1
|
Nadigar S, Gattu R, Ramesh S, Dharmappa RN, Nanjundaswamy VK, Ramesh S. A novel class of potent antiangiogenic and antioxidant pyrazoles: synthesis, bioactivity, docking and ADMET studies. Future Med Chem 2024; 16:2285-2300. [PMID: 39263822 PMCID: PMC11622771 DOI: 10.1080/17568919.2024.2394020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/12/2024] [Indexed: 09/13/2024] Open
Abstract
Aim: Angiogenesis is the hallmark of cancer progression driven by VEGF/VEGFR-2 signalling pathway, inhibition of which could be a solution to tackle the progression of tumour cells and thus arresting their growth.Materials & methods: A novel class of pyrazoles was synthesized using arginine and dibromo ketones. Antiangiogenic activity was performed by in vivo yolk sac method. Antioxidant activity was evaluated by hydroxyl and superoxide radical scavenging assays. Docking studies were performed to determine the pyrazoles' binding potential with VEGFR-2 receptor and VEGF tyrosine kinase. ADMET properties were calculated using SwissADME and admetSAR for drug-likeness.Results: Compounds 5a-e showed significant antiangiogenic effects. Compound 5f exhibited effective hydroxyl and superoxide radical scavenging activities. Docking results confirmed the potential binding efficiency with VEGFR-2 receptor over VEGF tyrosine kinase, thus, functioning as competitive-inhibitors. ADMET studies revealed that the compounds possess favourable drug-like qualities.Conclusion: This study presents a novel class of pyrazoles as promising antioxidant and antiangiogenic agents with favourable drug-likeness properties.
Collapse
Affiliation(s)
- Siddaram Nadigar
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce & Science (a recognized Research Centre of University of Mysore), Ooty Road, Mysuru-25, Karnataka, India
| | - Rohith Gattu
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce & Science (a recognized Research Centre of University of Mysore), Ooty Road, Mysuru-25, Karnataka, India
| | - Sanjay Ramesh
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce & Science (a recognized Research Centre of University of Mysore), Ooty Road, Mysuru-25, Karnataka, India
| | - Rekha N Dharmappa
- Postgraduate Department of Biotechnology, JSS College of Arts, Commerce & Science (a recognized Research Centre of University of Mysore), Ooty Road, Mysuru-25, Karnataka, India
| | - Vijendra Kumar Nanjundaswamy
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce & Science (a recognized Research Centre of University of Mysore), Ooty Road, Mysuru-25, Karnataka, India
| | - Suhas Ramesh
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce & Science (a recognized Research Centre of University of Mysore), Ooty Road, Mysuru-25, Karnataka, India
| |
Collapse
|
2
|
Niwetmarin W, Saesian N, Saruengkhanphasit R, Eurtivong C, Thasana N, Ruchirawat S. Metal- and photocatalyst-free approach to visible-light-induced acylation of quinoxalinones. Org Biomol Chem 2024; 22:5924-5929. [PMID: 38698760 DOI: 10.1039/d4ob00630e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
A transition-metal- and photocatalyst-free photochemical reaction was successfully developed for the direct acylation of quinoxalin-2(1H)-ones, which was enabled by the formation of electron donor-acceptor (EDA) complexes. The use of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as the electron donor allows efficient and operationally simple access to a series of C3-aroylated and acylated quinoxalin-2(1H)-ones with moderate to good yields.
Collapse
Affiliation(s)
- Worawat Niwetmarin
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Bangkok 10210, Thailand.
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Thailand
| | - Naiyana Saesian
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Bangkok 10210, Thailand.
| | | | - Chatchakorn Eurtivong
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Nopporn Thasana
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Bangkok 10210, Thailand.
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Somsak Ruchirawat
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Bangkok 10210, Thailand.
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| |
Collapse
|
3
|
Singh Y, Kumar N, Kulkarni S, Singh S, Thareja S. Pharmacophore derived 3D-QSAR, molecular docking, and simulation studies of quinoxaline derivatives as ALR2 inhibitors. J Biomol Struct Dyn 2023; 42:10452-10488. [PMID: 37698364 DOI: 10.1080/07391102.2023.2256885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
Aldose Reductase 2 (ALR2), a key enzyme of the polyol pathway, plays a crucial role in the pathogenesis of diabetic complications. Quinoxaline scaffold-based compounds have been identified as potential ALR2 inhibitors for the management of diabetic complications. In the present work, molecular dynamic simulation studies in conjugation with pharmacophore mapping and atom-based 3D-QSAR were performed on a dataset of 99 molecules in comparison with Epalrestat (reference) to mark the desirable structural features of quinoxaline analogs to generate a probable template for designing novel and effective ALR2 inhibitors. The most potent compound 81 was subjected to MD simulation studies and found to be stable, with better interactions with the binding pocket as compared to Epalrestat. The MM-GBSA and MM-PBSA calculations showed that compound 81 possessed binding free energies of -35.96 and -4.92 kcal/mol, respectively. Atom-based 3D-QSAR yielded various pharmacophoric features with excellent statistical measures, such as correlation coefficient (R2 value), F-value (Fischer ratio), Q2 value (cross-validated correlation coefficient), and Pearson's R-value for training and test sets. Furthermore, the pharmacophore mapping provided a five-point hypothesis (AADRR) and docking analysis revealed the active ligand-binding orientations on the active site's amino acid residues TYR 48, HIE 110, TRP 111, and TRP 219. The results of this study will help in designing potent inhibitors of ALR2 for the management of diabetic complications.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yogesh Singh
- Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Niraj Kumar
- Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Swanand Kulkarni
- Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Satwinder Singh
- Department of Computer Science and Technology, Central University of Punjab, Bathinda, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
4
|
Faingold II, Soldatova YV, Poletaeva DA, Klimanova EN, Sanina NA. Influence of Nitrosyl Iron Complex with Thiosulfate Ligands on Therapeutically Important Targets Related to Type 2 Diabetes Mellitus. MEMBRANES 2023; 13:615. [PMID: 37504981 PMCID: PMC10384030 DOI: 10.3390/membranes13070615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023]
Abstract
The high prevalence of type 2 diabetes mellitus (T2DM), and the lack of effective therapy, determine the need for new treatment options. The present study is focused on the NO-donors drug class as effective antidiabetic agents. Since numerous biological systems are involved in the pathogenesis and progression of T2DM, the most promising approach to the development of effective drugs for the treatment of T2DM is the search for pharmacologically active compounds that are selective for a number of therapeutic targets for T2DM and its complications: oxidative stress, non-enzymatic protein glycation, polyol pathway. The nitrosyl iron complex with thiosulfate ligands was studied in this work. Binuclear iron nitrosyl complexes are synthetic analogues of [2Fe-2S] centers in the regulatory protein natural reservoirs of NO. Due to their ability to release NO without additional activation under physiological conditions, these compounds are of considerable interest for the development of potential drugs. The present study explores the effects of tetranitrosyl iron complex with thiosulfate ligands (TNIC-ThS) on T2DM and its complications regarding therapeutic targets in vitro, as well as its ability to bind liposomal membrane, inhibit lipid peroxidation (LPO), and non-enzymatic glycation of bovine serum albumin (BSA), as well as aldose reductase, the enzyme that catalyzes the reduction in glucose to sorbitol in the polyol pathway. Using the fluorescent probe method, it has been shown that TNIC-ThS molecules interact with both hydrophilic and hydrophobic regions of model membranes. TNIC-ThS inhibits lipid peroxidation, exhibiting antiradical activity due to releasing NO (IC50 = 21.5 ± 3.7 µM). TNIC-ThS was found to show non-competitive inhibition of aldose reductase with Ki value of 5.25 × 10-4 M. In addition, TNIC-ThS was shown to be an effective inhibitor of the process of non-enzymatic protein glycation in vitro (IC50 = 47.4 ± 7.6 µM). Thus, TNIC-ThS may be considered to contribute significantly to the treatment of T2DM and diabetic complications.
Collapse
Affiliation(s)
- Irina I Faingold
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov Avenue 1, Chernogolovka 142432, Russia
| | - Yuliya V Soldatova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov Avenue 1, Chernogolovka 142432, Russia
| | - Darya A Poletaeva
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov Avenue 1, Chernogolovka 142432, Russia
| | - Elena N Klimanova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov Avenue 1, Chernogolovka 142432, Russia
| | - Nataliya A Sanina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov Avenue 1, Chernogolovka 142432, Russia
- Medicinal Chemistry Research and Education Center, Moscow Region State University, Mytishchy 142432, Russia
| |
Collapse
|
5
|
Tassopoulou VP, Tzara A, Kourounakis AP. Design of Improved Antidiabetic Drugs: A Journey from Single to Multitarget Agents. ChemMedChem 2022; 17:e202200320. [PMID: 36184571 DOI: 10.1002/cmdc.202200320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/27/2022] [Indexed: 01/14/2023]
Abstract
Multifactorial diseases exhibit a complex pathophysiology with several factors contributing to their pathogenesis and development. Examples of such disorders are neurodegenerative (e. g. Alzheimer's, Parkinson's) and cardiovascular diseases (e. g. atherosclerosis, metabolic syndrome, diabetes II). Traditional therapeutic approaches with single-target drugs have been proven, in many cases, unsatisfactory for the treatment of multifactorial diseases such as diabetes II. The well-established by now strategy of multitarget drugs is constantly gaining interest and momentum, as a more effective approach. The development of pharmacomolecules able to simultaneously modulate multiple relevant-to-the-disease targets has already several successful examples in various fields and has, as such, inspired the design of multitarget antidiabetic agents; this review highlights the design aspect and efficacy of this approach for improved antidiabetics by presenting several examples of successful pharmacophore combinations in (multitarget) agents that modulate two or more molecular targets involved in diabetes II, resulting in a superior antihyperglycemic profile.
Collapse
Affiliation(s)
- Vassiliki-Panagiota Tassopoulou
- Department of Medicinal Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Ariadni Tzara
- Department of Medicinal Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Angeliki P Kourounakis
- Department of Medicinal Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| |
Collapse
|
6
|
Yahya S, Haider K, Pathak A, Choudhary A, Hooda P, Shafeeq M, Shahar Yar M. Strategies in synthetic design and structure-activity relationship studies of novel heterocyclic scaffolds as aldose reductase-2 inhibitors. Arch Pharm (Weinheim) 2022; 355:e2200167. [PMID: 36125217 DOI: 10.1002/ardp.202200167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/10/2022]
Abstract
Heterocyclic scaffolds of natural as well as synthetic origin provide almost all categories of drugs exhibiting a wide range of pharmacological activities, such as antibiotics, antidiabetic and anticancer agents, and so on. Under normal homeostasis, aldose reductase 2 (ALR2) regulates vital metabolic functions; however, in pathological conditions like diabetes, ALR2 is unable to function and leads to secondary diabetic complications. ALR2 inhibitors are a novel target for the treatment of retinopathy (cataract) influenced by diabetes. Epalrestat (stat), an ALR2 inhibitor, is the only drug candidate that was approved in the last four decades; the other drugs from the stat class were retracted after clinical trial studies due to untoward iatrogenic effects. The present study summarizes the recent development (2014 and onwards) of this pharmacologically active ALR2 heterocyclic scaffold and illustrates the rationale behind the design, structure-activity relationships, and biological studies performed on these molecules. The aim of the current review is to pave a straight path for medicinal chemists and chemical biologists, and, in general, to the drug discovery scientists to facilitate the synthesis and development of novel ALR2 inhibitors that may serve as lead molecules for the treatment of diseases related to the ALR2 enzyme.
Collapse
Affiliation(s)
- Shaikh Yahya
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Kashif Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Ankita Pathak
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Akram Choudhary
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Pooja Hooda
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Mohd Shafeeq
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Mohammad Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| |
Collapse
|
7
|
Zhang X, Xu L, Chen H, Zhang X, Lei Y, Liu W, Xu H, Ma B, Zhu C. Novel Hydroxychalcone-Based Dual Inhibitors of Aldose Reductase and α-Glucosidase as Potential Therapeutic Agents against Diabetes Mellitus and Its Complications. J Med Chem 2022; 65:9174-9192. [PMID: 35749671 DOI: 10.1021/acs.jmedchem.2c00380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We designed a novel series of bifunctional inhibitors of α-glucosidase and aldose reductase (ALR2) based on the structure of hydroxychalcone. The two enzymes relate to blood glucose level and anomalously elevated polyol pathway of glucose metabolism under hyperglycemia, respectively. Most compounds in the series exhibited a potent inhibitory activity for both enzymes, and a significant antioxidant property was shown. Further in vivo studies of 11j and 14d using streptozotocin (STZ)-induced diabetic rats as a model found that 11j achieved not only good antihyperglycemic and glucose tolerance effect in a dose-dependent manner (p < 0.01) but also showed effective inhibition of polyol pathway. 14d significantly suppressed the maltose-induced postprandial glucose elevation. Additionally, they effectively improved lipid metabolisms and restored an antioxidant ability. Therefore, the two compounds may be promising agents for the prevention and treatment of diabetic complications.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic; Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Long Xu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic; Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Huan Chen
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic; Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xin Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic; Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yanqi Lei
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic; Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wenchao Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic; Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hulin Xu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic; Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Bing Ma
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic; Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Changjin Zhu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic; Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
8
|
Zhu J, Qi G, Kuang Y, Zhao Y, Sun X, Zhu C, Hao X, Han Z. Identification of 9H-purin-6-amine derivatives as novel aldose reductase inhibitors for the treatment of diabetic complications. Arch Pharm (Weinheim) 2022; 355:e2200043. [PMID: 35466439 DOI: 10.1002/ardp.202200043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 11/09/2022]
Abstract
A series of 9H-purin-6-amine derivatives as aldose reductase (ALR) inhibitors were designed and synthesized. Most of these derivatives, having a C6-substituted benzylamine side chain and N9 carboxylic acid on the core structure, were found to be potent and selective ALR inhibitors, with submicromolar IC50 values against ALR2. Particularly, compound 4e was the most active with an IC50 value of 0.038 μM, and it was also proved to be endowed with excellent inhibitory selectivity. The structure-activity relationship and molecular docking studies highlighted the importance of the carboxylic acid head group along with different halogen substituents on the C6 benzylamine side chain of the 9H-purin-6-amine scaffold for the construction of strong and selective ALR inhibitors.
Collapse
Affiliation(s)
- Junkai Zhu
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Gang Qi
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Yan Kuang
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Yating Zhao
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Xinjie Sun
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Changjin Zhu
- Department of Applied Chemistry, Beijing Institute of Technology, Beijing, China
| | - Xin Hao
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Zhongfei Han
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China.,Department of Applied Chemistry, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
9
|
Nale SD, Khanal HD, Lee YR. Palladium(II)‐Catalyzed Direct Arylations of Quinoxalin‐2(1H)‐ones with Arylsulfonyl Chlorides. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sagar D. Nale
- Yeungnam University School of Chemical Engineering Gyeongsan KOREA, REPUBLIC OF
| | - Hari Datta Khanal
- Yeungnam University School of Chemical Engineering Gyeongsan KOREA, REPUBLIC OF
| | - Yong Rok Lee
- Yeungnam University School of Chemical Engineering 280 Daehak-ro 712-749 Gyeongsan KOREA, REPUBLIC OF
| |
Collapse
|
10
|
Jiang X, Wu K, Bai R, Zhang P, Zhang Y. Functionalized quinoxalinones as privileged structures with broad-ranging pharmacological activities. Eur J Med Chem 2022; 229:114085. [PMID: 34998058 DOI: 10.1016/j.ejmech.2021.114085] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/16/2021] [Accepted: 12/24/2021] [Indexed: 02/08/2023]
Abstract
Quinoxalinones are a class of heterocyclic compounds which attract extensive attention owing to their potential in the field of organic synthesis and medicinal chemistry. During the past few decades, many new synthetic strategies toward the functionalization of quinoxalinone based scaffolds have been witnessed. Regrettably, there are only a few reports on the pharmacological activities of quinoxalinone scaffolds from a medicinal chemistry perspective. Therefore, herein we intend to outline the applications of multifunctional quinoxalinones as privileged structures possessing various biological activities, including anticancer, neuroprotective, antibacterial, antiviral, antiparasitic, anti-inflammatory, antiallergic, anti-cardiovascular, anti-diabetes, antioxidation, etc. We hope that this review will facilitate the development of quinoxalinone derivatives in medicinal chemistry.
Collapse
Affiliation(s)
- Xiaoying Jiang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Kaiyu Wu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, PR China.
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| |
Collapse
|
11
|
Liu W, Chen H, Zhang X, Zhang X, Xu L, Lei Y, Zhu C, Ma B. Isatin derivatives as a new class of aldose reductase inhibitors with antioxidant activity. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02751-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
12
|
Pavan Kumar H, Kumara HK, Suhas R, Channe Gowda D. Multitarget-directed therapeutics: (Urea/thiourea) 2 derivatives of diverse heterocyclic-Lys conjugates. Arch Pharm (Weinheim) 2021; 354:e2000468. [PMID: 33728698 DOI: 10.1002/ardp.202000468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 11/11/2022]
Abstract
The synthesis of a new small library of molecules containing bis-urea/thiourea pendants in lysine conjugated to three different heterocycles is described. The heterocycles used in this study have benzisoxazole/piperazine/piperidine units. After a detailed antimicrobial, antioxidant, and anti-inflammatory evaluation, it was found that the most active compounds are 10, 11, 14, 15, 18, 19 and 10, 11, 19 and 8, 9, 12, 13, 16, 17, respectively. Further, it was observed that the presence of all three entities, that is, urea/thiourea, the substituent (OMe/F), as well as the heterocycle, is highly essential for exerting potent activity. Among the heterocycles, the presence of isoxazole seems to be highly beneficial for exerting good potency. In continuation, docking studies have revealed extraordinary binding efficiency for some of the active compounds. Given their potent biological results and docking score, some of the title compounds could be potential drug candidates for microbial-related diseases and provide a basis for future research into the development of molecules possessing multitask ability.
Collapse
Affiliation(s)
- H Pavan Kumar
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - H K Kumara
- Department of Chemistry, KLE Society's Jagadguru Tontadarya College, Gadag, Karnataka, India
| | - R Suhas
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science (A Recognised Research Centre of University of Mysore), Mysuru, Karnataka, India
| | - D Channe Gowda
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| |
Collapse
|
13
|
Shehzad MT, Imran A, Hameed A, Rashida MA, Bibi M, Uroos M, Asari A, Iftikhar S, Mohamad H, Tahir MN, Shafiq Z, Iqbal J. Exploring synthetic and therapeutic prospects of new thiazoline derivatives as aldose reductase (ALR2) inhibitors. RSC Adv 2021; 11:17259-17282. [PMID: 35479726 PMCID: PMC9033183 DOI: 10.1039/d1ra01716k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022] Open
Abstract
Inhibition of aldose reductase (ALR2) by using small heterocyclic compounds provides a viable approach for the development of new antidiabetic agents. With our ongoing interest towards aldose reductase (ALR2) inhibition, we have synthesized and screened a series of thiazoline derivatives (5a–k, 6a–f, 7a–1 & 8a–j) to find a lead as a potential new antidiabetic agent. The bioactivity results showed the thiazoline-based compound 7b having a benzyl substituent and nitrophenyl substituent-bearing compound 8e were identified as the most potent molecules with IC50 values of 1.39 ± 2.21 μM and 1.52 ± 0.78 μM respectively compared with the reference sorbinil with an IC50 value of 3.14 ± 0.02 μM. Compound 7b with only 23.4% inhibition for ALR1 showed excellent selectivity for the targeted ALR2 to act as a potential lead for the development of new therapeutic agents for diabetic complications. Inhibition of aldose reductase (ALR2) by using small heterocyclic compounds provides a viable approach for the development of new antidiabetic agents.![]()
Collapse
Affiliation(s)
| | - Aqeel Imran
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Abdul Hameed
- Department of Chemistry, Forman Christian College (A Chartered University), Ferozepur Road, Lahore, 54600, Pakistan
- Department of Chemistry, University of Sahiwal, Sahiwal, 57000, Pakistan
| | - Mariya al Rashida
- Department of Chemistry, Forman Christian College (A Chartered University), Ferozepur Road, Lahore, 54600, Pakistan
| | - Marium Bibi
- Department of Biosciences, 90 and 100 Clifton, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Block 5, Clifton, Karachi, 75600, Pakistan
| | - Maliha Uroos
- Institute of Chemistry, University of the Punjab, Lahore, 54590, Pakistan
| | - Asnuzilawati Asari
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Shafia Iftikhar
- Department of Chemistry, University of Sahiwal, Sahiwal, 57000, Pakistan
| | - Habsah Mohamad
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | | | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| |
Collapse
|
14
|
Han Z, Qi G, Zhu J, Zhang Y, Xu Y, Yan K, Zhu C, Hao X. Novel 3,4-dihydroquinolin-2(1H)-one derivatives as dual inhibitor targeting AKR1B1/ROS for treatment of diabetic complications: Design, synthesis and biological evaluation. Bioorg Chem 2020; 105:104428. [PMID: 33161249 DOI: 10.1016/j.bioorg.2020.104428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/02/2020] [Accepted: 10/22/2020] [Indexed: 11/27/2022]
Abstract
AKR1B1 (Aldose reductase) has been used as therapeutic intervention target for treatment of diabetic complications over 50 years, and more recently for inflammation and cancer. However, most developed small molecule inhibitors have the defect of low bioactivity. To address this limitation, novel series of 3,4-dihydroquinolin-2(1H)-one derivatives as dual inhibitor targeting AKR1B1/ROS (Reactive Oxygen Species) were designed and synthesized. Most of these derivatives were found to be potent and selective against AKR1B1, and compound 8a was the most active with an IC50 value of 0.035 μM. Moreover, some prepared derivatives showed strong anti-ROS activity, and among them the phenolic 3,5-dihydroxyl compound 8b was proved to be the most potent, even comparable to that of the well-known antioxidant Trolox at a concentration of 100 μM. Thus the results suggested a success in the construction of potent dual inhibitor for the therapeutic intervention target of AKR1B1/ROS.
Collapse
Affiliation(s)
- Zhongfei Han
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China; Department of Applied Chemistry, Beijing Institute of Technology, Beijing, China
| | - Gang Qi
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Junkai Zhu
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Yundong Zhang
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Yin Xu
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Kang Yan
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Changjin Zhu
- Department of Applied Chemistry, Beijing Institute of Technology, Beijing, China
| | - Xin Hao
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China.
| |
Collapse
|
15
|
Novel quinolin-4(1H)-one derivatives as multi-effective aldose reductase inhibitors for treatment of diabetic complications: Synthesis, biological evaluation, and molecular modeling studies. Bioorg Med Chem Lett 2020; 30:127101. [PMID: 32192796 DOI: 10.1016/j.bmcl.2020.127101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/04/2020] [Accepted: 03/07/2020] [Indexed: 10/24/2022]
|
16
|
Stephen Kumar Celestina, Sundaram K, Ravi S. Novel Derivatives of Rhodanine-3-Hippuric Acid as Active Inhibitors of Aldose Reductase: Synthesis, Biological Evaluation, and Molecular Docking Analysis. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162019050066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Kaur N, Chahal KK, Kumar A, Singh R, Bhardwaj U. Antioxidant activity of Anethum graveolens L. essential oil constituents and their chemical analogues. J Food Biochem 2019; 43:e12782. [PMID: 31353585 DOI: 10.1111/jfbc.12782] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 01/16/2023]
Abstract
In the present study, Dill (Anethum graveolens) seed essential oil, its nonpolar and polar fractions, compounds isolated and derivatized were evaluated for their antioxidant potential using different in vitro assays. The major compounds carvone, limonene, and camphor were isolated from dill seed essential oil using column chromatography and characterized using spectroscopic techniques. Among all the tested components for antioxidant activity, carveol and perillyl alcohol were most effective (IC50 values < 0.16 mg/ml), whereas camphor was least effective (IC50 values > 10 mg/ml). All the tested compounds exhibited lower antioxidant potential than the standard. PRACTICAL APPLICATIONS: Oxidation of food products was delayed by compounds known as antioxidants. The use of synthetic antioxidant is restricted because of carcinogenicity in human servings and plant-based natural antioxidant are preferred due to safety and less toxicity. The aim of this in vitro study was to assess the antioxidant activity of the different constituents of dill seed essential oil. The present study revealed that carvone and its derivatives are potent scavengers of free radicals which might be due to the presence of unsaturated hydroxyl group. Thus, natural antioxidants are the important source of alternative medicines and natural therapy in the pharmaceutical industry.
Collapse
Affiliation(s)
- Navneet Kaur
- Department of Chemistry, Punjab Agricultural University, Ludhiana, Punjab
| | | | - Amit Kumar
- Department of Chemistry, Punjab Agricultural University, Ludhiana, Punjab
| | - Ravinder Singh
- Department of Chemistry, Punjab Agricultural University, Ludhiana, Punjab
| | - Urvashi Bhardwaj
- Department of Chemistry, Punjab Agricultural University, Ludhiana, Punjab
| |
Collapse
|
18
|
Benzoxazinone-thiosemicarbazones as antidiabetic leads via aldose reductase inhibition: Synthesis, biological screening and molecular docking study. Bioorg Chem 2018; 87:857-866. [PMID: 30551808 DOI: 10.1016/j.bioorg.2018.12.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 11/20/2022]
Abstract
Aldose reductase is an important enzyme in the polyol pathway, where glucose is converted to fructose, and sorbitol is released. Aldose reductase activity increases in diabetes as the glucose levels increase, resulting in increased sorbitol production. Sorbitol, being less cell permeable tends to accumulate in tissues such as eye lenses, peripheral nerves and glomerulus that are not insulin sensitive. This excessive build-up of sorbitol is responsible for diabetes associated complications such as retinopathy and neuropathy. In continuation of our interest to design and discover potent inhibitors of aldo-keto reductases (AKRs; aldehyde reductase ALR1 or AKR1A, and aldose reductase ALR2 or AKR1B), herein we designed and investigated a series of new benzoxazinone-thiosemicarbazones (3a-r) as ALR2 and ALR1 inhibitors. Most compounds exhibited excellent inhibitory activities with IC50 values in lower micro-molar range. Compounds 3b and 3l were found to be most active ALR2 inhibitors with IC50 values of 0.52 ± 0.04 and 0.19 ± 0.03 μM, respectively, both compounds were more effective inhibitors as compared to the standard ALR2 inhibitor (sorbinil, with IC50 value of 3.14 ± 0.02 μM).
Collapse
|
19
|
Abstract
In diabetes mellitus, the polyol pathway is highly active and consumes approximately 30% glucose in the body. This pathway contains 2 reactions catalyzed by aldose reductase (AR) and sorbitol dehydrogenase, respectively. AR reduces glucose to sorbitol at the expense of NADPH, while sorbitol dehydrogenase converts sorbitol to fructose at the expense of NAD+, leading to NADH production. Consumption of NADPH, accumulation of sorbitol, and generation of fructose and NADH have all been implicated in the pathogenesis of diabetes and its complications. In this review, the roles of this pathway in NADH/NAD+ redox imbalance stress and oxidative stress in diabetes are highlighted. A potential intervention using nicotinamide riboside to restore redox balance as an approach to fighting diabetes is also discussed.
Collapse
Affiliation(s)
- Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
20
|
Kumara HK, Suhas R, Suyoga Vardhan DM, Shobha M, Channe Gowda D. A correlation study of biological activity and molecular docking of Asp and Glu linked bis-hydrazones of quinazolinones. RSC Adv 2018; 8:10644-10653. [PMID: 35540474 PMCID: PMC9078910 DOI: 10.1039/c8ra00531a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 02/28/2018] [Indexed: 11/29/2022] Open
Abstract
The present investigation involves the synthesis and spectroscopic and biological activity studies of the bis-hydrazones of quinazolinones derived from aspartic acid and glutamic acid. The antioxidant activities of the compounds were evaluated using DPPH, DMPD and ABTS radical scavenging assays whose results revealed that the IC50 of compounds 6, 7, 11, 12, 20, 21, 25 and 26 was lower than those of the standard references. The anti-inflammatory activity was evaluated with a haemolysis assay using a human blood erythrocytes suspension and the results demonstrated that compounds 8, 9, 13, 14, 22, 23, 27 and 28 were excellent anti-inflammatory agents. In addition, the antibacterial and antifungal activities against various clinical pathogens of human origin revealed that compounds 7, 9, 12, 14, 21, 23, 26 and 28 possessed potent antimicrobial properties. Furthermore, to understand the correlation between biological activity and drug-receptor interaction, molecular docking was performed on the active sites of tyrosine kinase (PDB ID: 2HCK), cyclooxygenase-2 (PDB ID: 1CX2) and glucosamine-6-phosphate (GlcN-6-P) synthase (PDB ID: 2VF5) which showed good binding profiles with the targets that can potentially hold the title compounds. The correlation study revealed that compounds containing EDGs (-OH, -OCH3) were excellent antioxidants, compounds with EWGs (-Cl, -NO2) exhibited good anti-inflammatory activity and compounds bearing -OH and -NO2 groups were very good antimicrobials.
Collapse
Affiliation(s)
- H K Kumara
- Department of Studies in Chemistry, University of Mysore Manasagangotri Mysuru - 570 006 Karnataka India +91 821 2419664
| | - R Suhas
- Department of Studies in Chemistry, University of Mysore Manasagangotri Mysuru - 570 006 Karnataka India +91 821 2419664
| | - D M Suyoga Vardhan
- Department of Studies in Chemistry, University of Mysore Manasagangotri Mysuru - 570 006 Karnataka India +91 821 2419664
| | - M Shobha
- Department of Studies in Chemistry, University of Mysore Manasagangotri Mysuru - 570 006 Karnataka India +91 821 2419664
| | - D Channe Gowda
- Department of Studies in Chemistry, University of Mysore Manasagangotri Mysuru - 570 006 Karnataka India +91 821 2419664
| |
Collapse
|
21
|
Tao Y, Wang Y, Yang J, Wang Q, Jiang N, Chu DT, Han Y, Zhou J. Chemical composition and sensory profiles of mulberry wines as fermented with different Saccharomyces cerevisiae strains. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2017.1361970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yilin Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jun Yang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qi Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Na Jiang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Dinh-Toi Chu
- Institute for Research and Development, Duy Tan University, Danang, Vietnam
- Faculty of Biology, Hanoi National University of Education, Cau Giay, Hanoi, Vietnam
| | - Yongbin Han
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jianzhong Zhou
- Institute of Agro-product processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
22
|
Gong D, Hong Y, Sun G, Zhang J. Novel strategy for quality consistency evaluation of Chinese medicine “YIQING” tablet that combines the simultaneous quantification and screening of ten bioactive constituents. J Sep Sci 2017; 40:3064-3073. [DOI: 10.1002/jssc.201700291] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/15/2017] [Accepted: 05/30/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Dandan Gong
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang Liaoning China
| | - Yilang Hong
- School of Pharmaceutical Engineering; Shenyang Pharmaceutical University; Shenyang Liaoning China
| | - Guoxiang Sun
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang Liaoning China
| | - Jing Zhang
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang Liaoning China
| |
Collapse
|