1
|
Yang D, Zhu M, Wang T, He Y, Xie L, Zhang J, Cheng B. Catalyst-free inverse-electron-demand aza-Diels-Alder reaction of 4,4-dicyano-2-methylenebut-3-enoates and 1,3,5-triazinanes: access to polysubstituted tetrahydropyridines. Org Biomol Chem 2023. [PMID: 37334910 DOI: 10.1039/d3ob00511a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
An inverse-electron-demand aza-Diels-Alder reaction between 4,4-dicyano-2-methylenebut-3-enoates and 1,3,5-triazinanes under catalyst-free and additive-free conditions was developed, which provided a highly convenient and straightforward method to construct a series of polyfunctionalized tetrahydropyridines in high yields. This strategy features numerous advantages, including high efficiency, good functional group tolerance, broad substrate scope, and environmentally friendly conditions.
Collapse
Affiliation(s)
- Dezhi Yang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.
- Institute of Marine Biomedicine/Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Meng Zhu
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.
- Institute of Marine Biomedicine/Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Taimin Wang
- Institute of Marine Biomedicine/Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Yixuan He
- Institute of Marine Biomedicine/Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Lang Xie
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.
- Institute of Marine Biomedicine/Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Jiayong Zhang
- Institute of Marine Biomedicine/Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Bin Cheng
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.
- Institute of Marine Biomedicine/Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen 518055, China.
| |
Collapse
|
2
|
Zidar N, Tomašič T, Kikelj D, Durcik M, Tytgat J, Peigneur S, Rogers M, Haworth A, Kirby RW. New aryl and acylsulfonamides as state-dependent inhibitors of Na v1.3 voltage-gated sodium channel. Eur J Med Chem 2023; 258:115530. [PMID: 37329714 DOI: 10.1016/j.ejmech.2023.115530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/19/2023]
Abstract
Voltage-gated sodium channels (Navs) play an essential role in neurotransmission, and their dysfunction is often a cause of various neurological disorders. The Nav1.3 isoform is found in the CNS and upregulated after injury in the periphery, but its role in human physiology has not yet been fully elucidated. Reports suggest that selective Nav1.3 inhibitors could be used as novel therapeutics to treat pain or neurodevelopmental disorders. Few selective inhibitors of this channel are known in the literature. In this work, we report the discovery of a new series of aryl and acylsulfonamides as state-dependent inhibitors of Nav1.3 channels. Using a ligand-based 3D similarity search and subsequent hit optimization, we identified and prepared a series of 47 novel compounds and tested them on Nav1.3, Nav1.5, and a selected subset also on Nav1.7 channels in a QPatch patch-clamp electrophysiology assay. Eight compounds had an IC50 value of less than 1 μM against the Nav1.3 channel inactivated state, with one compound displaying an IC50 value of 20 nM, whereas activity against the inactivated state of the Nav1.5 channel and Nav1.7 channel was approximately 20-fold weaker. None of the compounds showed use-dependent inhibition of the cardiac isoform Nav1.5 at a concentration of 30 μM. Further selectivity testing of the most promising hits was measured using the two-electrode voltage-clamp method against the closed state of the Nav1.1-Nav1.8 channels, and compound 15b displayed small, yet selective, effects against the Nav1.3 channel, with no activity against the other isoforms. Additional selectivity testing of promising hits against the inactivated state of the Nav1.3, Nav1.7, and Nav1.8 channels revealed several compounds with robust and selective activity against the inactivated state of the Nav1.3 channel among the three isoforms tested. Moreover, the compounds were not cytotoxic at a concentration of 50 μM, as demonstrated by the assay in human HepG2 cells (hepatocellular carcinoma cells). The novel state-dependent inhibitors of Nav1.3 discovered in this work provide a valuable tool to better evaluate this channel as a potential drug target.
Collapse
Affiliation(s)
- Nace Zidar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia.
| | - Tihomir Tomašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Danijel Kikelj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Martina Durcik
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Jan Tytgat
- University of Leuven (KU Leuven), Toxicology & Pharmacology, O&N2, PO Box 922, Herestraat 49, 3000, Leuven, Belgium
| | - Steve Peigneur
- University of Leuven (KU Leuven), Toxicology & Pharmacology, O&N2, PO Box 922, Herestraat 49, 3000, Leuven, Belgium
| | - Marc Rogers
- Metrion Biosciences Limited, Building 2, Granta Centre, Granta Park, Great Abington, Cambridge, CB21 6AL, UK
| | - Alexander Haworth
- Metrion Biosciences Limited, Building 2, Granta Centre, Granta Park, Great Abington, Cambridge, CB21 6AL, UK
| | - Robert W Kirby
- Metrion Biosciences Limited, Building 2, Granta Centre, Granta Park, Great Abington, Cambridge, CB21 6AL, UK
| |
Collapse
|
3
|
Kang TM, Wu YW, Zheng WS, Zhang XH, Zhang XG. The halogensulfonylative cyclizations of 1,6-enynes with sodium sulfinate/TBAX for the regioselective synthesis of tetrahydropyridines. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
4
|
In silico development of potential therapeutic for the pain treatment by inhibiting voltage-gated sodium channel 1.7. Comput Biol Med 2021; 132:104346. [PMID: 33774271 DOI: 10.1016/j.compbiomed.2021.104346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/13/2021] [Accepted: 03/13/2021] [Indexed: 01/27/2023]
Abstract
The voltage-gated sodium channel Nav1.7 can be considered as a promising target for the treatment of pain. This research presents conformational-independent and 3D field-based QSAR modeling for a series of aryl sulfonamide acting as Nav1.7 inhibitors. As descriptors used for building conformation-independent QSAR models, SMILES notation and local invariants of the molecular graph were used with the Monte Carlo optimization method as a model developer. Different statistical methods, including the index of ideality of correlation, were used to test the quality of the developed models, robustness and predictability and obtained results were good. Obtained results indicate that there is a very good correlation between 3D QSAR and conformation-independent models. Molecular fragments that account for the increase/decrease of a studied activity were defined and used for the computer-aided design of new compounds as potential analgesics. The final evaluation of the developed QSAR models and designed inhibitors were carried out using molecular docking studies, bringing to light an excellent correlation with the QSAR modeling results.
Collapse
|
5
|
Llobat A, Escorihuela J, Sedgwick DM, Rodenes M, Román R, Soloshonok VA, Han J, Medio‐Simón M, Fustero S. The Ruthenium‐Catalyzed Domino Cross Enyne Metathesis/Ring‐Closing Metathesis in the Synthesis of Enantioenriched Nitrogen‐Containing Heterocycles. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alberto Llobat
- Departamento de Química Orgánica Universitat de València Av. Vicent Andrés Estellés s/n 46100 Burjassot Valencia Spain
| | - Jorge Escorihuela
- Departamento de Química Orgánica Universitat de València Av. Vicent Andrés Estellés s/n 46100 Burjassot Valencia Spain
| | - Daniel M. Sedgwick
- Departamento de Química Orgánica Universitat de València Av. Vicent Andrés Estellés s/n 46100 Burjassot Valencia Spain
| | - Miriam Rodenes
- Departamento de Química Orgánica Universitat de València Av. Vicent Andrés Estellés s/n 46100 Burjassot Valencia Spain
| | - Raquel Román
- Departamento de Química Orgánica Universitat de València Av. Vicent Andrés Estellés s/n 46100 Burjassot Valencia Spain
| | - Vadim A. Soloshonok
- Department of Organic Chemistry I Faculty of Chemistry University of the Basque Country 20018 San Sebastian Spain
- Basque Foundation for Science IKERBASQUE 48011 Bilbao Spain
| | - Jianlin Han
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering Nanjing Forestry University 210037 Jiangsu People's Republic of China
| | - Mercedes Medio‐Simón
- Departamento de Química Orgánica Universitat de València Av. Vicent Andrés Estellés s/n 46100 Burjassot Valencia Spain
| | - Santos Fustero
- Departamento de Química Orgánica Universitat de València Av. Vicent Andrés Estellés s/n 46100 Burjassot Valencia Spain
| |
Collapse
|
6
|
Ramdas V, Talwar R, Kanoje V, Loriya RM, Banerjee M, Patil P, Joshi AA, Datrange L, Das AK, Walke DS, Kalhapure V, Khan T, Gote G, Dhayagude U, Deshpande S, Shaikh J, Chaure G, Pal RR, Parkale S, Suravase S, Bhoskar S, Gupta RV, Kalia A, Yeshodharan R, Azhar M, Daler J, Mali V, Sharma G, Kishore A, Vyawahare R, Agarwal G, Pareek H, Budhe S, Nayak A, Warude D, Gupta PK, Joshi P, Joshi S, Darekar S, Pandey D, Wagh A, Nigade PB, Mehta M, Patil V, Modi D, Pawar S, Verma M, Singh M, Das S, Gundu J, Nemmani K, Bock MG, Sharma S, Bakhle D, Kamboj RK, Palle VP. Discovery of Potent, Selective, and State-Dependent Na V1.7 Inhibitors with Robust Oral Efficacy in Pain Models: Structure-Activity Relationship and Optimization of Chroman and Indane Aryl Sulfonamides. J Med Chem 2020; 63:6107-6133. [PMID: 32368909 DOI: 10.1021/acs.jmedchem.0c00361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Voltage-gated sodium channel NaV1.7 is a genetically validated target for pain. Identification of NaV1.7 inhibitors with all of the desired properties to develop as an oral therapeutic for pain has been a major challenge. Herein, we report systematic structure-activity relationship (SAR) studies carried out to identify novel sulfonamide derivatives as potent, selective, and state-dependent NaV1.7 inhibitors for pain. Scaffold hopping from benzoxazine to chroman and indane bicyclic system followed by thiazole replacement on sulfonamide led to identification of lead molecules with significant improvement in solubility, selectivity over NaV1.5, and CYP2C9 inhibition. The lead molecules 13, 29, 32, 43, and 51 showed a favorable pharmacokinetics (PK) profile across different species and robust efficacy in veratridine and formalin-induced inflammatory pain models in mice. Compound 51 also showed significant effects on the CCI-induced neuropathic pain model. The profile of 51 indicated that it has the potential for further evaluation as a therapeutic for pain.
Collapse
Affiliation(s)
- Vidya Ramdas
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Rashmi Talwar
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Vijay Kanoje
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Rajesh M Loriya
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Moloy Banerjee
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Pradeep Patil
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Advait Arun Joshi
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Laxmikant Datrange
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Amit Kumar Das
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Deepak Sahebrao Walke
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Vaibhav Kalhapure
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Talha Khan
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Ganesh Gote
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Usha Dhayagude
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Shreyas Deshpande
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Javed Shaikh
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Ganesh Chaure
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Ravindra R Pal
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Santosh Parkale
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Sachin Suravase
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Smita Bhoskar
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Rajesh V Gupta
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Anil Kalia
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Rajesh Yeshodharan
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Mahammad Azhar
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Jagadeesh Daler
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Vinod Mali
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Geetika Sharma
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Amitesh Kishore
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Rupali Vyawahare
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Gautam Agarwal
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Himani Pareek
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Sagar Budhe
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Arun Nayak
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Dnyaneshwar Warude
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Praveen Kumar Gupta
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Parag Joshi
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Sneha Joshi
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Sagar Darekar
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Dilip Pandey
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Akshaya Wagh
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Prashant B Nigade
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Maneesh Mehta
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Vinod Patil
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Dipak Modi
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Shashikant Pawar
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Mahip Verma
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Minakshi Singh
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Sudipto Das
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Jayasagar Gundu
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Kumar Nemmani
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Mark G Bock
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Sharad Sharma
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Dhananjay Bakhle
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Rajender Kumar Kamboj
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Venkata P Palle
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| |
Collapse
|
7
|
Shinozuka T, Kobayashi H, Suzuki S, Tanaka K, Karanjule N, Hayashi N, Tsuda T, Tokumaru E, Inoue M, Ueda K, Kimoto H, Domon Y, Takahashi S, Kubota K, Yokoyama T, Shimizugawa A, Koishi R, Fujiwara C, Asano D, Sakakura T, Takasuna K, Abe Y, Watanabe T, Kitano Y. Discovery of DS-1971a, a Potent, Selective NaV1.7 Inhibitor. J Med Chem 2020; 63:10204-10220. [DOI: 10.1021/acs.jmedchem.0c00259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Tsuyoshi Shinozuka
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Hiroyuki Kobayashi
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Sayaka Suzuki
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kyosuke Tanaka
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Narayan Karanjule
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Noriyuki Hayashi
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Toshifumi Tsuda
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Eri Tokumaru
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Masahiro Inoue
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kiyono Ueda
- R&D Division, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Hiroko Kimoto
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Yuki Domon
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Sakiko Takahashi
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kazufumi Kubota
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Tomihisa Yokoyama
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Akiko Shimizugawa
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Ryuta Koishi
- R&D Division, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Chie Fujiwara
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Daigo Asano
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Tomoko Sakakura
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kiyoshi Takasuna
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Yasuyuki Abe
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Toshiyuki Watanabe
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Yutaka Kitano
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| |
Collapse
|
8
|
Focken T, Burford K, Grimwood ME, Zenova A, Andrez JC, Gong W, Wilson M, Taron M, Decker S, Lofstrand V, Chowdhury S, Shuart N, Lin S, Goodchild SJ, Young C, Soriano M, Tari PK, Waldbrook M, Nelkenbrecher K, Kwan R, Lindgren A, de Boer G, Lee S, Sojo L, DeVita RJ, Cohen CJ, Wesolowski SS, Johnson JP, Dehnhardt CM, Empfield JR. Identification of CNS-Penetrant Aryl Sulfonamides as Isoform-Selective Na V1.6 Inhibitors with Efficacy in Mouse Models of Epilepsy. J Med Chem 2019; 62:9618-9641. [PMID: 31525968 DOI: 10.1021/acs.jmedchem.9b01032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nonselective antagonists of voltage-gated sodium (NaV) channels have been long used for the treatment of epilepsies. The efficacy of these drugs is thought to be due to the block of sodium channels on excitatory neurons, primarily NaV1.6 and NaV1.2. However, these currently marketed drugs require high drug exposure and suffer from narrow therapeutic indices. Selective inhibition of NaV1.6, while sparing NaV1.1, is anticipated to provide a more effective and better tolerated treatment for epilepsies. In addition, block of NaV1.2 may complement the anticonvulsant activity of NaV1.6 inhibition. We discovered a novel series of aryl sulfonamides as CNS-penetrant, isoform-selective NaV1.6 inhibitors, which also displayed potent block of NaV1.2. Optimization focused on increasing selectivity over NaV1.1, improving metabolic stability, reducing active efflux, and addressing a pregnane X-receptor liability. We obtained compounds 30-32, which produced potent anticonvulsant activity in mouse seizure models, including a direct current maximal electroshock seizure assay.
Collapse
Affiliation(s)
- Thilo Focken
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Kristen Burford
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Michael E Grimwood
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Alla Zenova
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Jean-Christophe Andrez
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Wei Gong
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Michael Wilson
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Matt Taron
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Shannon Decker
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Verner Lofstrand
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Sultan Chowdhury
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Noah Shuart
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Sophia Lin
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Samuel J Goodchild
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Clint Young
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Maegan Soriano
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Parisa K Tari
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Matthew Waldbrook
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Karen Nelkenbrecher
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Rainbow Kwan
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Andrea Lindgren
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Gina de Boer
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Stephanie Lee
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Luis Sojo
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Robert J DeVita
- RJD Medicinal Chemistry and Drug Discovery Consulting LLC , Westfield , New Jersey 07090 , United States
| | - Charles J Cohen
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Steven S Wesolowski
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - J P Johnson
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Christoph M Dehnhardt
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - James R Empfield
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| |
Collapse
|
9
|
Nicolas S, Zoukimian C, Bosmans F, Montnach J, Diochot S, Cuypers E, De Waard S, Béroud R, Mebs D, Craik D, Boturyn D, Lazdunski M, Tytgat J, De Waard M. Chemical Synthesis, Proper Folding, Na v Channel Selectivity Profile and Analgesic Properties of the Spider Peptide Phlotoxin 1. Toxins (Basel) 2019; 11:toxins11060367. [PMID: 31234412 PMCID: PMC6628435 DOI: 10.3390/toxins11060367] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/11/2019] [Accepted: 06/16/2019] [Indexed: 12/19/2022] Open
Abstract
Phlotoxin-1 (PhlTx1) is a peptide previously identified in tarantula venom (Phlogius species) that belongs to the inhibitory cysteine-knot (ICK) toxin family. Like many ICK-based spider toxins, the synthesis of PhlTx1 appears particularly challenging, mostly for obtaining appropriate folding and concomitant suitable disulfide bridge formation. Herein, we describe a procedure for the chemical synthesis and the directed sequential disulfide bridge formation of PhlTx1 that allows for a straightforward production of this challenging peptide. We also performed extensive functional testing of PhlTx1 on 31 ion channel types and identified the voltage-gated sodium (Nav) channel Nav1.7 as the main target of this toxin. Moreover, we compared PhlTx1 activity to 10 other spider toxin activities on an automated patch-clamp system with Chinese Hamster Ovary (CHO) cells expressing human Nav1.7. Performing these analyses in reproducible conditions allowed for classification according to the potency of the best natural Nav1.7 peptide blockers. Finally, subsequent in vivo testing revealed that intrathecal injection of PhlTx1 reduces the response of mice to formalin in both the acute pain and inflammation phase without signs of neurotoxicity. PhlTx1 is thus an interesting toxin to investigate Nav1.7 involvement in cellular excitability and pain.
Collapse
Affiliation(s)
- Sébastien Nicolas
- Institut du Thorax, Inserm UMR 1087/CNRS UMR 6291, LabEx "Ion Channels, Science & Therapeutics", F-44007 Nantes, France.
| | - Claude Zoukimian
- Smartox Biotechnology, 6 rue des Platanes, F-38120 Saint-Egrève, France.
- Department of Molecular Chemistry, Univ. Grenoble Alpes, CNRS, 570 rue de la chimie, CS 40700, 38000 Grenoble, France.
| | - Frank Bosmans
- Faculty of Medicine and Health Sciences, Department of Basic and Applied Medical Sciences, 9000 Gent, Belgium.
- Toxicology and Pharmacology, University of Leuven, Campus Gasthuisberg, P.O. Box 922, Herestraat 49, 3000 Leuven, Belgium.
| | - Jérôme Montnach
- Institut du Thorax, Inserm UMR 1087/CNRS UMR 6291, LabEx "Ion Channels, Science & Therapeutics", F-44007 Nantes, France.
| | - Sylvie Diochot
- Université Côte d'Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 6560 Valbonne, France.
| | - Eva Cuypers
- Toxicology and Pharmacology, University of Leuven, Campus Gasthuisberg, P.O. Box 922, Herestraat 49, 3000 Leuven, Belgium.
| | - Stephan De Waard
- Institut du Thorax, Inserm UMR 1087/CNRS UMR 6291, LabEx "Ion Channels, Science & Therapeutics", F-44007 Nantes, France.
| | - Rémy Béroud
- Smartox Biotechnology, 6 rue des Platanes, F-38120 Saint-Egrève, France.
| | - Dietrich Mebs
- Institute of Legal Medicine, University of Frankfurt, Kennedyallee 104, Frankfurt, Germany.
| | - David Craik
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia.
| | - Didier Boturyn
- Department of Molecular Chemistry, Univ. Grenoble Alpes, CNRS, 570 rue de la chimie, CS 40700, 38000 Grenoble, France.
| | - Michel Lazdunski
- Université Côte d'Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 6560 Valbonne, France.
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven, Campus Gasthuisberg, P.O. Box 922, Herestraat 49, 3000 Leuven, Belgium.
| | - Michel De Waard
- Institut du Thorax, Inserm UMR 1087/CNRS UMR 6291, LabEx "Ion Channels, Science & Therapeutics", F-44007 Nantes, France.
- Smartox Biotechnology, 6 rue des Platanes, F-38120 Saint-Egrève, France.
| |
Collapse
|
10
|
Luo G, Chen L, Easton A, Newton A, Bourin C, Shields E, Mosure K, Soars MG, Knox RJ, Matchett M, Pieschl RL, Post-Munson DJ, Wang S, Herrington J, Graef J, Newberry K, Sivarao DV, Senapati A, Bristow LJ, Meanwell NA, Thompson LA, Dzierba C. Discovery of Indole- and Indazole-acylsulfonamides as Potent and Selective Na V1.7 Inhibitors for the Treatment of Pain. J Med Chem 2019; 62:831-856. [PMID: 30576602 DOI: 10.1021/acs.jmedchem.8b01550] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
3-Aryl-indole and 3-aryl-indazole derivatives were identified as potent and selective Nav1.7 inhibitors. Compound 29 was shown to be efficacious in the mouse formalin assay and also reduced complete Freund's adjuvant (CFA)-induced thermal hyperalgesia and chronic constriction injury (CCI) induced cold allodynia and models of inflammatory and neuropathic pain, respectively, following intraperitoneal (IP) doses of 30 mg/kg. The observed efficacy could be correlated with the mouse dorsal root ganglion exposure and NaV1.7 potency associated with 29.
Collapse
Affiliation(s)
- Guanglin Luo
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Ling Chen
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Amy Easton
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Amy Newton
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Clotilde Bourin
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Eric Shields
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Kathy Mosure
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Matthew G Soars
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Ronald J Knox
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Michele Matchett
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Rick L Pieschl
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Debra J Post-Munson
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Shuya Wang
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - James Herrington
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - John Graef
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Kimberly Newberry
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Digavalli V Sivarao
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Arun Senapati
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Linda J Bristow
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Nicholas A Meanwell
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Lorin A Thompson
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Carolyn Dzierba
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| |
Collapse
|
11
|
Sun S, Jia Q, Zenova AY, Wilson MS, Chowdhury S, Focken T, Li J, Decker S, Grimwood ME, Andrez JC, Hemeon I, Sheng T, Chen CA, White A, Hackos DH, Deng L, Bankar G, Khakh K, Chang E, Kwan R, Lin S, Nelkenbrecher K, Sellers BD, DiPasquale AG, Chang J, Pang J, Sojo L, Lindgren A, Waldbrook M, Xie Z, Young C, Johnson JP, Robinette CL, Cohen CJ, Safina BS, Sutherlin DP, Ortwine DF, Dehnhardt CM. Identification of Selective Acyl Sulfonamide–Cycloalkylether Inhibitors of the Voltage-Gated Sodium Channel (NaV) 1.7 with Potent Analgesic Activity. J Med Chem 2018; 62:908-927. [DOI: 10.1021/acs.jmedchem.8b01621] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shaoyi Sun
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Qi Jia
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Alla Y. Zenova
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Michael S. Wilson
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Sultan Chowdhury
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Thilo Focken
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Jun Li
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080-4990, United States
| | - Shannon Decker
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Michael E. Grimwood
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Jean-Christophe Andrez
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Ivan Hemeon
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Tao Sheng
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Chien-An Chen
- ChemPartner, Building No. 5, 998 Halei Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, P. R. China
| | - Andy White
- ChemPartner, Building No. 5, 998 Halei Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, P. R. China
| | - David H. Hackos
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080-4990, United States
| | - Lunbin Deng
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080-4990, United States
| | - Girish Bankar
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Kuldip Khakh
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Elaine Chang
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Rainbow Kwan
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Sophia Lin
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Karen Nelkenbrecher
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Benjamin D. Sellers
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080-4990, United States
| | - Antonio G. DiPasquale
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080-4990, United States
| | - Jae Chang
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080-4990, United States
| | - Jodie Pang
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080-4990, United States
| | - Luis Sojo
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Andrea Lindgren
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Matthew Waldbrook
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Zhiwei Xie
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Clint Young
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - James P. Johnson
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - C. Lee Robinette
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Charles J. Cohen
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Brian S. Safina
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080-4990, United States
| | - Daniel P. Sutherlin
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080-4990, United States
| | - Daniel F. Ortwine
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080-4990, United States
| | - Christoph M. Dehnhardt
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| |
Collapse
|
12
|
Wang M, Wang Y, Kong D, Jiang H, Wang J, Cheng M. In silico exploration of aryl sulfonamide analogs as voltage-gated sodium channel 1.7 inhibitors by using 3D-QSAR, molecular docking study, and molecular dynamics simulations. Comput Biol Chem 2018; 77:214-225. [PMID: 30359866 DOI: 10.1016/j.compbiolchem.2018.10.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/07/2018] [Accepted: 10/10/2018] [Indexed: 12/25/2022]
Abstract
It has been demonstrated by human genetics that the voltage-gated sodium channel Nav1.7 is currently a promising target for the treatment of pain. In this research, we performed molecular simulation works on a series of classic aryl sulfonamide Nav1.7 inhibitors using three-dimensional quantitative structure-activity relationships (3D-QSAR), molecular docking and molecular dynamics (MD) simulations for the first time to explore the correlation between their structures and activities. The results of the relevant statistical parameters of comparative molecular field analyses (CoMFA) and comparative molecular similarity indices analyses (CoMSIA) had been verified to be reasonable, and the deep relationship between the structures and activities of these inhibitors was obtained by analyzing the contour maps. The generated 3D-QSAR model showed a good predictive ability and provided valuable clues for the rational modification of molecules. The interactions between compounds and proteins were modeled by molecular docking studies. Finally, accuracy of the docking results and stability of the complexes were verified by 100 ns MD simulations. Detailed information on the key residues at the binding site and the types of interactions they participate in involved was obtained. The van der Waals energy contributed the most in the molecular binding process according to the calculation of binding free energy. All research results provided a good basis for further research on novel and effective Nav1.7 inhibitors.
Collapse
Affiliation(s)
- Mingxing Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Ying Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Dejiang Kong
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Hailun Jiang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| |
Collapse
|
13
|
Focken T, Chowdhury S, Zenova A, Grimwood ME, Chabot C, Sheng T, Hemeon I, Decker SM, Wilson M, Bichler P, Jia Q, Sun S, Young C, Lin S, Goodchild SJ, Shuart NG, Chang E, Xie Z, Li B, Khakh K, Bankar G, Waldbrook M, Kwan R, Nelkenbrecher K, Karimi Tari P, Chahal N, Sojo L, Robinette CL, White AD, Chen CA, Zhang Y, Pang J, Chang JH, Hackos DH, Johnson JP, Cohen CJ, Ortwine DF, Sutherlin DP, Dehnhardt CM, Safina BS. Design of Conformationally Constrained Acyl Sulfonamide Isosteres: Identification of N-([1,2,4]Triazolo[4,3-a]pyridin-3-yl)methane-sulfonamides as Potent and Selective hNaV1.7 Inhibitors for the Treatment of Pain. J Med Chem 2018; 61:4810-4831. [DOI: 10.1021/acs.jmedchem.7b01826] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Thilo Focken
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Sultan Chowdhury
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Alla Zenova
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Michael E. Grimwood
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Christine Chabot
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Tao Sheng
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Ivan Hemeon
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Shannon M. Decker
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Michael Wilson
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Paul Bichler
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Qi Jia
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Shaoyi Sun
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Clint Young
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Sophia Lin
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Samuel J. Goodchild
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Noah G. Shuart
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Elaine Chang
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Zhiwei Xie
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Bowen Li
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Kuldip Khakh
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Girish Bankar
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Matthew Waldbrook
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Rainbow Kwan
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Karen Nelkenbrecher
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Parisa Karimi Tari
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Navjot Chahal
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Luis Sojo
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - C. Lee Robinette
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Andrew D. White
- Chempartner, Building No. 5, 998 Halei Rd., Zhangjiang Hi-Tech
Park, Pudong New Area, Shanghai 201203, China
| | - Chien-An Chen
- Chempartner, Building No. 5, 998 Halei Rd., Zhangjiang Hi-Tech
Park, Pudong New Area, Shanghai 201203, China
| | - Yi Zhang
- Chempartner, Building No. 5, 998 Halei Rd., Zhangjiang Hi-Tech
Park, Pudong New Area, Shanghai 201203, China
| | - Jodie Pang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jae H. Chang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - David H. Hackos
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - J. P. Johnson
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Charles J. Cohen
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Daniel F. Ortwine
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Daniel P. Sutherlin
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Brian S. Safina
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
14
|
A comparative study using conventional methods, ionic liquids, microwave irradiation and combinations thereof for the synthesis of 5-trifluoroacetyl-1,2,3,4-tetrahydropyridines. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.01.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
An efficient stereoselective synthesis of aminocyclohexenes from 7-azanorbornenes via LiAlH 4 mediated tandem double bond migration-ring opening sequence. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2017.12.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Teng M, Wu W, Li Z, Yang G, Qin J, Wang Y, Hu Z, Dong H, Hou L, Hu G, Shen L, Zhang Y, Li J, Chen S, Tian J, Ye L, Zhang J, Wang H. Discovery of aminocyclohexene analogues as selective and orally bioavailable hNav1.7 inhibitors for analgesia. Bioorg Med Chem Lett 2017; 27:4979-4984. [PMID: 29037948 DOI: 10.1016/j.bmcl.2017.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/28/2017] [Accepted: 10/07/2017] [Indexed: 10/18/2022]
Abstract
hNav1.7 receives a lot of attention owing to its attractive mechanism of action in pain processing pathway. We have previously reported our design of a novel series of tetrahydropyridine analogues towards hNav1.7 selective inhibitors. Herein, we disclose further efforts to the optimization of hit compound (-)-6, which led to the identification of aminocyclohexene analogues (-)-9 and (-)-17 with good potency, high selectivity, and minimal CYP inhibition. Both compounds (-)-9 and (-)-17 demonstrated improved pharmacokinetic profiles in rats, and robust efficacy in rat formalin-induced nociception and spinal nerve ligation (SNL) models.
Collapse
Affiliation(s)
- Mingxing Teng
- WuXi AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, People's Republic of China
| | - Wentao Wu
- WuXi AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, People's Republic of China.
| | - Zhixiang Li
- WuXi AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, People's Republic of China
| | - Guangwen Yang
- WuXi AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, People's Republic of China
| | - Jian Qin
- WuXi AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, People's Republic of China
| | - Yikai Wang
- WuXi AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, People's Republic of China
| | - Zhijing Hu
- WuXi AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, People's Republic of China
| | - Haiheng Dong
- WuXi AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, People's Republic of China
| | - Lijuan Hou
- WuXi AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, People's Republic of China
| | - Guoping Hu
- WuXi AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, People's Republic of China
| | - Liang Shen
- WuXi AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, People's Republic of China
| | - Yang Zhang
- WuXi AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, People's Republic of China.
| | - Jian Li
- WuXi AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, People's Republic of China
| | - Shuhui Chen
- WuXi AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, People's Republic of China
| | - Jingwei Tian
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China.
| | - Liang Ye
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Jianzhao Zhang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Hongbo Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| |
Collapse
|