1
|
Alves ALV, Gomes INF, Carloni AC, Rosa MN, da Silva LS, Evangelista AF, Reis RM, Silva VAO. Role of glioblastoma stem cells in cancer therapeutic resistance: a perspective on antineoplastic agents from natural sources and chemical derivatives. Stem Cell Res Ther 2021; 12:206. [PMID: 33762015 PMCID: PMC7992331 DOI: 10.1186/s13287-021-02231-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/15/2021] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GBM) is the highest-grade form of glioma, as well as one of the most aggressive types of cancer, exhibiting rapid cellular growth and highly invasive behavior. Despite significant advances in diagnosis and therapy in recent decades, the outcomes for high-grade gliomas (WHO grades III-IV) remain unfavorable, with a median overall survival time of 15–18 months. The concept of cancer stem cells (CSCs) has emerged and provided new insight into GBM resistance and management. CSCs can self-renew and initiate tumor growth and are also responsible for tumor cell heterogeneity and the induction of systemic immunosuppression. The idea that GBM resistance could be dependent on innate differences in the sensitivity of clonogenic glial stem cells (GSCs) to chemotherapeutic drugs/radiation prompted the scientific community to rethink the understanding of GBM growth and therapies directed at eliminating these cells or modulating their stemness. This review aims to describe major intrinsic and extrinsic mechanisms that mediate chemoradioresistant GSCs and therapies based on antineoplastic agents from natural sources, derivatives, and synthetics used alone or in synergistic combination with conventional treatment. We will also address ongoing clinical trials focused on these promising targets. Although the development of effective therapy for GBM remains a major challenge in molecular oncology, GSC knowledge can offer new directions for a promising future.
Collapse
Affiliation(s)
- Ana Laura V Alves
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Izabela N F Gomes
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Adriana C Carloni
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Marcela N Rosa
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Luciane S da Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Adriane F Evangelista
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, 4806-909, Braga, Portugal
| | - Viviane Aline O Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil.
| |
Collapse
|
2
|
Moreno-Herrera A, Cortez-Maya S, Bocanegra-Garcia V, Banik BK, Rivera G. Recent Advances in the Development of Broad-Spectrum Antiprotozoal Agents. Curr Med Chem 2021; 28:583-606. [PMID: 32124688 DOI: 10.2174/0929867327666200303170000] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/05/2019] [Accepted: 01/01/2020] [Indexed: 11/22/2022]
Abstract
Infections caused by Trypanosoma brucei, Trypanosoma cruzi, Leishmania spp., Entamoeba histolytica, Giardia lamblia, Plasmodium spp., and Trichomonas vaginalis, are part of a large list of human parasitic diseases. Together, they cause more than 500 million infections per year. These protozoa parasites affect both low- and high-income countries and their pharmacological treatments are limited. Therefore, new and more effective drugs in preclinical development could improve overall therapy for parasitic infections even when their mechanisms of action are unknown. In this review, a number of heterocyclic compounds (diamidine, guanidine, quinoline, benzimidazole, thiazole, diazanaphthalene, and their derivatives) reported as antiprotozoal agents are discussed as options for developing new pharmacological treatments for parasitic diseases.
Collapse
Affiliation(s)
- Antonio Moreno-Herrera
- Laboratorio de Biotecnologia Farmaceutica, Centro de Biotecnologia Genomica, Instituto Politecnico Nacional, Reynosa 88710, Mexico
| | - Sandra Cortez-Maya
- Instituto de Quimica, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, Circuito Exterior, Coyoacan, Ciudad de Mexico 04510, Mexico
| | - Virgilio Bocanegra-Garcia
- Laboratorio de Biotecnologia Farmaceutica, Centro de Biotecnologia Genomica, Instituto Politecnico Nacional, Reynosa 88710, Mexico
| | - Bimal Krishna Banik
- Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Deanship of Research, Prince Mohammad Bin Fahd University, Al Khobar, Saudi Arabia
| | - Gildardo Rivera
- Laboratorio de Biotecnologia Farmaceutica, Centro de Biotecnologia Genomica, Instituto Politecnico Nacional, Reynosa 88710, Mexico
| |
Collapse
|
3
|
El-Azzouny AMAES, Aboul-Enein MN, Hamissa MF. Structural and biological survey of 7-chloro-4-(piperazin-1-yl)quinoline and its derivatives. Drug Dev Res 2020; 81:786-802. [PMID: 32385857 DOI: 10.1002/ddr.21678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/09/2020] [Accepted: 04/19/2020] [Indexed: 12/27/2022]
Abstract
The 7-chloro-4-(piperazin-1-yl)quinoline structure is an important scaffold in medicinal chemistry. It exhibited either alone or as hybrid with other active pharmacophores diverse pharmacological profiles such as: antimalarial, antiparasitic, anti-HIV, antidiabetic, anticancer, sirtuin Inhibitors, dopamine-3 ligands, acetylcholinesterase inhibitors, and serotonin antagonists. In the presented review, a comprehensive discussion of compounds having this structural core is surveyed and illustrated.
Collapse
Affiliation(s)
- Aida M Abd El-Sattar El-Azzouny
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (ID: 60014618), Giza, Egypt
| | - Mohamed Nabil Aboul-Enein
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (ID: 60014618), Giza, Egypt
| | - Mohamed Farouk Hamissa
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (ID: 60014618), Giza, Egypt.,Department of Chemistry of Natural Compounds, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic.,Department of Biomolecular Spectroscopy, Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Prague, Czech Republic
| |
Collapse
|