1
|
Fotie J, Matherne CM, Mather JB, Wroblewski JE, Johnson K, Boudreaux LG, Perez AA. The Fundamental Role of Oxime and Oxime Ether Moieties in Improving the Physicochemical and Anticancer Properties of Structurally Diverse Scaffolds. Int J Mol Sci 2023; 24:16854. [PMID: 38069175 PMCID: PMC10705934 DOI: 10.3390/ijms242316854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The present review explores the critical role of oxime and oxime ether moieties in enhancing the physicochemical and anticancer properties of structurally diverse molecular frameworks. Specific examples are carefully selected to illustrate the distinct contributions of these functional groups to general strategies for molecular design, modulation of biological activities, computational modeling, and structure-activity relationship studies. An extensive literature search was conducted across three databases, including PubMed, Google Scholar, and Scifinder, enabling us to create one of the most comprehensive overviews of how oximes and oxime ethers impact antitumor activities within a wide range of structural frameworks. This search focused on various combinations of keywords or their synonyms, related to the anticancer activity of oximes and oxime ethers, structure-activity relationships, mechanism of action, as well as molecular dynamics and docking studies. Each article was evaluated based on its scientific merit and the depth of the study, resulting in 268 cited references and more than 336 illustrative chemical structures carefully selected to support this analysis. As many previous reviews focus on one subclass of this extensive family of compounds, this report represents one of the rare and fully comprehensive assessments of the anticancer potential of this group of molecules across diverse molecular scaffolds.
Collapse
Affiliation(s)
- Jean Fotie
- Department of Chemistry and Physics, Southeastern Louisiana University, SLU 10878, Hammond, LA 70402-0878, USA; (C.M.M.); (J.B.M.); (J.E.W.); (K.J.); (L.G.B.); (A.A.P.)
| | | | | | | | | | | | | |
Collapse
|
2
|
Guo X, Ren W, Lv Z, Li G, Li H, Sun M, Li X, Chen G, Zhang Z, Zhang W, Bu M. Synthesis and Anticancer Activity of Ergosterol Peroxide Hybrids With Paclitaxel Side Chain Inducing Apoptosis in Human Hepatoma Carcinoma Cells. Nat Prod Commun 2023. [DOI: 10.1177/1934578x231166778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
The antitumor activities of natural paclitaxel (PTX), semisynthetic docetaxel, and cabazitaxel are highly dependent on their C-13 side chains. Therefore, using natural ergosterol peroxide (EP, 1) as the lead compound, two EP-PTX hybrids (EP-A2 and EP-B2) were prepared and their antitumor activities were evaluated against 4 kinds of human MCF-7, HepG2, HCT-116, and A549 cell lines in vitro. The results showed that both EP-A2 and EP-B2 inhibited the growth of all four kinds of tested tumor cell lines. For paclitaxel-resistant MCF-7 cells, both EP-A2 and EP-B2 showed significant inhibitory activity with relatively low IC50 values (9.39 μM and 8.60 μM, respectively). In addition, EP-B2 inhibited the growth of the HepG2 cells (IC50 = 7.82 μM) more successfully than EP. Preliminary studies of the mechanism suggest that EP-B2 could arrest the G1 phase transition in HepG2 cells. In addition, EP-B2 showed an obvious apoptosis-inducing effect in HepG2 cells, as detected by the Annexin V/PI binding assay and the Western blot assay. Hybrid EP-B2 has the potential to become a novel antitumor drug through further study of the mechanism of action and its structural modifications.
Collapse
Affiliation(s)
- Xiaoshan Guo
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Wenkang Ren
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Zhen Lv
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Gang Li
- Research Institute of Medicine & Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Hongling Li
- College of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Mingrui Sun
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Xiaoming Li
- Research Institute of Medicine & Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Gang Chen
- Research Institute of Medicine & Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Zhiguo Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Wenting Zhang
- Department of Pharmacy, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Ming Bu
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
3
|
Bu M, Zhang Z, Li G, Xie C, Du X, Ma G, Li H. Synthesis and Cytotoxic Activity of Novel Ergosterol Peroxide Derivatives with Acrylate or Propionate Side Chain. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221143634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A series of novel ergosterol peroxide derivatives with acrylate or propionate side chain were synthesized. All compounds 3a-n were evaluated for their cytotoxicity against four kinds of human carcinoma cell lines (HepG2, MCF-7, HCT-116, and A549). Most of the derivatives displayed stronger cytotoxicity than ergosterol peroxide parent. Among them, compound 3h with the highest potency against HepG2 cell line (IC50 = 2.70 μM), which was 7.47-fold more efficacious than ergosterol peroxide. The results suggested that the introduction of acrylate or propionate side chain at C-3 position of ergosterol peroxide is beneficial to enhance its cytotoxic activity. Compound 3h has potential to become a novel anti-tumor agent through further structural modification.
Collapse
Affiliation(s)
- Ming Bu
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Zhiguo Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Gang Li
- Research Institute of Medicine Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Chunhua Xie
- Department of Pharmacy, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Xiaohui Du
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Guofang Ma
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Hongling Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
4
|
Ilaghi-Hoseini S, Garkani-Nejad Z. Research and study of 2-((4,6 dimethyl pyrimidine-2-yle) thio)-N-phenyl acetamide derivatives as inhibitors of sirtuin 2 protein for the treatment of cancer using QSAR, molecular docking and molecular dynamic simulation. J Mol Model 2022; 28:343. [PMID: 36198913 DOI: 10.1007/s00894-022-05288-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 08/19/2022] [Indexed: 10/10/2022]
Abstract
Phenyl acetamide derivatives have a wide range of biological activities, so their research and development can be useful and effective for the design production of new drugs. In this project, quantitative structure-activity relationship (QSAR) was performed. For modeling two methods of multiple linear regression (MLR) and nonlinear regression of support vector machine (SVR) were used. In the MLR stage, the best model with the values of R2train = 0.913 and R2test = 0.881 was selected by stepwise method. In this model, 4 descriptors of BELV2, GATS8p, GATS6e and RDF080m were included, which were used as input for the nonlinear support vector regression method. In the SVR model, the best results were obtained using the radial Gaussian kernel function (RBF) with R2train = 0.978 and R2test = 0.990. In the next step, using molecular docking and molecular dynamic simulation methods, the interaction between phenyl acetamide derivatives and the sirtuin 2 protein was investigated. Examining the results of molecular docking, it was observed that these derivatives formed complexes by forming hydrogen and hydrophobic bonds with the sirtuin 2 protein. Also, the results of molecular dynamic simulation show that phenyl acetamide compounds form stable complex with the sirtuin 2 protein, and it was found that the compounds with more activity have formed a number of hydrogen bonds with the protein.
Collapse
Affiliation(s)
- Sahar Ilaghi-Hoseini
- Chemistry Department, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran.,Young Researchers Society, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Zahra Garkani-Nejad
- Chemistry Department, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran.
| |
Collapse
|
5
|
Lv Z, Jialin Zang, Xing Y, Yang J, Bu M. Synthesis and Biological Evaluation of (Thiophene-2-yl)-4H-Chromen-7-yl-Sulfonate Derivatives. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021050368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Özil M, Tuzcuoğlu Ö, Emirik M, Baltaş N. Developing a scaffold for urease inhibition based on benzothiazoles: Synthesis, docking analysis, and therapeutic potential. Arch Pharm (Weinheim) 2021; 354:e2100200. [PMID: 34545964 DOI: 10.1002/ardp.202100200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 12/31/2022]
Abstract
The synthesis, in silico molecular docking, and in vitro urease inhibition studies of a novel series of benzothiazole derivatives are reported. The title compounds in the two series, namely, 2-({5-[(benzothiazol-2-ylthio)methyl]-1,3,4-oxadiazol-2-yl}thio)-1-(4-substituted-phenyl)ethan-1-one and 2-(benzothiazol-2-ylthio)-1-(4-substituted-phenyl)ethan-1-one oxime, were synthesized by the reaction of benzo[d]thiazole-2-thiol with different kinds of intermediates in several steps using both conventional and microwave techniques. All compounds were found to have an excellent degree of urease-inhibitory potential ranging between 16.16 ± 0.54 and 105.32 ± 2.10 µM when compared with the standard inhibitor acetohydroxamic acid with IC50 = 320.70 ± 4.24 µM. The structure-activity relationship was established in detail. The binding interactions of the compounds with the enzyme were confirmed through molecular docking. Further, 100 -ns molecular dynamics simulations were performed to investigate the stability and structural perturbations experienced by the most potent compound over the urease active site.
Collapse
Affiliation(s)
- Musa Özil
- Department of Chemistry, Recep Tayyip Erdogan University, Rize, Turkey
| | - Özge Tuzcuoğlu
- Department of Chemistry, Recep Tayyip Erdogan University, Rize, Turkey
| | - Mustafa Emirik
- Department of Chemistry, Recep Tayyip Erdogan University, Rize, Turkey
| | - Nimet Baltaş
- Department of Chemistry, Recep Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|
7
|
Dembitsky VM, Ermolenko E, Savidov N, Gloriozova TA, Poroikov VV. Antiprotozoal and Antitumor Activity of Natural Polycyclic Endoperoxides: Origin, Structures and Biological Activity. Molecules 2021; 26:686. [PMID: 33525706 PMCID: PMC7865715 DOI: 10.3390/molecules26030686] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 02/08/2023] Open
Abstract
Polycyclic endoperoxides are rare natural metabolites found and isolated in plants, fungi, and marine invertebrates. The purpose of this review is a comparative analysis of the pharmacological potential of these natural products. According to PASS (Prediction of Activity Spectra for Substances) estimates, they are more likely to exhibit antiprotozoal and antitumor properties. Some of them are now widely used in clinical medicine. All polycyclic endoperoxides presented in this article demonstrate antiprotozoal activity and can be divided into three groups. The third group includes endoperoxides, which show weak antiprotozoal activity with a reliability of up to 70%, and this group includes only 1.1% of metabolites. The second group includes the largest number of endoperoxides, which are 65% and show average antiprotozoal activity with a confidence level of 70 to 90%. Lastly, the third group includes endoperoxides, which are 33.9% and show strong antiprotozoal activity with a confidence level of 90 to 99.6%. Interestingly, artemisinin and its analogs show strong antiprotozoal activity with 79 to 99.6% confidence against obligate intracellular parasites which belong to the genera Plasmodium, Toxoplasma, Leishmania, and Coccidia. In addition to antiprotozoal activities, polycyclic endoperoxides show antitumor activity in the proportion: 4.6% show weak activity with a reliability of up to 70%, 65.6% show an average activity with a reliability of 70 to 90%, and 29.8% show strong activity with a reliability of 90 to 98.3%. It should also be noted that some polycyclic endoperoxides, in addition to antiprotozoal and antitumor properties, show other strong activities with a confidence level of 90 to 97%. These include antifungal activity against the genera Aspergillus, Candida, and Cryptococcus, as well as anti-inflammatory activity. This review provides insights on further utilization of polycyclic endoperoxides by medicinal chemists, pharmacologists, and the pharmaceutical industry.
Collapse
Affiliation(s)
- Valery M. Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada;
- A.V. Zhirmunsky National Scientific Center of Marine Biology, 17 Palchevsky Str., 690041 Vladivostok, Russia;
| | - Ekaterina Ermolenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, 17 Palchevsky Str., 690041 Vladivostok, Russia;
| | - Nick Savidov
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada;
| | - Tatyana A. Gloriozova
- Institute of Biomedical Chemistry, 10 Pogodinskaya Str., 119121 Moscow, Russia; (T.A.G.); (V.V.P.)
| | - Vladimir V. Poroikov
- Institute of Biomedical Chemistry, 10 Pogodinskaya Str., 119121 Moscow, Russia; (T.A.G.); (V.V.P.)
| |
Collapse
|
8
|
Zhou X, Xiao R, Chen M, Bai L. Synthesis of Uscharin Oxime Analogues and Their Biological Evaluation as HIF‐1 Inhibitors. ChemistrySelect 2020. [DOI: 10.1002/slct.202003586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Xiaobo Zhou
- State Key Laboratory of Quality Research in Chinese Medicine and Macau Institute for Applied Research in Medicine and Health Macau University of Science and Technology Taipa Macau
| | - Riping Xiao
- State Key Laboratory of Quality Research in Chinese Medicine and Macau Institute for Applied Research in Medicine and Health Macau University of Science and Technology Taipa Macau
| | - Ming Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Macau Institute for Applied Research in Medicine and Health Macau University of Science and Technology Taipa Macau
| | - Li‐Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine and Macau Institute for Applied Research in Medicine and Health Macau University of Science and Technology Taipa Macau
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease (Macau University of Science and Technology)
| |
Collapse
|
9
|
Singh K, bala I, Kataria R. Crystal structure, Hirshfeld surface and DFT based NBO, NLO, ECT and MEP of benzothiazole based hydrazone. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110873] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Ma L, Wang H, Wang J, Liu L, Zhang S, Bu M. Novel Steroidal 5α,8α-Endoperoxide Derivatives with Semicarbazone/Thiosemicarbazone Side-chain as Apoptotic Inducers through an Intrinsic Apoptosis Pathway: Design, Synthesis and Biological Studies. Molecules 2020; 25:molecules25051209. [PMID: 32156024 PMCID: PMC7179397 DOI: 10.3390/molecules25051209] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
A series of novel steroidal 5α,8α-endoperoxide derivatives bearing semicarbazone (7a–g) or thiosemicarbazone (7h–k) side chain were designed, synthesized and evaluated for their cytotoxicities in four human cancer cell lines (HepG2, HCT-116, MCF-7, and A549) using the MTT assay in vitro. The results showed that compound 7j exhibited significant cytotoxic activity against HepG2 cells (IC50 = 3.52 μM), being more potent than ergosterol peroxide. Further cellular mechanism studies in HepG2 cells indicated that compound 7j triggered the mitochondrial-mediated apoptosis by decreasing mitochondrial membrane potential (MMP), which was associated with up-regulation of Bax, down-regulation of Bcl-2, activation levels of the caspase cascade, and formation of reactive oxygen species (ROS). The above findings indicated that compound 7j may be used as a promising skeleton for antitumor agents with improved efficacy.
Collapse
Affiliation(s)
- Liwei Ma
- Research Institute of Medicine & Pharmacy, Qiqihar Medical University, Qiqihar 161006, China;
| | - Haijun Wang
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (H.W.); (J.W.); (L.L.)
| | - Jing Wang
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (H.W.); (J.W.); (L.L.)
| | - Lei Liu
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (H.W.); (J.W.); (L.L.)
| | - Song Zhang
- Basic Medical Science College, Qiqihar Medical University, Qiqihar 161006, China;
| | - Ming Bu
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (H.W.); (J.W.); (L.L.)
- Correspondence: ; Tel.: +86-0452-266-3881
| |
Collapse
|
11
|
Wang HJ, Bu M, Wang J, Liu L, Zhang S. Synthesis and Biological Evaluation of Novel Steroidal 5α,8α-Endoperoxide Derivatives with Aromatic Hydrazone Side Chain as Potential Anticancer Agents. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162019060396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Jeong YU, Park YJ. Ergosterol Peroxide from the Medicinal Mushroom Ganoderma lucidum Inhibits Differentiation and Lipid Accumulation of 3T3-L1 Adipocytes. Int J Mol Sci 2020; 21:ijms21020460. [PMID: 31936890 PMCID: PMC7014426 DOI: 10.3390/ijms21020460] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/05/2020] [Accepted: 01/08/2020] [Indexed: 12/15/2022] Open
Abstract
Ergosterol peroxide is a natural compound of the steroid family found in many fungi, and it possesses antioxidant, anti-inflammatory, anticancer and antiviral activities. The anti-obesity activity of several edible and medicinal mushrooms has been reported, but the effect of mushroom-derived ergosterol peroxide on obesity has not been studied. Therefore, we analyzed the effect of ergosterol peroxide on the inhibition of triglyceride synthesis at protein and mRNA levels and differentiation of 3T3-L1 adipocytes. Ergosterol peroxide inhibited lipid droplet synthesis of differentiated 3T3-L1 cells, expression of peroxisome proliferator-activated receptor gamma (PPARγ) and CCAT/enhancer-binding protein alpha (C/EBPα), the major transcription factors of differentiation, and also the expression of sterol regulatory element-binding protein-1c (SREBP-1c), which promotes the activity of PPARγ, resulting in inhibition of differentiation. It further inhibited the expression of fatty acid synthase (FAS), fatty acid translocase (FAT), and acetyl-coenzyme A carboxylase (ACC), which are lipogenic factors. In addition, it inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs) involved in cell proliferation and activation of early differentiation transcription factors in the mitotic clonal expansion (MCE) stage. As a result, ergosterol peroxide significantly inhibited the synthesis of triglycerides and differentiation of 3T3-L1 cells, and is, therefore, a possibile prophylactic and therapeutic agent for obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Yong-Un Jeong
- Department of Medicinal Bioscience, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Korea;
| | - Young-Jin Park
- Department of Medicinal Bioscience, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Korea;
- Research Institute for Biomedical & Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Korea
- Correspondence: ; Tel.: +82-43-840-3601
| |
Collapse
|
13
|
Meza-Menchaca T, Ramos-Ligonio A, López-Monteon A, Vidal Limón A, Kaluzhskiy LA, V Shkel T, V Strushkevich N, Jiménez-García LF, Agredano Moreno LT, Gallegos-García V, Suárez-Medellín J, Trigos Á. Insights into Ergosterol Peroxide's Trypanocidal Activity. Biomolecules 2019; 9:E484. [PMID: 31547423 PMCID: PMC6770379 DOI: 10.3390/biom9090484] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022] Open
Abstract
Trypanosoma cruzi, which causes Chagas disease, is a significant health threat in many countries and affects millions of people. Given the magnitude of this disease, a broader understanding of trypanocidal mechanisms is needed to prevent and treat infection. Natural endoperoxides, such as ergosterol peroxide, have been shown to be toxic to parasites without causing harm to human cells or tissues. Although prior studies have demonstrated the trypanocidal activity of ergosterol peroxide, the cellular and molecular mechanisms remain unknown. The results of this study indicate that a free-radical reaction occurs in T. cruzi following ergosterol peroxide exposure, leading to cell death. Using a combination of biochemical, microscopic and in silico experimental approaches, we have identified, for the first time, the cellular and molecular cytotoxic mechanism of an ergosterol peroxide obtained from Pleurotus ostreatus (Jacq) P. Kumm. f. sp. Florida.
Collapse
Affiliation(s)
- Thuluz Meza-Menchaca
- Laboratorio de Genómica Humana, Facultad de Medicina, Universidad Veracruzana, Médicos y Odontólogos S/N, Col. Unidad del Bosque, Xalapa C.P. 91010, Veracruz, Mexico.
| | - Angel Ramos-Ligonio
- LADISER, Inmunología y Biología Molecular, Facultad de Ciencias Químicas, Universidad Veracruzana, Orizaba 94340, Veracruz, Mexico.
| | - Aracely López-Monteon
- LADISER, Inmunología y Biología Molecular, Facultad de Ciencias Químicas, Universidad Veracruzana, Orizaba 94340, Veracruz, Mexico.
| | - Abraham Vidal Limón
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Carr. Tijuana-Ensenada, Col. Pedregal Playitas, Ensenada C.P. 22860, Baja California, Mexico.
| | - Leonid A Kaluzhskiy
- Institute of Biomedical Chemistry, 10 building 8, Pogodinskaya Street, 119121 Moscow, Russia.
| | - Tatjana V Shkel
- Institute of Bioorganic Chemistry NASB, Kuprevich Street, 220141 Minsk, Belarus.
| | | | - Luis Felipe Jiménez-García
- Laboratorio de Microscopía Electrónica, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior, Ciudad Universitaria, México D.F. 04510, Mexico.
| | - Lourdes Teresa Agredano Moreno
- Laboratorio de Nano-Biología Celular, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior, Ciudad Universitaria, México D.F. 04510, Mexico.
| | - Verónica Gallegos-García
- Facultad de Enfermería y Nutrición, UASLP, Av. Niño Artillero 130, Zona Universitaria Poniente, San Luis Potosí C.P. 78240, Mexico.
| | - Jorge Suárez-Medellín
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91190, Mexico.
| | - Ángel Trigos
- Centro de Investigación de Micología Aplicada, Universidad Veracruzana, Xalapa 91010, Veracruz, Mexico.
| |
Collapse
|
14
|
Synthesis of Ergosterol Peroxide Conjugates as Mitochondria Targeting Probes for Enhanced Anticancer Activity. Molecules 2019; 24:molecules24183307. [PMID: 31514398 PMCID: PMC6766909 DOI: 10.3390/molecules24183307] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 01/19/2023] Open
Abstract
Inspired by the significant bioactivity of ergosterol peroxide, we designed and synthesized four fluorescent coumarin and ergosterol peroxide conjugates 8a–d through the combination of ergosterol peroxide with 7-N,N-diethylamino coumarins fluorophore. The cytotoxicity of synthesized conjugates against three human cancer cells (HepG2, SK-Hep1, and MCF-7) was evaluated. The results of fluorescent imaging showed that the synthesized conjugates 8a–d localized and enriched mainly in mitochondria, leading to significantly enhanced cytotoxicity over ergosterol peroxide. Furthermore, the results of biological functions of 8d showed that it could suppress cell colony formation, invasion, and migration; induce G2/M phase arrest of HepG2 cells, and increase the intracellular ROS level.
Collapse
|
15
|
Ling T, Lang WH, Martinez-Montemayor MM, Rivas F. Development of ergosterol peroxide probes for cellular localisation studies. Org Biomol Chem 2019; 17:5223-5229. [PMID: 31025693 PMCID: PMC6541511 DOI: 10.1039/c9ob00145j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ergosterol peroxide selectively exhibits biological activity against a wide range of diseases; however, its mode of action remains unknown. Here, we present an efficient synthesis of ergosterol peroxide chemical probes for in vitro anticancer evaluation, live cell studies and proteomic profiling. Ergosterol peroxide analogues show promising anti-proliferation activity against triple negative breast cancer cellular models, revealing information on the structure-activity relationship of this natural product in order to develop superior analogues. The combined cellular studies demonstrate that ergosterol peroxide is distributed across the cytosol with significant accumulation in the endoplasmic reticulum (ER). These chemical probes support our efforts towards uncovering the potential target(s) of ergosterol peroxide against triple negative breast cancer cell lines.
Collapse
Affiliation(s)
- Taotao Ling
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105-3678 USA
| | - Walter H. Lang
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105-3678 USA
| | | | - Fatima Rivas
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105-3678 USA
| |
Collapse
|
16
|
Fehl C, Vogt CD, Yadav R, Li K, Scott EE, Aubé J. Structure-Based Design of Inhibitors with Improved Selectivity for Steroidogenic Cytochrome P450 17A1 over Cytochrome P450 21A2. J Med Chem 2018; 61:4946-4960. [PMID: 29792703 PMCID: PMC6367708 DOI: 10.1021/acs.jmedchem.8b00419] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inhibition of androgen biosynthesis is clinically effective for treating androgen-responsive prostate cancer. Abiraterone is a clinical first-in-class inhibitor of cytochrome P450 17A1 (CYP17A1) required for androgen biosynthesis. However, abiraterone also causes hypertension, hypokalemia, and edema, likely due in part to off-target inhibition of another steroidogenic cytochrome P450, CYP21A2. Abiraterone analogs were designed based on structural evidence that B-ring substituents may favorably interact with polar residues in binding CYP17A1 and sterically clash with residues in the CYP21A2 active site. The best analogs increased selectivity of CYP17A1 inhibition up to 84-fold compared with 6.6-fold for abiraterone. Cocrystallization with CYP17A1 validated the intended new contacts with CYP17A1 active site residues. Docking these analogs into CYP21A2 identified steric clashes that likely underlie decreased binding and CYP21A2 inhibition. Overall, these analogs may offer a clinical advantage in the form of reduced side effects.
Collapse
Affiliation(s)
- Charlie Fehl
- Department of Medicinal Chemistry, University of
Kansas, Lawrence, Kansas, 66047, United States
| | - Caleb D. Vogt
- Division of Chemical Biology and Medicinal
Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel
Hill, Chapel Hill, North Carolina 27599, United States
| | - Rahul Yadav
- Department of Medicinal Chemistry, University of
Michigan, Ann Arbor, Michigan 48109, United States
| | - Kelin Li
- Division of Chemical Biology and Medicinal
Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel
Hill, Chapel Hill, North Carolina 27599, United States
| | - Emily E. Scott
- Department of Medicinal Chemistry, University of
Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, University of Michigan,
Ann Arbor, Michigan 48109, United States
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal
Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel
Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|