1
|
Mesaros EF, Dugan BJ, Gao M, Sheraz M, McGovern-Gooch K, Xu F, Fan KY, Nguyen D, Kultgen SG, Lindstrom A, Stever K, Tercero B, Binder RJ, Liu F, Micolochick Steuer HM, Mani N, Harasym TO, Thi EP, Cuconati A, Dorsey BD, Cole AG, Lam AM, Sofia MJ. Discovery of C-Linked Nucleoside Analogues with Antiviral Activity against SARS-CoV-2. ACS Infect Dis 2024; 10:1780-1792. [PMID: 38651692 DOI: 10.1021/acsinfecdis.4c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The recent COVID-19 pandemic underscored the limitations of currently available direct-acting antiviral treatments against acute respiratory RNA-viral infections and stimulated major research initiatives targeting anticoronavirus agents. Two novel nsp5 protease (MPro) inhibitors have been approved, nirmatrelvir and ensitrelvir, along with two existing nucleos(t)ide analogues repurposed as nsp12 polymerase inhibitors, remdesivir and molnupiravir, but a need still exists for therapies with improved potency and systemic exposure with oral dosing, better metabolic stability, and reduced resistance and toxicity risks. Herein, we summarize our research toward identifying nsp12 inhibitors that led to nucleoside analogues 10e and 10n, which showed favorable pan-coronavirus activity in cell-infection screens, were metabolized to active triphosphate nucleotides in cell-incubation studies, and demonstrated target (nsp12) engagement in biochemical assays.
Collapse
Affiliation(s)
- Eugen F Mesaros
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Benjamin J Dugan
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Min Gao
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Muhammad Sheraz
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | | | - Fran Xu
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Kristi Yi Fan
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Duyan Nguyen
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Steven G Kultgen
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Aaron Lindstrom
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Kim Stever
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Breanna Tercero
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Randall J Binder
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Fei Liu
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | | | - Nagraj Mani
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Troy O Harasym
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Emily P Thi
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Andrea Cuconati
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Bruce D Dorsey
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Andrew G Cole
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Angela M Lam
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Michael J Sofia
- Arbutus Biopharma, Inc., 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| |
Collapse
|
2
|
Galeta J, Šlachtová V, Dračínský M, Vrabel M. Regio- and Diastereoselective 1,3-Dipolar Cycloadditions of 1,2,4-Triazin-1-ium Ylides: a Straightforward Synthetic Route to Polysubstituted Pyrrolo[2,1- f][1,2,4]triazines. ACS OMEGA 2022; 7:21233-21238. [PMID: 35755338 PMCID: PMC9219532 DOI: 10.1021/acsomega.2c02276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
A synthetic strategy to pyrrolo[2,1-f][1,2,4]triazines is reported. We show that various synthetically easily accessible 1,2,4-triazines can be efficiently alkylated under mild conditions to provide the corresponding 1-alkyl-1,2,4-triazinium salts. These bench-stable salts serve as precursors to triazinium ylides, which react in 1,3-dipolar cycloadditions with electron-poor dipolarophiles to yield polysubstituted pyrrolotriazines in a single step.
Collapse
|
3
|
Singh S, Utreja D, Kumar V. Pyrrolo[2,1-f][1,2,4]triazine: a promising fused heterocycle to target kinases in cancer therapy. Med Chem Res 2021; 31:1-25. [PMID: 34803342 PMCID: PMC8590428 DOI: 10.1007/s00044-021-02819-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/29/2021] [Indexed: 12/21/2022]
Abstract
Cancer is the second leading cause of death worldwide responsible for about 10 million deaths per year. To date several approaches have been developed to treat this deadly disease including surgery, chemotherapy, radiation therapy, hormonal therapy, targeted therapy, and synthetic lethality. The targeted therapy refers to targeting only specific proteins or enzymes that are dysregulated in cancer rather than killing all rapidly dividing cells, has gained much attention in the recent past. Kinase inhibition is one of the most successful approaches in targeted therapy. As of 30 March 2021, FDA has approved 65 small molecule protein kinase inhibitors and most of them are for cancer therapy. Interestingly, several kinase inhibitors contain one or more fused heterocycles as part of their structures. Pyrrolo[2,1-f][1,2,4]triazine is one the most interesting fused heterocycle that is an integral part of several kinase inhibitors and nucleoside drugs viz. avapritinib and remdesivir. This review articles focus on the recent advances made in the development of kinase inhibitors containing pyrrolo[2,1-f][1,2,4]triazine scaffold. ![]()
Collapse
Affiliation(s)
- Sarbjit Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Divya Utreja
- Department of Chemistry, Punjab Agricultural University, Ludhiana, 141004 Punjab India
| | - Vimal Kumar
- Department of Chemistry, Dr B. R. Ambedkar National Institute of Technology (NIT), Jalandhar, 144011 Punjab India
| |
Collapse
|
4
|
Ivanov SM, Koltun DS. Synthesis and transformations of 4-phenylethynyl- and 4-styrylpyrazolo[5,1-c][1,2,4]triazines. Chem Heterocycl Compd (N Y) 2021. [DOI: 10.1007/s10593-021-02964-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Ivanov SM. Anionic cascade recyclization of pyrazolo[5,1-c][1,2,4]triazines to pyrrolo[1,2-b][1,2,4]triazine and [1,2,4]triazino[2′,3′:1,5]pyrrolo[3,2-c]isoquinoline systems. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Ivanov SM, Mironovich LM, Minyaev ME. Synthesis of 8-alkylthio- and 8-selanyl-3- tert-butylpyrazolo[5,1- c][1,2,4]triazines. PHOSPHORUS SULFUR 2020. [DOI: 10.1080/10426507.2020.1712395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Sergey M. Ivanov
- Laboratory of Medicinal Chemistry, N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Moscow, Russia
- Skoltech Department, D.I. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | | | - Mikhail E. Minyaev
- Department of Structural Studies, N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
7
|
|
8
|
Mironovich LM, Ivanov SM, Kolotyrkina NG. Synthesis of 3-tert-Butyl-4-hydroxy-1,4-dihydropyrazolo[5,1-c][1,2,4]triazines. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428020040065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Singh P, Kaur N, Banerjee P. Regioselective Brønsted Acid-Catalyzed Annulation of Cyclopropane Aldehydes with N'-Aryl Anthranil Hydrazides: Domino Construction of Tetrahydropyrrolo[1,2- a]quinazolin-5(1 H)ones. J Org Chem 2020; 85:3393-3406. [PMID: 31958951 DOI: 10.1021/acs.joc.9b03170] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A highly regioselective synthesis of tetrahydropyrrolo[1,2-a]quinazolin-5(1H)one derivatives was achieved by reacting cyclopropane aldehydes with N'-aryl anthranil hydrazides in the presence of p-toluene sulfonic acid (PTSA). The transformation involves domino imine formation and intramolecular cyclization to form 2-arylcyclopropyl-2,3-dihydroquinolin-4(1H)-one, followed by nucleophilic ring opening of the cyclopropyl ring to form desired tetrahydropyrrolo[1,2-a]quinazolin-5(1H)one in good to excellent yield with complete regioselectivity. This protocol tolerates a great variety of functional groups and thus provides a simple and step-efficient method for pyrroloquinazolinone synthesis.
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab 140001, India
| | - Navpreet Kaur
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab 140001, India
| | - Prabal Banerjee
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab 140001, India
| |
Collapse
|
10
|
Kojić V, Popsavin M, Spaić S, Jakimov D, Kovačević I, Svirčev M, Aleksić L, Zelenović BS, Popsavin V. Structure based design, synthesis and in vitro antitumour activity of tiazofurin stereoisomers with nitrogen functions at the C-2' or C-3' positions. Eur J Med Chem 2019; 183:111712. [PMID: 31557614 DOI: 10.1016/j.ejmech.2019.111712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/05/2019] [Accepted: 09/16/2019] [Indexed: 10/26/2022]
Abstract
Three novel tiazofurin analogues having d-arabino stereochemistry and nitrogen functionalities at the C-2' position (5-7) have been designed and synthesized in multistep sequences, starting from d-glucose. The known d-xylo stereoisomer of 1 (compound 2) along with two new analogues bearing nitrogen functions at the C-3' (3 and 4) has also been synthesized from the same sugar precursor. The synthetic sequence consisted of the following three stages: (i) the multistep synthesis of suitably protected pentofuranosyl cyanides, (ii) the construction of ethyl thiazole-4-carboxylate part by cyclocondensation of thus obtained glycofuranosyl cyanides with l-cysteine ethyl ester followed by dehydrogenation, and (iii) the final transformation of the ethyl thiazole-4-carboxylates into the target tiazofurin analogues using the esters ammonolysis. The tiazofurin analogues were evaluated for their antitumour activities in cell-culture-based assays. Compounds 3, 4 (d-xylo) and 7 (d-arabino), showed remarkable antitumour activities, with IC50 values in the range of 4-7 nM. Preliminary structure-activity relationship allowed identification of two analogues with antiproliferative activities exceeding that of the parent compound 1 for several orders of magnitude (e.g. 4: 1354-fold against Raji, 7: 309-fold against K562). Flow cytometry data and Western blot analysis suggested that cytotoxic effects of d-xylo stereoisomers in the culture of K562 cells caused changes in the cell cycle distribution, as well as the induction of apoptosis in caspase-dependent way. The increase of apoptotic cells percentage in treated samples is also confirmed with fluorescent double-staining method. Genotoxicity testing showed that the analogues with the xylo-configuration (2-4) are far less genotoxic than tiazofurin.
Collapse
Affiliation(s)
- Vesna Kojić
- Oncology Institute of Vojvodina, Faculty of Medicine, University of Novi Sad, Put Dr Goldmana 4, 21204, Sremska Kamenica, Serbia
| | - Mirjana Popsavin
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, Novi Sad, Serbia.
| | - Saša Spaić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, Novi Sad, Serbia
| | - Dimitar Jakimov
- Oncology Institute of Vojvodina, Faculty of Medicine, University of Novi Sad, Put Dr Goldmana 4, 21204, Sremska Kamenica, Serbia
| | - Ivana Kovačević
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, Novi Sad, Serbia
| | - Miloš Svirčev
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, Novi Sad, Serbia
| | - Lidija Aleksić
- Oncology Institute of Vojvodina, Faculty of Medicine, University of Novi Sad, Put Dr Goldmana 4, 21204, Sremska Kamenica, Serbia
| | - Bojana Srećo Zelenović
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, Novi Sad, Serbia
| | - Velimir Popsavin
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, Novi Sad, Serbia; Serbian Academy of Sciences and Arts, Knez Mihajlova 35, 11000, Belgrade, Serbia
| |
Collapse
|
11
|
Liu T, Zhu Z, Ren H, Chen Y, Chen G, Cheng M, Zhao D, Shen J, Zhu W, Xiong B, Chen YL. Efficient syntheses of alpha- and beta-C-nucleosides and the origin of anomeric selectivity. Org Chem Front 2018. [DOI: 10.1039/c8qo00165k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Valuable C-nucleosides are efficiently prepared with excellent anomeric selectivity depending on protecting groups on sugar moiety.
Collapse
|