, has been used for the treatment of atherosclerotic cardiovascular disease for thousands of years in Eastern countries. Paeonol is an active ingredient extracted from Paeonia suffruticosa. Previous studies have extensively explored the clinical benefits of paeonol. However, comprehensive reviews on the cardiovascular protective effects of paeonol have not been conducted. The current review summarizes studies reporting on the protective effects of paeonol on the cardiovascular system. This study includes studies published in the last 10 years. The biological characteristics of Paeonia suffruticosa, pharmacological mechanisms of paeonol, and its toxicological and pharmacokinetic characteristics were explored. The findings of this study show that paeonol confers protection against atherosclerotic cardiovascular disease through various mechanisms, including inflammation, platelet aggregation, lipid metabolism, mitochondria damage, endoplasmic reticulum stress, autophagy, and non-coding RNA. Further studies should be conducted to elucidate the cardiovascular benefits of paeonol.
Collapse
Affiliation(s)
- Min Wu
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zongliang Yu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoya Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaonan Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Songzi Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengjie Yang
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lanqing Hu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Longtao Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Tian YE, Sun D, Han XX, Yang JM, Zhang S, Feng NN, Zhu LN, Xu ZY, Che ZP, Liu SM, Lin XM, Jiang J, Chen GQ. Synthesis, anti-oomycete activity, and SAR studies of paeonol derivatives. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:138-149. [PMID: 32009450 DOI: 10.1080/10286020.2020.1718116] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Three series of sulfonate derivatives of paeonol were synthesized and screened in vitro for their anti-oomycete activity against P. capsici, respectively. Among all the compounds, 4m displayed the best promising and pronounced anti-oomycete activity against P. capsici than zoxamide, with the EC50 values of 24.51 and 26.87 mg/L, respectively. The results show that acetyl and 4-OCH3 are two necessary groups. The existence of these two sites is closely related to the anti-oomycete activity. Relatively speaking, hydroxyl group is well tolerated, and the results showed that after modification of hydroxyl group with sulfonyl, the anti-oomycete activity was significantly increased. [Formula: see text].
Collapse
Affiliation(s)
- Yue-E Tian
- Laboratory of Pharmaceutical Design and Synthesis, Department of Plant Protection, College of Forestry, Henan University of Science and Technology, Luoyang 471023, China
| | - Di Sun
- Laboratory of Pharmaceutical Design and Synthesis, Department of Plant Protection, College of Forestry, Henan University of Science and Technology, Luoyang 471023, China
| | - Xiao-Xiao Han
- Laboratory of Pharmaceutical Design and Synthesis, Department of Plant Protection, College of Forestry, Henan University of Science and Technology, Luoyang 471023, China
| | - Jin-Ming Yang
- Laboratory of Pharmaceutical Design and Synthesis, Department of Plant Protection, College of Forestry, Henan University of Science and Technology, Luoyang 471023, China
| | - Song Zhang
- Laboratory of Pharmaceutical Design and Synthesis, Department of Plant Protection, College of Forestry, Henan University of Science and Technology, Luoyang 471023, China
| | - Nan-Nan Feng
- Laboratory of Pharmaceutical Design and Synthesis, Department of Plant Protection, College of Forestry, Henan University of Science and Technology, Luoyang 471023, China
| | - Li-Na Zhu
- Laboratory of Pharmaceutical Design and Synthesis, Department of Plant Protection, College of Forestry, Henan University of Science and Technology, Luoyang 471023, China
| | - Zhong-Yuan Xu
- Laboratory of Pharmaceutical Design and Synthesis, Department of Plant Protection, College of Forestry, Henan University of Science and Technology, Luoyang 471023, China
| | - Zhi-Ping Che
- Laboratory of Pharmaceutical Design and Synthesis, Department of Plant Protection, College of Forestry, Henan University of Science and Technology, Luoyang 471023, China
| | - Sheng-Ming Liu
- Laboratory of Pharmaceutical Design and Synthesis, Department of Plant Protection, College of Forestry, Henan University of Science and Technology, Luoyang 471023, China
| | - Xiao-Min Lin
- Laboratory of Pharmaceutical Design and Synthesis, Department of Plant Protection, College of Forestry, Henan University of Science and Technology, Luoyang 471023, China
| | - Jia Jiang
- Laboratory of Pharmaceutical Design and Synthesis, Department of Plant Protection, College of Forestry, Henan University of Science and Technology, Luoyang 471023, China
| | - Gen-Qiang Chen
- Laboratory of Pharmaceutical Design and Synthesis, Department of Plant Protection, College of Forestry, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
9
|
Wang J, Wu G, Chu H, Wu Z, Sun J. Paeonol Derivatives and Pharmacological Activities: A Review of Recent Progress. Mini Rev Med Chem 2020; 20:466-482. [PMID: 31644406 DOI: 10.2174/1389557519666191015204223] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/04/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022]
Abstract
Paeonol, 2-hydroxy-4-methoxy acetophenone, is one of the main active ingredients of traditional Chinese medicine such as Cynanchum paniculatum, Paeonia suffruticosa Andr and Paeonia lactiflora Pall. Modern medical research has shown that paeonol has a wide range of pharmacological activities. In recent years, a large number of studies have been carried out on the structure modification of paeonol and the mechanism of action of paeonol derivatives has been studied. Some paeonol derivatives exhibit good pharmacological activities in terms of antibacterial, anti-inflammatory, antipyretic analgesic, antioxidant and other pharmacological effects. Herein, the research progress on paeonol derivatives and their pharmacological activities were systematically reviewed.
Collapse
Affiliation(s)
- Jilei Wang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China
| | - Guiying Wu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China
| | - Haiping Chu
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China.,Key Laboratory for Biotech-Drugs Ministry of Health, Jinan, China.,Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, China
| | - Zhongyu Wu
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China.,Key Laboratory for Biotech-Drugs Ministry of Health, Jinan, China.,Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, China
| | - Jingyong Sun
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China.,Key Laboratory for Biotech-Drugs Ministry of Health, Jinan, China.,Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, China
| |
Collapse
|
10
|
Sivaraman A, Kim JS, Harmalkar DS, Min KH, Park JW, Choi Y, Kim K, Lee K. Synthesis and Cytotoxicity Studies of Bioactive Benzofurans from Lavandula agustifolia and Modified Synthesis of Ailanthoidol, Homoegonol, and Egonol. JOURNAL OF NATURAL PRODUCTS 2020; 83:3354-3362. [PMID: 33073572 DOI: 10.1021/acs.jnatprod.0c00697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
2-Aryl/alkylbenzofurans, which constitute an important subclass of naturally occurring lignans and neolignans, have attracted extensive synthetic efforts due to their useful biological activities and significant pharmacological potential. Herein, we report a general and efficient approach to divergent 2-arylbenzofurans through a one-pot synthesis of versatile 2-bromobenzofurans as key intermediates. Using this approach, the first total synthesis of a series of trisubstituted and tetrasubstituted benzofurans bearing the hydroxyethyl unit, including the natural compounds isolated from Lavandula agustifolia (1-3) and their non-natural derivatives (4-8), was accomplished. We also report a modified synthesis of ailanthoidol, homoegonol, and egonol that enables the divergent synthesis of their derivatives for future exploration. Among these, the representative phenolic natural compound 2 and its derivatives 7 and 5 induced apoptotic cell death related poly(ADP-ribose) polymerase (PARP) cleavage in MCF74, A549, PC3, HepG2, and Hep3B cancer cell lines. Additionally, the tumor suppressor protein p53 was also induced in p53 wild type cancer cells.
Collapse
Affiliation(s)
- Aneesh Sivaraman
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Jin Sook Kim
- Division of Clinical Research, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Dipesh S Harmalkar
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Kyoung Ho Min
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Joong-Won Park
- Division of Clinical Research, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Yongseok Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Kyungtae Kim
- Division of Cancer Research, Research institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| |
Collapse
|
11
|
Chen JX, Cheng CS, Chen J, Lv LL, Chen ZJ, Chen C, Zheng L. Cynanchum paniculatum and Its Major Active Constituents for Inflammatory-Related Diseases: A Review of Traditional Use, Multiple Pathway Modulations, and Clinical Applications. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:7259686. [PMID: 32774428 PMCID: PMC7396087 DOI: 10.1155/2020/7259686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023]
Abstract
Cynanchum paniculatum Radix, known as Xuchangqing in Chinese, is commonly prescribed in Chinese Medicine (CM) for the treatment of various inflammatory diseases. The anti-inflammatory property of Cynanchum paniculatum can be traced from its wind-damp removing, collaterals' obstruction relieving, and toxins counteracting effects as folk medicine in CM. This paper systematically reviewed the research advancement of the pharmacological effects of Cynanchum paniculatum among a variety of human diseases, including diseases of the respiratory, circulatory, digestive, urogenital, hematopoietic, endocrine and metabolomic, neurological, skeletal, and rheumatological systems and malignant diseases. This review aims to link the long history of clinical applications of Cynanchum paniculatum in CM with recent biomedical investigations. The major bioactive chemical compositions of Cynanchum paniculatum and their associated action mechanism unveiled by biomedical investigations as well as the present clinical applications and future perspectives are discussed. The major focuses of this review are on the diverse mechanisms of Cynanchum paniculatum and the role of its active components in inflammatory diseases.
Collapse
Affiliation(s)
- Jing-Xian Chen
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
- Workstation of Xia Xiang, National Master of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Chien-Shan Cheng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jie Chen
- Department of Orthopedics, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ling-Ling Lv
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Zi-Jie Chen
- Shanghai Yangpu Hospital of Traditional Chinese Medicine, Shanghai 200090, China
| | - Chuan Chen
- Shanghai Geriatrics Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Lan Zheng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
- Workstation of Xia Xiang, National Master of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| |
Collapse
|
12
|
Che ZP, Yang JM, Sun D, Tian YE, Liu SM, Lin XM, Jiang J, Chen GQ. Combinatorial Synthesis of A Series of Paeonol-based Phenylsulfonyl hydrazone Derivatives as Insecticidal Agents. Comb Chem High Throughput Screen 2020; 23:232-238. [DOI: 10.2174/1386207323666200127121129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/19/2019] [Accepted: 01/10/2020] [Indexed: 12/23/2022]
Abstract
Background:
Plant secondary metabolites play an essential role in the discovery of
novel insecticide due to their unique sources and potential target sites. Paeonol, the main phenolic
components in Moutan Cortex, is recognized as a safe and potent botanical insecticide to many
insects. The structural modification of paeonol in this study into phenylsulfonylhydrazone
derivatives is proved an effective approach for the development of novel insecticides, those
derivatives being more toxic than paeonol. However, there have been no reports on the insecticidal
activity of paeonol-based phenylsulfonylhydrazone derivatives in controlling Mythimna separata.
Methods:
We have been working to discover biorational natural products-based insecticides.
Twelve novel paeonol-based phenylsulfonylhydrazone derivatives have been successfully prepared
by structural modification of paeonol, and the insecticidal activity against M. separata by the leafdipping
method at the concentration of 1 mg/mL has been evaluated.
Results:
Insecticidal activity revealed that out of 12 title compounds, derivatives 5c and 5f
displayed the best against M. separate with the FMR both of 53.6% than toosendanin (FMR =
50.0%).
Conclusion:
The results suggested that for the paeonol-based phenylsulfonylhydrazone series
derivatives, the proper substituent of arylsulfonyl R at the hydroxyl position of paeonol was very
important for their insecticidal activity. These preliminary results will pave the way for further
modification of paeonol in the development of potential new insecticides.
Collapse
Affiliation(s)
- Zhi-Ping Che
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Forestry, Henan University of Science and Technology, Luoyang 471023, Henan Province, China
| | - Jin-Ming Yang
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Forestry, Henan University of Science and Technology, Luoyang 471023, Henan Province, China
| | - Di Sun
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Forestry, Henan University of Science and Technology, Luoyang 471023, Henan Province, China
| | - Yue-E Tian
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Forestry, Henan University of Science and Technology, Luoyang 471023, Henan Province, China
| | - Sheng-Ming Liu
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Forestry, Henan University of Science and Technology, Luoyang 471023, Henan Province, China
| | - Xiao-Min Lin
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Forestry, Henan University of Science and Technology, Luoyang 471023, Henan Province, China
| | - Jia Jiang
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Forestry, Henan University of Science and Technology, Luoyang 471023, Henan Province, China
| | - Gen-Qiang Chen
- Laboratory of Pesticidal Design & Synthesis, Department of Plant Protection, College of Forestry, Henan University of Science and Technology, Luoyang 471023, Henan Province, China
| |
Collapse
|
13
|
Adki KM, Kulkarni YA. Chemistry, pharmacokinetics, pharmacology and recent novel drug delivery systems of paeonol. Life Sci 2020; 250:117544. [PMID: 32179072 DOI: 10.1016/j.lfs.2020.117544] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
Paeonol is a bioactive phenol present in Dioscorea japonica, Paeonia suffruticosa and Paeonia lactiflora. It is reported for various pharmacological activities. AIM To review chemistry, pharmacokinetics, pharmacological activities as well as various formulations of paeonol. MATERIALS AND METHODS A literature search was done using different search terms for paeonol by using different scientific databases like PubMed, Scopus and ProQuest. Scientific papers published during the period 1969 to 2019 were comprehensively reviewed. KEY FINDINGS Researchers have synthesized methoxy, ethoxy, piperazine, chromonylthiazolidine, phenol-phenylsulfonyl, alkyl ether, aminothiazole, tryptamine hybrids and paeononlsilatie derivatives to enhance the stability of paeonol. These derivatives were synthesized and evaluated for in vitro series of biological activities like anti-inflammatory, tyrosinase inhibitory, neuroprotective, anticancer and antiviral activity. Regardless of valuable therapeutic potential, the clinical use of paeonol is restricted due to poor water solubility, low oral bioavailability, low stability and high volatility at room temperature. To enhance the bioavailability of paeonol various formulations are prepared and evaluated for its activity. Paeonol formulations can be categorized as conventional-tablets, topical gel and hydrogel; polymeric delivery system-microparticles, microsponges, dendrimers, nanocapsules, polymeric nanoparticles, nanospheres; lipid-based delivery systems-microemulsion, self-micro-emulsifying drug delivery, liposome, transethosomes, ethosomes, niosomes, proniosomes, lipid-based nanoparticles and nanoemulsion of paeonol. SIGNIFICANCE Paeonol has a potential to be developed as a techno-commercial product with respect to its multi-faceted pharmacological properties. Even though in vitro and in vivo studies have been reported the important activities of paeonol, its commercial utilization requires extensive safety and efficacy data.
Collapse
Affiliation(s)
- Kaveri M Adki
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, India.
| |
Collapse
|
14
|
Hu YS, Han X, Yu PJ, Jiao MM, Liu XH, Shi JB. Novel paeonol derivatives: Design, synthesis and anti-inflammatory activity in vitro and in vivo. Bioorg Chem 2020; 98:103735. [PMID: 32171986 DOI: 10.1016/j.bioorg.2020.103735] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/17/2020] [Accepted: 03/06/2020] [Indexed: 01/02/2023]
Abstract
Paeonol has been proved to have potential anti-inflammatory activity, but its clinical application is not extensive due to the poor anti-inflammatory activity (14.74% inhibitory activity at 20 μM). In order to discover novel lead compound with high anti-inflammatory activity, series of paeonol derivatives were designed and synthesized, their anti-inflammatory activities were screened in vitro and in vivo. Structure-activity relationships (SARs) have been fully concluded, and finally (E)-N-(4-(2-acetyl-5-methoxyphenoxy)phenyl)-3-(3,4,5-trimet-hoxyphenyl)acrylamide (compound 11a) was found to be the best active compound with low toxicity, which showed 96.32% inhibitory activity at 20 μM and IC50 value of 6.96 μM against LPS-induced over expression of nitric oxide (NO) in RAW 264.7 macrophages. Preliminary mechanism studies indicated that it could inhibit the expression of TLR4, resulting in inhibiting of NF-κB and MAPK pathways. Further studies have shown that compound 11a has obvious therapeutic effect against the adjuvant-induced rat arthritis model.
Collapse
Affiliation(s)
- Yang Sheng Hu
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Xu Han
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Pei Jing Yu
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Ming Ming Jiao
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China
| | - Xin Hua Liu
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China.
| | - Jing Bo Shi
- School of Pharmacy, Anhui Medical University, Hefei 230032, PR China.
| |
Collapse
|
15
|
Zhou S, Zou H, Chen G, Huang G. Synthesis and Biological Activities of Chemical Drugs for the Treatment of Rheumatoid Arthritis. Top Curr Chem (Cham) 2019; 377:28. [DOI: 10.1007/s41061-019-0252-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
|
16
|
Paeonol: pharmacological effects and mechanisms of action. Int Immunopharmacol 2019; 72:413-421. [PMID: 31030097 DOI: 10.1016/j.intimp.2019.04.033] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/09/2019] [Accepted: 04/16/2019] [Indexed: 12/16/2022]
Abstract
Paeonia suffruticosa possesses various medicinal benefits and has been used extensively in traditional oriental medicine for thousands of years. Paeonol is the main component isolated from the root bark of Paeonia suffruticosa. The pharmacological effects of Paeonia suffruticosa are mostly attributed to paeonol. Paeonol injection has been successfully applied in China for nearly 50 years for inflammation/pain-related indications. Currently, the dosage forms of paeonol approved by China Food and Drug Administration include tablet, injection, and external preparations such as ointment and adhesive plaster. So far, the clinical applications of paeonol are mainly focusing on the anti-inflammatory activity. Studies of other pharmacological activities of paeonol are developing rapidly, and which may play an important role in the future. Besides, substantial mechanisms of pharmacological action of paeonol have been clarified in recent years. In this review, we summarize the pharmacological effects anti-inflammatory, neuroprotective, anti-tumor, anti-cardiovascular diseases and associated mechanisms of action of paeonol up to date.
Collapse
|
17
|
Saqib U, Sarkar S, Suk K, Mohammad O, Baig MS, Savai R. Phytochemicals as modulators of M1-M2 macrophages in inflammation. Oncotarget 2018; 9:17937-17950. [PMID: 29707159 PMCID: PMC5915167 DOI: 10.18632/oncotarget.24788] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/25/2018] [Indexed: 02/07/2023] Open
Abstract
Macrophages are critical mediators of the innate immune response against foreign pathogens, including bacteria, physical stress, and injury. Therefore, these cells play a key role in the "inflammatory pathway" which in turn can lead to an array of diseases and disorders such as autoimmune neuropathies and myocarditis, inflammatory bowel disease, atherosclerosis, sepsis, arthritis, diabetes, and angiogenesis. Recently, more studies have focused on the macrophages inflammatory diseases since the discovery of the two subtypes of macrophages, which are differentiated on the basis of their phenotype and distinct gene expression pattern. Of these, M1 macrophages are pro-inflammatory and responsible for inflammatory signaling, while M2 are anti-inflammatory macrophages that participate in the resolution of the inflammatory process, M2 macrophages produce anti-inflammatory cytokines, thereby contributing to tissue healing. Many studies have shown the role of these two subtypes in the inflammatory pathway, and their emergence appears to decide the fate of inflammatory signaling and disease progression. As a next step in directing the pro-inflammatory response toward the anti-inflammatory type after an insult by a foreign pathogen (e. g., bacterial lipopolysaccharide), investigators have identified many natural compounds that have the potential to modulate M1 to M2 macrophages. In this review, we provide a focused discussion of advances in the identification of natural therapeutic molecules with anti-inflammatory properties that modulate the phenotype of macrophages from M1 to M2.
Collapse
Affiliation(s)
- Uzma Saqib
- Discipline of Chemistry, School of Basic Sciences, Indian Institute of Technology (IIT) Indore, MP, India
| | - Sutripta Sarkar
- PostGraduate Department of Food & Nutrition, BRSN College (affiliated to WBSU), Kolkata, WB, India
| | - Kyoungho Suk
- Department of Pharmacology, Kyungpook National University School of Medicine, Joong-gu Daegu, South Korea
| | - Owais Mohammad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University (AMU), Aligarh, UP, India
| | - Mirza S Baig
- Discipline of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology (IIT), Indore, MP, India
| | - Rajkumar Savai
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Justus Liebig University, Giessen 35392, Germany.,Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, Member of the DZL, Bad Nauheim, Germany
| |
Collapse
|