1
|
Sun S, Chowdhury S, Hemeon I, Hasan A, Wilson MS, Bergeron P, Jia Q, Zenova AY, Grimwood ME, Gong W, Decker SM, Bichler P, Andrez JC, Focken T, Ngyuen T, Zhu J, White AD, Bankar G, Howard S, Chang E, Khakh K, Lin S, Dean R, Johnson JP, Chang JH, Hackos DH, McKerrall SJ, Sellers B, Ortwine DF, Cohen CJ, Safina BS, Sutherlin DP, Dehnhardt CM. Discovery of novel cyclopentane carboxylic acids as potent and selective inhibitors of Na V1.7. Bioorg Med Chem Lett 2025; 116:130033. [PMID: 39580005 DOI: 10.1016/j.bmcl.2024.130033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/28/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
Discovery efforts leading to the identification of cyclopentane carboxylic acid 31, a potent inhibitor of NaV1.7 that showed high selectivity over NaV1.5 and exhibited robust analgesic effects in an inherited erythromelalgia (IEM) transgenic mouse assay, are described herein. Key design elements that culminated in the discovery of 31 include exploration of proline substituents, replacement of the proline warhead with cyclopentane carboxylic acid, that led to significantly boosted NaV1.7 potency, and replacement of the metabolically labile adamantane motif with the 2,6-dichlorobenzyl substituted piperidine system, that addressed metabolic instability and led to a significant improvement in PK.
Collapse
Affiliation(s)
- Shaoyi Sun
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada.
| | - Sultan Chowdhury
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Ivan Hemeon
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Abid Hasan
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Michael S Wilson
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | | | - Qi Jia
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Alla Y Zenova
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Mike E Grimwood
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Wei Gong
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Shannon M Decker
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Paul Bichler
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | | | - Thilo Focken
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Theresa Ngyuen
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080-4990, USA
| | - Jiuxiang Zhu
- Chempartner, Building No. 5, 998 Halei Rd., Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai, PR China
| | - Andrew D White
- Chempartner, Building No. 5, 998 Halei Rd., Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai, PR China
| | - Girish Bankar
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Sarah Howard
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080-4990, USA
| | - Elaine Chang
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Kuldip Khakh
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Sophia Lin
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Richard Dean
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - J P Johnson
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Jae H Chang
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080-4990, USA
| | - David H Hackos
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080-4990, USA
| | | | - Ben Sellers
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080-4990, USA
| | - Dan F Ortwine
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080-4990, USA
| | - Charles J Cohen
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Brian S Safina
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080-4990, USA
| | | | | |
Collapse
|
2
|
Kong W, Huang W, Peng C, Zhang B, Duan G, Ma W, Huang Z. Multiple machine learning methods aided virtual screening of Na V 1.5 inhibitors. J Cell Mol Med 2022; 27:266-276. [PMID: 36573431 PMCID: PMC9843531 DOI: 10.1111/jcmm.17652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/30/2022] [Accepted: 12/06/2022] [Indexed: 12/28/2022] Open
Abstract
Nav 1.5 sodium channels contribute to the generation of the rapid upstroke of the myocardial action potential and thereby play a central role in the excitability of myocardial cells. At present, the patch clamp method is the gold standard for ion channel inhibitor screening. However, this method has disadvantages such as high technical difficulty, high cost and low speed. In this study, novel machine learning models to screen chemical blockers were developed to overcome the above shortage. The data from the ChEMBL Database were employed to establish the machine learning models. Firstly, six molecular fingerprints together with five machine learning algorithms were used to develop 30 classification models to predict effective inhibitors. A validation and a test set were used to evaluate the performance of the models. Subsequently, the privileged substructures tightly associated with the inhibition of the Nav 1.5 ion channel were extracted using the bioalerts Python package. In the validation set, the RF-Graph model performed best. Similarly, RF-Graph produced the best result in the test set in which the Prediction Accuracy (Q) was 0.9309 and Matthew's correlation coefficient was 0.8627, further indicating the model had high classification ability. The results of the privileged substructures indicated Sulfa structures and fragments with large Steric hindrance tend to block Nav 1.5. In the unsupervised learning task of identifying sulfa drugs, MACCS and Graph fingerprints had good results. In summary, effective machine learning models have been constructed which help to screen potential inhibitors of the Nav 1.5 ion channel and key privileged substructures with high affinity were also extracted.
Collapse
Affiliation(s)
- Weikaixin Kong
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical SciencesPeking University Health Science CenterBeijingChina,Institute for Molecular Medicine Finland (FIMM)HiLIFE, University of HelsinkiHelsinkiFinland,Institute Sanqu Technology (Hangzhou) Co., Ltd.HangzhouChina
| | - Weiran Huang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical SciencesPeking University Health Science CenterBeijingChina
| | - Chao Peng
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical SciencesPeking University Health Science CenterBeijingChina
| | - Bowen Zhang
- ComMedX (Computational Medicine Beijing Co., Ltd.)BeijingChina
| | - Guifang Duan
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical SciencesPeking University Health Science CenterBeijingChina
| | - Weining Ma
- Department of NeurologyShengjing Hospital affiliated to China Medical UniversityShenyangChina
| | - Zhuo Huang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical SciencesPeking University Health Science CenterBeijingChina,State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical SciencesPeking University Health Science CenterBeijingChina
| |
Collapse
|
3
|
Modrić M, Božičević M, Odak I, Talić S, Barić D, Mlakić M, Raspudić A, Škorić I. The structure–activity relationship and computational studies of 1,3-thiazole derivatives as cholinesterase inhibitors with anti-inflammatory activity. CR CHIM 2022. [DOI: 10.5802/crchim.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Kitano Y, Shinozuka T. Inhibition of Na V1.7: the possibility of ideal analgesics. RSC Med Chem 2022; 13:895-920. [PMID: 36092147 PMCID: PMC9384491 DOI: 10.1039/d2md00081d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/25/2022] [Indexed: 08/03/2023] Open
Abstract
The selective inhibition of NaV1.7 is a promising strategy for developing novel analgesic agents with fewer adverse effects. Although the potent selective inhibition of NaV1.7 has been recently achieved, multiple NaV1.7 inhibitors failed in clinical development. In this review, the relationship between preclinical in vivo efficacy and NaV1.7 coverage among three types of voltage-gated sodium channel (VGSC) inhibitors, namely conventional VGSC inhibitors, sulphonamides and acyl sulphonamides, is discussed. By demonstrating the PK/PD discrepancy of preclinical studies versus in vivo models and clinical results, the potential reasons behind the disconnect between preclinical results and clinical outcomes are discussed together with strategies for developing ideal analgesic agents.
Collapse
Affiliation(s)
- Yutaka Kitano
- R&D Division, Daiichi Sankyo Co., Ltd. 1-2-58 Hiromachi Shinagawa-ku Tokyo 140-8710 Japan
| | - Tsuyoshi Shinozuka
- R&D Division, Daiichi Sankyo Co., Ltd. 1-2-58 Hiromachi Shinagawa-ku Tokyo 140-8710 Japan
| |
Collapse
|
5
|
Li S, Ding M, Wu Y, Xue S, Ji Y, Zhang P, Zhang Z, Cao Z, Zhang F. Histamine Sensitization of the Voltage-Gated Sodium Channel Nav1.7 Contributes to Histaminergic Itch in Mice. ACS Chem Neurosci 2022; 13:700-710. [PMID: 35157443 DOI: 10.1021/acschemneuro.2c00012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Itch, a common clinical symptom of many skin diseases, severely impairs the life quality of patients. Nav1.7, a subtype of voltage-gated sodium channels mainly expressed in primary sensory neurons, is responsible for the amplification of threshold currents that trigger action potential (AP) generation. Gain-of-function mutation of Nav1.7 leads to paroxysmal itch, while pharmacological inhibition of Nav1.7 alleviates histamine-dependent itch. However, the crosstalk between histamine and Nav1.7 that leads to itch is unclear. In the present study, we demonstrated that in the dorsal root ganglion (DRG) neurons from histamine-dependent itch model mice induced by compound 48/80, tetrodotoxin-sensitive (TTX-S) but not TTX-resistant Na+ currents were activated at more hyperpolarized membrane potentials compared to those on DRG neurons from vehicle-treated mice. Meanwhile, bath application of histamine shifted the activation voltages of TTX-S Na+ currents to the hyperpolarized direction, increased the AP frequency, and reduced the current threshold required to elicit APs. Further mechanistic studies demonstrated that selective activation of H1 but not H2 and H4 receptors mimicked histamine effect on TTX-S Na+ channels in DRG neurons. The protein kinase C (PKC) inhibitor GO 8963, but not the PKA inhibitor H89, normalized histamine-sensitized TTX-S Na+ channels. We also demonstrated that histamine shifted the activation voltages of Na+ currents to the hyperpolarized direction in Chinese hamster ovary (CHO) cells expressing Nav1.7. Importantly, selective inhibition of Nav1.7 by PF-05089771 significantly relieved the scratching frequency in a histamine-dependent itch model induced by compound 48/80. Taken together, these data suggest that activation of H1 receptors by histamine sensitizes Nav1.7 channels through the PKC pathway in DRG neurons that contributes to histamine-dependent itch.
Collapse
Affiliation(s)
- Shaoheng Li
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Meihuizi Ding
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Ying Wu
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Shuwen Xue
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yunyun Ji
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Pinhui Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Zhuang Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Fan Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| |
Collapse
|
6
|
Alles SRA, Smith PA. Peripheral Voltage-Gated Cation Channels in Neuropathic Pain and Their Potential as Therapeutic Targets. FRONTIERS IN PAIN RESEARCH 2021; 2:750583. [PMID: 35295464 PMCID: PMC8915663 DOI: 10.3389/fpain.2021.750583] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022] Open
Abstract
The persistence of increased excitability and spontaneous activity in injured peripheral neurons is imperative for the development and persistence of many forms of neuropathic pain. This aberrant activity involves increased activity and/or expression of voltage-gated Na+ and Ca2+ channels and hyperpolarization activated cyclic nucleotide gated (HCN) channels as well as decreased function of K+ channels. Because they display limited central side effects, peripherally restricted Na+ and Ca2+ channel blockers and K+ channel activators offer potential therapeutic approaches to pain management. This review outlines the current status and future therapeutic promise of peripherally acting channel modulators. Selective blockers of Nav1.3, Nav1.7, Nav1.8, Cav3.2, and HCN2 and activators of Kv7.2 abrogate signs of neuropathic pain in animal models. Unfortunately, their performance in the clinic has been disappointing; some substances fail to meet therapeutic end points whereas others produce dose-limiting side effects. Despite this, peripheral voltage-gated cation channels retain their promise as therapeutic targets. The way forward may include (i) further structural refinement of K+ channel activators such as retigabine and ASP0819 to improve selectivity and limit toxicity; use or modification of Na+ channel blockers such as vixotrigine, PF-05089771, A803467, PF-01247324, VX-150 or arachnid toxins such as Tap1a; the use of Ca2+ channel blockers such as TTA-P2, TTA-A2, Z 944, ACT709478, and CNCB-2; (ii) improving methods for assessing "pain" as opposed to nociception in rodent models; (iii) recognizing sex differences in pain etiology; (iv) tailoring of therapeutic approaches to meet the symptoms and etiology of pain in individual patients via quantitative sensory testing and other personalized medicine approaches; (v) targeting genetic and biochemical mechanisms controlling channel expression using anti-NGF antibodies such as tanezumab or re-purposed drugs such as vorinostat, a histone methyltransferase inhibitor used in the management of T-cell lymphoma, or cercosporamide a MNK 1/2 inhibitor used in treatment of rheumatoid arthritis; (vi) combination therapy using drugs that are selective for different channel types or regulatory processes; (vii) directing preclinical validation work toward the use of human or human-derived tissue samples; and (viii) application of molecular biological approaches such as clustered regularly interspaced short palindromic repeats (CRISPR) technology.
Collapse
Affiliation(s)
- Sascha R A Alles
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Peter A Smith
- Department of Pharmacology, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
7
|
Modrić M, Božičević M, Faraho I, Bosnar M, Škorić I. Design, synthesis and biological evaluation of new 1,3-thiazole derivatives as potential anti-inflammatory agents. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Safina BS, McKerrall SJ, Sun S, Chen CA, Chowdhury S, Jia Q, Li J, Zenova AY, Andrez JC, Bankar G, Bergeron P, Chang JH, Chang E, Chen J, Dean R, Decker SM, DiPasquale A, Focken T, Hemeon I, Khakh K, Kim A, Kwan R, Lindgren A, Lin S, Maher J, Mezeyova J, Misner D, Nelkenbrecher K, Pang J, Reese R, Shields SD, Sojo L, Sheng T, Verschoof H, Waldbrook M, Wilson MS, Xie Z, Young C, Zabka TS, Hackos DH, Ortwine DF, White AD, Johnson JP, Robinette CL, Dehnhardt CM, Cohen CJ, Sutherlin DP. Discovery of Acyl-sulfonamide Na v1.7 Inhibitors GDC-0276 and GDC-0310. J Med Chem 2021; 64:2953-2966. [PMID: 33682420 DOI: 10.1021/acs.jmedchem.1c00049] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nav1.7 is an extensively investigated target for pain with a strong genetic link in humans, yet in spite of this effort, it remains challenging to identify efficacious, selective, and safe inhibitors. Here, we disclose the discovery and preclinical profile of GDC-0276 (1) and GDC-0310 (2), selective Nav1.7 inhibitors that have completed Phase 1 trials. Our initial search focused on close-in analogues to early compound 3. This resulted in the discovery of GDC-0276 (1), which possessed improved metabolic stability and an acceptable overall pharmacokinetics profile. To further derisk the predicted human pharmacokinetics and enable QD dosing, additional optimization of the scaffold was conducted, resulting in the discovery of a novel series of N-benzyl piperidine Nav1.7 inhibitors. Improvement of the metabolic stability by blocking the labile benzylic position led to the discovery of GDC-0310 (2), which possesses improved Nav selectivity and pharmacokinetic profile over 1.
Collapse
Affiliation(s)
- Brian S Safina
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Steven J McKerrall
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Shaoyi Sun
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Chien-An Chen
- Chempartner, Building No. 5, 998 Halei Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, P.R. China
| | - Sultan Chowdhury
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Qi Jia
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Jun Li
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Alla Y Zenova
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Jean-Christophe Andrez
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Girish Bankar
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Philippe Bergeron
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jae H Chang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Elaine Chang
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Jun Chen
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Richard Dean
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Shannon M Decker
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Antonio DiPasquale
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Thilo Focken
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Ivan Hemeon
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Kuldip Khakh
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Amy Kim
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Rainbow Kwan
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Andrea Lindgren
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Sophia Lin
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Jonathan Maher
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Janette Mezeyova
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Dinah Misner
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Karen Nelkenbrecher
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Jodie Pang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Rebecca Reese
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Shannon D Shields
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Luis Sojo
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Tao Sheng
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Henry Verschoof
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Matthew Waldbrook
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Michael S Wilson
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Zhiwei Xie
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Clint Young
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Tanja S Zabka
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - David H Hackos
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Daniel F Ortwine
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Andrew D White
- Chempartner, Building No. 5, 998 Halei Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, P.R. China
| | - J P Johnson
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - C Lee Robinette
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Christoph M Dehnhardt
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Charles J Cohen
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Daniel P Sutherlin
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
9
|
Ramdas V, Talwar R, Kanoje V, Loriya RM, Banerjee M, Patil P, Joshi AA, Datrange L, Das AK, Walke DS, Kalhapure V, Khan T, Gote G, Dhayagude U, Deshpande S, Shaikh J, Chaure G, Pal RR, Parkale S, Suravase S, Bhoskar S, Gupta RV, Kalia A, Yeshodharan R, Azhar M, Daler J, Mali V, Sharma G, Kishore A, Vyawahare R, Agarwal G, Pareek H, Budhe S, Nayak A, Warude D, Gupta PK, Joshi P, Joshi S, Darekar S, Pandey D, Wagh A, Nigade PB, Mehta M, Patil V, Modi D, Pawar S, Verma M, Singh M, Das S, Gundu J, Nemmani K, Bock MG, Sharma S, Bakhle D, Kamboj RK, Palle VP. Discovery of Potent, Selective, and State-Dependent Na V1.7 Inhibitors with Robust Oral Efficacy in Pain Models: Structure-Activity Relationship and Optimization of Chroman and Indane Aryl Sulfonamides. J Med Chem 2020; 63:6107-6133. [PMID: 32368909 DOI: 10.1021/acs.jmedchem.0c00361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Voltage-gated sodium channel NaV1.7 is a genetically validated target for pain. Identification of NaV1.7 inhibitors with all of the desired properties to develop as an oral therapeutic for pain has been a major challenge. Herein, we report systematic structure-activity relationship (SAR) studies carried out to identify novel sulfonamide derivatives as potent, selective, and state-dependent NaV1.7 inhibitors for pain. Scaffold hopping from benzoxazine to chroman and indane bicyclic system followed by thiazole replacement on sulfonamide led to identification of lead molecules with significant improvement in solubility, selectivity over NaV1.5, and CYP2C9 inhibition. The lead molecules 13, 29, 32, 43, and 51 showed a favorable pharmacokinetics (PK) profile across different species and robust efficacy in veratridine and formalin-induced inflammatory pain models in mice. Compound 51 also showed significant effects on the CCI-induced neuropathic pain model. The profile of 51 indicated that it has the potential for further evaluation as a therapeutic for pain.
Collapse
Affiliation(s)
- Vidya Ramdas
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Rashmi Talwar
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Vijay Kanoje
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Rajesh M Loriya
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Moloy Banerjee
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Pradeep Patil
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Advait Arun Joshi
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Laxmikant Datrange
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Amit Kumar Das
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Deepak Sahebrao Walke
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Vaibhav Kalhapure
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Talha Khan
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Ganesh Gote
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Usha Dhayagude
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Shreyas Deshpande
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Javed Shaikh
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Ganesh Chaure
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Ravindra R Pal
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Santosh Parkale
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Sachin Suravase
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Smita Bhoskar
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Rajesh V Gupta
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Anil Kalia
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Rajesh Yeshodharan
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Mahammad Azhar
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Jagadeesh Daler
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Vinod Mali
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Geetika Sharma
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Amitesh Kishore
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Rupali Vyawahare
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Gautam Agarwal
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Himani Pareek
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Sagar Budhe
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Arun Nayak
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Dnyaneshwar Warude
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Praveen Kumar Gupta
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Parag Joshi
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Sneha Joshi
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Sagar Darekar
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Dilip Pandey
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Akshaya Wagh
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Prashant B Nigade
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Maneesh Mehta
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Vinod Patil
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Dipak Modi
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Shashikant Pawar
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Mahip Verma
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Minakshi Singh
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Sudipto Das
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Jayasagar Gundu
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Kumar Nemmani
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Mark G Bock
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Sharad Sharma
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Dhananjay Bakhle
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Rajender Kumar Kamboj
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| | - Venkata P Palle
- Novel Drug Discovery & Development, Lupin Ltd., Lupin Research Park, Survey No. 46 A/47 A, Village Nande, Taluka Mulshi, Pune 412115, India
| |
Collapse
|
10
|
Complementary roles of murine Na V1.7, Na V1.8 and Na V1.9 in acute itch signalling. Sci Rep 2020; 10:2326. [PMID: 32047194 PMCID: PMC7012836 DOI: 10.1038/s41598-020-59092-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/17/2020] [Indexed: 12/19/2022] Open
Abstract
Acute pruritus occurs in various disorders. Despite severe repercussions on quality of life treatment options remain limited. Voltage-gated sodium channels (NaV) are indispensable for transformation and propagation of sensory signals implicating them as drug targets. Here, NaV1.7, 1.8 and 1.9 were compared for their contribution to itch by analysing NaV-specific knockout mice. Acute pruritus was induced by a comprehensive panel of pruritogens (C48/80, endothelin, 5-HT, chloroquine, histamine, lysophosphatidic acid, trypsin, SLIGRL, β-alanine, BAM8-22), and scratching was assessed using a magnet-based recording technology. We report an unexpected stimulus-dependent diversity in NaV channel-mediated itch signalling. NaV1.7−/− showed substantial scratch reduction mainly towards strong pruritogens. NaV1.8−/− impaired histamine and 5-HT-induced scratching while NaV1.9 was involved in itch signalling towards 5-HT, C48/80 and SLIGRL. Furthermore, similar microfluorimetric calcium responses of sensory neurons and expression of itch-related TRP channels suggest no change in sensory transduction but in action potential transformation and conduction. The cumulative sum of scratching over all pruritogens confirmed a leading role of NaV1.7 and indicated an overall contribution of NaV1.9. Beside the proposed general role of NaV1.7 and 1.9 in itch signalling, scrutiny of time courses suggested NaV1.8 to sustain prolonged itching. Therefore, NaV1.7 and 1.9 may represent targets in pruritus therapy.
Collapse
|
11
|
Focken T, Burford K, Grimwood ME, Zenova A, Andrez JC, Gong W, Wilson M, Taron M, Decker S, Lofstrand V, Chowdhury S, Shuart N, Lin S, Goodchild SJ, Young C, Soriano M, Tari PK, Waldbrook M, Nelkenbrecher K, Kwan R, Lindgren A, de Boer G, Lee S, Sojo L, DeVita RJ, Cohen CJ, Wesolowski SS, Johnson JP, Dehnhardt CM, Empfield JR. Identification of CNS-Penetrant Aryl Sulfonamides as Isoform-Selective Na V1.6 Inhibitors with Efficacy in Mouse Models of Epilepsy. J Med Chem 2019; 62:9618-9641. [PMID: 31525968 DOI: 10.1021/acs.jmedchem.9b01032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nonselective antagonists of voltage-gated sodium (NaV) channels have been long used for the treatment of epilepsies. The efficacy of these drugs is thought to be due to the block of sodium channels on excitatory neurons, primarily NaV1.6 and NaV1.2. However, these currently marketed drugs require high drug exposure and suffer from narrow therapeutic indices. Selective inhibition of NaV1.6, while sparing NaV1.1, is anticipated to provide a more effective and better tolerated treatment for epilepsies. In addition, block of NaV1.2 may complement the anticonvulsant activity of NaV1.6 inhibition. We discovered a novel series of aryl sulfonamides as CNS-penetrant, isoform-selective NaV1.6 inhibitors, which also displayed potent block of NaV1.2. Optimization focused on increasing selectivity over NaV1.1, improving metabolic stability, reducing active efflux, and addressing a pregnane X-receptor liability. We obtained compounds 30-32, which produced potent anticonvulsant activity in mouse seizure models, including a direct current maximal electroshock seizure assay.
Collapse
Affiliation(s)
- Thilo Focken
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Kristen Burford
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Michael E Grimwood
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Alla Zenova
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Jean-Christophe Andrez
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Wei Gong
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Michael Wilson
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Matt Taron
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Shannon Decker
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Verner Lofstrand
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Sultan Chowdhury
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Noah Shuart
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Sophia Lin
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Samuel J Goodchild
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Clint Young
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Maegan Soriano
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Parisa K Tari
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Matthew Waldbrook
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Karen Nelkenbrecher
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Rainbow Kwan
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Andrea Lindgren
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Gina de Boer
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Stephanie Lee
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Luis Sojo
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Robert J DeVita
- RJD Medicinal Chemistry and Drug Discovery Consulting LLC , Westfield , New Jersey 07090 , United States
| | - Charles J Cohen
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Steven S Wesolowski
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - J P Johnson
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - Christoph M Dehnhardt
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| | - James R Empfield
- Xenon Pharmaceuticals Inc. , 200-3650 Gilmore Way , Burnaby , British Columbia V5G 4W8 , Canada
| |
Collapse
|
12
|
McKerrall SJ, Nguyen T, Lai KW, Bergeron P, Deng L, DiPasquale A, Chang JH, Chen J, Chernov-Rogan T, Hackos DH, Maher J, Ortwine DF, Pang J, Payandeh J, Proctor WR, Shields SD, Vogt J, Ji P, Liu W, Ballini E, Schumann L, Tarozzo G, Bankar G, Chowdhury S, Hasan A, Johnson JP, Khakh K, Lin S, Cohen CJ, Dehnhardt CM, Safina BS, Sutherlin DP. Structure- and Ligand-Based Discovery of Chromane Arylsulfonamide Nav1.7 Inhibitors for the Treatment of Chronic Pain. J Med Chem 2019; 62:4091-4109. [DOI: 10.1021/acs.jmedchem.9b00141] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Steven J. McKerrall
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Teresa Nguyen
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Kwong Wah Lai
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, People’s Republic of China
| | - Philippe Bergeron
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Lunbin Deng
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Antonio DiPasquale
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jae H. Chang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jun Chen
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Tania Chernov-Rogan
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - David H. Hackos
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jonathan Maher
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Daniel F. Ortwine
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jodie Pang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jian Payandeh
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - William R. Proctor
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Shannon D. Shields
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jennifer Vogt
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Pengfei Ji
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, People’s Republic of China
| | - Wenfeng Liu
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, People’s Republic of China
| | | | | | | | - Girish Bankar
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Sultan Chowdhury
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Abid Hasan
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - J. P. Johnson
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Kuldip Khakh
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Sophia Lin
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Charles J. Cohen
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Christoph M. Dehnhardt
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Brian S. Safina
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Daniel P. Sutherlin
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
13
|
Sun S, Jia Q, Zenova AY, Wilson MS, Chowdhury S, Focken T, Li J, Decker S, Grimwood ME, Andrez JC, Hemeon I, Sheng T, Chen CA, White A, Hackos DH, Deng L, Bankar G, Khakh K, Chang E, Kwan R, Lin S, Nelkenbrecher K, Sellers BD, DiPasquale AG, Chang J, Pang J, Sojo L, Lindgren A, Waldbrook M, Xie Z, Young C, Johnson JP, Robinette CL, Cohen CJ, Safina BS, Sutherlin DP, Ortwine DF, Dehnhardt CM. Identification of Selective Acyl Sulfonamide–Cycloalkylether Inhibitors of the Voltage-Gated Sodium Channel (NaV) 1.7 with Potent Analgesic Activity. J Med Chem 2018; 62:908-927. [DOI: 10.1021/acs.jmedchem.8b01621] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shaoyi Sun
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Qi Jia
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Alla Y. Zenova
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Michael S. Wilson
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Sultan Chowdhury
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Thilo Focken
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Jun Li
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080-4990, United States
| | - Shannon Decker
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Michael E. Grimwood
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Jean-Christophe Andrez
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Ivan Hemeon
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Tao Sheng
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Chien-An Chen
- ChemPartner, Building No. 5, 998 Halei Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, P. R. China
| | - Andy White
- ChemPartner, Building No. 5, 998 Halei Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, P. R. China
| | - David H. Hackos
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080-4990, United States
| | - Lunbin Deng
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080-4990, United States
| | - Girish Bankar
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Kuldip Khakh
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Elaine Chang
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Rainbow Kwan
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Sophia Lin
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Karen Nelkenbrecher
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Benjamin D. Sellers
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080-4990, United States
| | - Antonio G. DiPasquale
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080-4990, United States
| | - Jae Chang
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080-4990, United States
| | - Jodie Pang
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080-4990, United States
| | - Luis Sojo
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Andrea Lindgren
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Matthew Waldbrook
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Zhiwei Xie
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Clint Young
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - James P. Johnson
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - C. Lee Robinette
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Charles J. Cohen
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| | - Brian S. Safina
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080-4990, United States
| | - Daniel P. Sutherlin
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080-4990, United States
| | - Daniel F. Ortwine
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080-4990, United States
| | - Christoph M. Dehnhardt
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, British Columbia V5G 4W8, Canada
| |
Collapse
|
14
|
McKerrall SJ, Sutherlin DP. Nav1.7 inhibitors for the treatment of chronic pain. Bioorg Med Chem Lett 2018; 28:3141-3149. [DOI: 10.1016/j.bmcl.2018.08.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/01/2018] [Accepted: 08/04/2018] [Indexed: 12/27/2022]
|
15
|
Jurcakova D, Ru F, Kollarik M, Sun H, Krajewski J, Undem BJ. Voltage-Gated Sodium Channels Regulating Action Potential Generation in Itch-, Nociceptive-, and Low-Threshold Mechanosensitive Cutaneous C-Fibers. Mol Pharmacol 2018; 94:1047-1056. [PMID: 29941667 DOI: 10.1124/mol.118.112839] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/20/2018] [Indexed: 02/14/2025] Open
Abstract
We evaluated the effect of voltage-gated sodium channel 1 (NaV1) blockers in three nonoverlapping C-fiber subtypes in the mouse skin: chloroquine (CQ)-sensitive C-fibers with high mechanical thresholds-itch C-fibers; second, CQ-insensitive, capsaicin-sensitive C-fibers with high mechanical thresholds-nociceptors; and CQ and capsaicin-insensitive C-fibers with a very low mechanical threshold-C-LTMs. NaV1-blocking drugs were applied to the nerve terminal receptive fields using an innervated isolated dorsal mouse skin-nerve preparation where the drugs are delivered into the skin intra-arterially. We combined these studies with an analysis of the mRNA expression of the α-subunits of NaV1 in individual dorsal root ganglia neurons labeled from the same region of the skin. Our results show that virtually all nociceptors and itch C-fibers expressed the tetrodotoxin (TTX)-resistant channels NaV1.8 and NaV1.9. However, TTX applied selectively into the skin abolished the action potential firing in response to mechanical stimulation in 75% of the itch C-fibers, 100% of the nociceptors, and 100% of C-LTMs. NaV1.7 was the most commonly expressed TTX-sensitive NaV1 in all three C-fiber subtypes innervating the dorsal skin. Selectively blocking NaV1.7 abolished responses in about 40% of itch C-fibers, 65% of nociceptors, but only 20% of C-LTMs. Blocking NaV1.8 alone had no affect on the firing sensitivity of the C-fibers. However, in itch and nociceptive C-fibers where the activation was not inhibited with a NaV1.7 blocker, adding the NaV1.8 blocker silenced action potential discharge.
Collapse
Affiliation(s)
- Danica Jurcakova
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland (D.J., F.R., M.K., H.S., B.J.U,); Biomedical Center and Department of Pathophysiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia (D.J., M.K.); and Lilly Research Laboratories, Indianapolis, Indiana (J.K.)
| | - Fei Ru
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland (D.J., F.R., M.K., H.S., B.J.U,); Biomedical Center and Department of Pathophysiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia (D.J., M.K.); and Lilly Research Laboratories, Indianapolis, Indiana (J.K.)
| | - Marian Kollarik
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland (D.J., F.R., M.K., H.S., B.J.U,); Biomedical Center and Department of Pathophysiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia (D.J., M.K.); and Lilly Research Laboratories, Indianapolis, Indiana (J.K.)
| | - Hui Sun
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland (D.J., F.R., M.K., H.S., B.J.U,); Biomedical Center and Department of Pathophysiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia (D.J., M.K.); and Lilly Research Laboratories, Indianapolis, Indiana (J.K.)
| | - Jeffrey Krajewski
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland (D.J., F.R., M.K., H.S., B.J.U,); Biomedical Center and Department of Pathophysiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia (D.J., M.K.); and Lilly Research Laboratories, Indianapolis, Indiana (J.K.)
| | - Bradley J Undem
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland (D.J., F.R., M.K., H.S., B.J.U,); Biomedical Center and Department of Pathophysiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia (D.J., M.K.); and Lilly Research Laboratories, Indianapolis, Indiana (J.K.)
| |
Collapse
|
16
|
1,2,4-Triazolsulfone: A novel isosteric replacement of acylsulfonamides in the context of Na V 1.7 inhibition. Bioorg Med Chem Lett 2018; 28:2103-2108. [DOI: 10.1016/j.bmcl.2018.04.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/06/2018] [Accepted: 04/13/2018] [Indexed: 12/26/2022]
|
17
|
Focken T, Chowdhury S, Zenova A, Grimwood ME, Chabot C, Sheng T, Hemeon I, Decker SM, Wilson M, Bichler P, Jia Q, Sun S, Young C, Lin S, Goodchild SJ, Shuart NG, Chang E, Xie Z, Li B, Khakh K, Bankar G, Waldbrook M, Kwan R, Nelkenbrecher K, Karimi Tari P, Chahal N, Sojo L, Robinette CL, White AD, Chen CA, Zhang Y, Pang J, Chang JH, Hackos DH, Johnson JP, Cohen CJ, Ortwine DF, Sutherlin DP, Dehnhardt CM, Safina BS. Design of Conformationally Constrained Acyl Sulfonamide Isosteres: Identification of N-([1,2,4]Triazolo[4,3-a]pyridin-3-yl)methane-sulfonamides as Potent and Selective hNaV1.7 Inhibitors for the Treatment of Pain. J Med Chem 2018; 61:4810-4831. [DOI: 10.1021/acs.jmedchem.7b01826] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Thilo Focken
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Sultan Chowdhury
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Alla Zenova
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Michael E. Grimwood
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Christine Chabot
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Tao Sheng
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Ivan Hemeon
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Shannon M. Decker
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Michael Wilson
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Paul Bichler
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Qi Jia
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Shaoyi Sun
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Clint Young
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Sophia Lin
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Samuel J. Goodchild
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Noah G. Shuart
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Elaine Chang
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Zhiwei Xie
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Bowen Li
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Kuldip Khakh
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Girish Bankar
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Matthew Waldbrook
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Rainbow Kwan
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Karen Nelkenbrecher
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Parisa Karimi Tari
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Navjot Chahal
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Luis Sojo
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - C. Lee Robinette
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Andrew D. White
- Chempartner, Building No. 5, 998 Halei Rd., Zhangjiang Hi-Tech
Park, Pudong New Area, Shanghai 201203, China
| | - Chien-An Chen
- Chempartner, Building No. 5, 998 Halei Rd., Zhangjiang Hi-Tech
Park, Pudong New Area, Shanghai 201203, China
| | - Yi Zhang
- Chempartner, Building No. 5, 998 Halei Rd., Zhangjiang Hi-Tech
Park, Pudong New Area, Shanghai 201203, China
| | - Jodie Pang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jae H. Chang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - David H. Hackos
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - J. P. Johnson
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Charles J. Cohen
- Xenon Pharmaceuticals, Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Daniel F. Ortwine
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Daniel P. Sutherlin
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Brian S. Safina
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
18
|
Méndez-Rojas C, Quiroz G, Faúndez M, Gallardo-Garrido C, Pessoa-Mahana CD, Chung H, Gallardo-Toledo E, Saitz-Barría C, Araya-Maturana R, Kogan MJ, Zúñiga-López MC, Iturriaga-Vásquez P, Valenzuela-Gutiérrez C, Pessoa-Mahana H. Synthesis and biological evaluation of potential acetylcholinesterase inhibitors based on a benzoxazine core. Arch Pharm (Weinheim) 2018; 351:e1800024. [DOI: 10.1002/ardp.201800024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Claudio Méndez-Rojas
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas; Universidad de Chile; Santiago Chile
| | - Gabriel Quiroz
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas; Universidad de Chile; Santiago Chile
| | - Mario Faúndez
- Departamento de Farmacia, Facultad de Química; Pontificia Universidad Católica de Chile; Santiago Chile
| | - Carlos Gallardo-Garrido
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas; Universidad de Chile; Santiago Chile
| | - C. David Pessoa-Mahana
- Departamento de Farmacia, Facultad de Química; Pontificia Universidad Católica de Chile; Santiago Chile
| | - Hery Chung
- Departamento de Farmacia, Facultad de Química; Pontificia Universidad Católica de Chile; Santiago Chile
| | - Eduardo Gallardo-Toledo
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas; Universidad de Chile; Santiago Chile
| | - Claudio Saitz-Barría
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas; Universidad de Chile; Santiago Chile
| | | | - Marcelo J. Kogan
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas; Universidad de Chile; Santiago Chile
| | - María C. Zúñiga-López
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas; Universidad de Chile; Santiago Chile
| | - Patricio Iturriaga-Vásquez
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería Ciencias; Universidad de la Frontera; Temuco Chile
| | - Carla Valenzuela-Gutiérrez
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas; Universidad de Chile; Santiago Chile
| | - Hernán Pessoa-Mahana
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas; Universidad de Chile; Santiago Chile
| |
Collapse
|