1
|
New Sesquiterpene Lactone via Fungal Transformation of Rhizopus oryzae KX685359: Antimicrobial In-Vitro and In-Silico Study. Catal Letters 2022. [DOI: 10.1007/s10562-022-04202-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2
|
Wu J, Yang X, Duan Y, Wang P, Qi J, Gao JM, Liu C. Biosynthesis of Sesquiterpenes in Basidiomycetes: A Review. J Fungi (Basel) 2022; 8:913. [PMID: 36135638 PMCID: PMC9501842 DOI: 10.3390/jof8090913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/10/2022] [Accepted: 08/26/2022] [Indexed: 11/19/2022] Open
Abstract
Sesquiterpenes are common small-molecule natural products with a wide range of promising applications and are biosynthesized by sesquiterpene synthase (STS). Basidiomycetes are valuable and important biological resources. To date, hundreds of related sesquiterpenoids have been discovered in basidiomycetes, and the biosynthetic pathways of some of these compounds have been elucidated. This review summarizes 122 STSs and 2 fusion enzymes STSs identified from 26 species of basidiomycetes over the past 20 years. The biological functions of enzymes and compound structures are described, and related research is discussed.
Collapse
Affiliation(s)
- Jiajun Wu
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xiaoran Yang
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yingce Duan
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Pengchao Wang
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Jianzhao Qi
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Chengwei Liu
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
3
|
Abu-Darwish D, Shibli R, Al-Abdallat AM. In Vitro Cultures and Volatile Organic Compound Production in Chiliadenus montanus (Vhal.) Brullo. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11101326. [PMID: 35631753 PMCID: PMC9148159 DOI: 10.3390/plants11101326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/01/2022] [Accepted: 05/10/2022] [Indexed: 05/08/2023]
Abstract
Callus and microshoot cultures were established for Chiliadenus montanus (Vhal.) Brullo. (Asteraceae), a medicinal plant known for producing volatile organic compounds (VOCs). Callus induction was achieved successfully by culturing leaf explants on full-strength Murashige and Skoog medium (MS) supplemented with 2.2 µM 2, 4-dichlorophenoxy acetic acid (2,4-D) and 6.9 µM kinetin (Kin). Successful direct shoot regeneration was achieved using nodal explants cultured onto half-strength MS media supplemented with 1.4 μM Gibberellic Acid (GA3) and 4.4 μM 6-Benzylaminopurine (BAP). Indirect microshoots were successfully regenerated using callus cultured on MS media supplemented with 8.8 μM BAP, 2.2 μM Zeatin, and 1.4 μM GA3 followed by culturing on MS media supplemented with 8.8 μM BAP and 0.5 μM naphthalene acetic acid (NAA). Using wild plant aerial parts, callus and microshoots samples, VOCs were extracted successfully using Headspace Solid-Phase Micro-Extraction (HS-SPME) and analyzed by gas chromatography-mass spectrometry (GC-MS). In wild plant extracts, sesquiterpene hydrocarbons were found to be predominant with the following principal components: Alloaromadendrene (11.92%), trans-Cadina-1(6),4-diene (7.54%), and α-caryophyllene (6.77%). The analysis of in vitro microshoots revealed high levels of oxygenated monoterpenes with cis-Myrtanol (16.62%), and β-Cyclocitral (14.3%) as the main components. Callus extract was dominated by monoterpene hydrocarbons and the main compounds identified were (Z)-β-Ocimene (22.27%), p-Cymene (15.13%), and α-pinene (13.78%). In conclusion, an efficient in vitro production system of VOCs in C. montanus was established that can be used in the future for boosting their production without endangering wild plants.
Collapse
Affiliation(s)
- Doaa Abu-Darwish
- Department of Horticulture and Crop Science, School of Agriculture, The University of Jordan, Amman 11942, Jordan; (D.A.-D.); (R.S.)
| | - Rida Shibli
- Department of Horticulture and Crop Science, School of Agriculture, The University of Jordan, Amman 11942, Jordan; (D.A.-D.); (R.S.)
- Department of Agricultural Biotechnology and Genetic Engineering, Faculty of Agriculture Technology, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Ayed M. Al-Abdallat
- Department of Horticulture and Crop Science, School of Agriculture, The University of Jordan, Amman 11942, Jordan; (D.A.-D.); (R.S.)
- Correspondence: ; Tel.: +962-6-535-5000
| |
Collapse
|
4
|
Elhady SS, Eltamany EE, Shaaban AE, Bagalagel AA, Muhammad YA, El-Sayed NM, Ayyad SN, Ahmed AAM, Elgawish MS, Ahmed SA. Jaceidin Flavonoid Isolated from Chiliadenus montanus Attenuates Tumor Progression in Mice via VEGF Inhibition: In Vivo and In Silico Studies. PLANTS 2020; 9:plants9081031. [PMID: 32823927 PMCID: PMC7464537 DOI: 10.3390/plants9081031] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023]
Abstract
Phytochemical study of Chiliadenus montanus aerial parts afforded six compounds; Intermedeol (1), 5α-hydroperoxy-β-eudesmol (2), 5,7-dihydroxy-3,3’,4’-trimethoxyflavone (3), 5,7,4’-trihydroxy-3,6,3’-trimethoxyflavone (jaceidin) (4), eudesm-11,13-ene-1β,4β,7α-triol (5) and 1β,4β,7β,11-tetrahydroxyeudesmane (6). These compounds were identified based on their NMR spectral data. The isolated compounds were tested for their cytotoxicity against liver cancer cell line (HepG2) and breast cancer cell line (MCF-7). Jaceidin flavonoid (4) exhibited the highest cytotoxic effect in vitro. Therefore, both of jaceidin and C. montanus extract were evaluated for their in vivo anti-tumor activity against Ehrlich’s ascites carcinoma (EAC). Compared to control group, jaceidin and C. montanus extract decreased the tumor weight, improved the histological picture of tumor cells, lowered the levels of VEGF and ameliorate the oxidative stress. Molecular docking and in silico studies suggested that jaceidin was a selective inhibitor of VEGF-mediated angiogenesis with excellent membrane permeability and oral bioavailability.
Collapse
Affiliation(s)
- Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Enas E. Eltamany
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, 41522 Ismailia, Egypt; (E.E.E.); (A.E.S.)
| | - Amera E. Shaaban
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, 41522 Ismailia, Egypt; (E.E.E.); (A.E.S.)
- Department of Pharmacognosy, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt
| | - Alaa A. Bagalagel
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Yosra A. Muhammad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Norhan M. El-Sayed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, 41522 Ismailia, Egypt;
| | - Seif N. Ayyad
- Department of Organic Chemistry, Faculty of Science, Damietta University, New Damietta 34511, Egypt;
| | - Amal A. M. Ahmed
- Department of Cytology & Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Mohamed S. Elgawish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Safwat A. Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, 41522 Ismailia, Egypt; (E.E.E.); (A.E.S.)
- Correspondence: ; Tel.: +20-010-92638387; Fax: +20-064-3230741
| |
Collapse
|
5
|
|
6
|
Ebada SS, Al-Jawabri NA, Youssef FS, El-Kashef DH, Knedel TO, Albohy A, Korinek M, Hwang TL, Chen BH, Lin GH, Lin CY, Aldalaien SM, Disi AM, Janiak C, Proksch P. Anti-inflammatory, antiallergic and COVID-19 protease inhibitory activities of phytochemicals from the Jordanian hawksbeard: identification, structure–activity relationships, molecular modeling and impact on its folk medicinal uses. RSC Adv 2020; 10:38128-38141. [PMID: 35515148 PMCID: PMC9057237 DOI: 10.1039/d0ra04876c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/05/2020] [Indexed: 01/14/2023] Open
Abstract
On Wednesday 11th March, 2020, the world health organization (WHO) announced novel coronavirus (COVID-19, also called SARS-CoV-2) as a pandemic.
Collapse
|
7
|
Hegazy MEF, Hamed AR, Ibrahim MAA, Talat Z, Reda EH, Abdel-Azim NS, Hammouda FM, Nakamura S, Matsuda H, Haggag EG, Paré PW, Efferth T. Euphosantianane A⁻D: Antiproliferative Premyrsinane Diterpenoids from the Endemic Egyptian Plant Euphorbia Sanctae-Catharinae. Molecules 2018; 23:E2221. [PMID: 30200407 PMCID: PMC6225227 DOI: 10.3390/molecules23092221] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 12/01/2022] Open
Abstract
Euphorbia species are rich in diterpenes. A solvent extraction of Euphorbia sanctae-catharinae, a species indigenous to the Southern Sinai of Egypt, afforded several premyrsinane diterpenoids (1⁻4) as well as previously reported metabolites (5⁻13) that included three flavonoids. Isolated compounds were chemically characterized by spectroscopic analysis. Identified compounds were bioassayed for anti-proliferative activity in vitro against colon (Caco-2) and lung (A549) tumor cell lines. Compound 9 exhibited robust anti-proliferative activity against A549 cells (IC50 = 3.3 µM). Absolute configurations for 8 versus 9 were determined by experimental and TDDFT-calculated electronic circular dichorism (ECD) spectra.
Collapse
Affiliation(s)
- Mohamed-Elamir F Hegazy
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt.
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany.
| | - Ahmed R Hamed
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt.
- Biology Unit, Central Laboratory for Pharmaceutical and Drug Industries Research Division, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt.
| | - Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt.
| | - Zienab Talat
- Phytochemistry Lab., National Organization for Drug Control and Research, Giza 12622, Egypt.
| | - Eman H Reda
- Phytochemistry Lab., National Organization for Drug Control and Research, Giza 12622, Egypt.
| | - Nahla S Abdel-Azim
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt.
| | - Faiza M Hammouda
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt.
| | - Seikou Nakamura
- Department of Pharmacognosy, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan.
| | - Hisashi Matsuda
- Department of Pharmacognosy, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan.
| | - Eman G Haggag
- Department of Pharmacognosy, Helwan University, Cairo 12622, Egypt.
| | - Paul W Paré
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
8
|
Eldehna WM, El-Naggar DH, Hamed AR, Ibrahim HS, Ghabbour HA, Abdel-Aziz HA. One-pot three-component synthesis of novel spirooxindoles with potential cytotoxic activity against triple-negative breast cancer MDA-MB-231 cells. J Enzyme Inhib Med Chem 2018; 33:309-318. [PMID: 29281924 PMCID: PMC6009943 DOI: 10.1080/14756366.2017.1417276] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive malignancy with limited treatment options due to its heterogeneity and the lack of well-defined molecular targets. In our endeavour towards the development of novel anti-TNBC agents, herein we report a one-pot three-component synthesis of novel spirooxindoles 6a–p, and evaluation of their potential anti-proliferative activity towards TNBC MDA-MB-231 cells. Spirooxindoles 6a, 6e and 6i emerged as the most potent analogues with IC50 = 6.70, 6.40 and 6.70 µM, respectively. Compounds 6a and 6e induced apoptosis in MDA-MB-231 cells, as evidenced by the up-regulation of the Bax and down-regulation of the Bcl-2, besides boosting caspase-3 levels. Additionally, 6e displayed significant increase in the percent of annexin V-FITC positive apoptotic cells from 1.34 to 44%. Furthermore, spirooxindoles 6e and 6i displayed good inhibitory activity against EGFR (IC50 = 120 and 150 nM, respectively). Collectively, these data demonstrated that 6e might be a potential lead compound for the development of effective anti-TNBC agents.
Collapse
Affiliation(s)
- Wagdy M Eldehna
- a Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Kafrelsheikh University , Kafr El-Sheikh , Egypt
| | - Dina H El-Naggar
- b Department of Applied Organic Chemistry , National Research Center , Giza , Egypt
| | - Ahmed R Hamed
- c Department of Phytochemistry , National Research Center , Giza , Egypt.,d Biology Unit, Central Laboratory of the Pharmaceutical & Drug Industries Research Division , National Research Center , Giza , Egypt
| | - Hany S Ibrahim
- e Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Egyptian Russian University , Badr City, Cairo , Egypt
| | - Hazem A Ghabbour
- f Department of Medicinal Chemistry, Faculty of Pharmacy , Mansoura University , Mansoura , Egypt.,g Department of Pharmaceutical Chemistry, College of Pharmacy , King Saud University , Riyadh , Saudi Arabia
| | - Hatem A Abdel-Aziz
- b Department of Applied Organic Chemistry , National Research Center , Giza , Egypt
| |
Collapse
|