1
|
Dasmahapatra U, Maiti B, Chanda K. A microwave assisted tandem synthesis of quinazolinones using ionic liquid supported copper(II) catalyst with mechanistic insights. Org Biomol Chem 2024; 22:8459-8471. [PMID: 39320933 DOI: 10.1039/d4ob01261e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Quinazolinone is a preferred structural motif with notable pharmacological activity that is present in a wide range of naturally occurring compounds. A microwave assisted tandem cyclooxidative method has been developed to afford quinazolinones via a recyclable ionic liquid supported copper catalyst. This sustainable method exhibits operational simplicity through a rapid, clean, and energy-efficient route and a variety of 2-substituted quinazolinones are obtained in excellent yields. In addition, this innovative approach enables us to develop a library of nitriles in an environment-friendly synthetic protocol. Moreover, the catalyst can be recycled and reused up to three consecutive cycles without any significant loss of catalytic activity. Further organic transformation of the synthesized quinazolinones was carried out to afford reported as well as novel bioactive heterocyclic compounds.
Collapse
Affiliation(s)
- Upala Dasmahapatra
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore- 632014, India
| | - Barnali Maiti
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore- 632014, India
| | - Kaushik Chanda
- Department of Chemistry, Rabindranath Tagore University, Hojai, Assam-782435, India.
| |
Collapse
|
2
|
Gola AK, Kumar N, Pandey SK. I 2-Promoted Chemoselective Annulative Coupling of 2-Aminobenzamides with Sulfoxonium Ylides: Easy Access to Quinazolinones. J Org Chem 2024; 89:12410-12420. [PMID: 39160687 DOI: 10.1021/acs.joc.4c01354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
A flexible and metal-free synthetic approach for synthesizing 2-benzoyl quinazolinones and 2-aryl quinazolinones via molecular iodine-mediated annulative coupling of sulfoxonium ylides with 2-aminobenzamides has been disclosed. The method demonstrates remarkable chemoselectivity and efficiency, leading to high yields of 2-benzoyl quinazolinones and 2-aryl quinazolinones under optimized conditions. The broad substrate scope, scalability, and practical utility were highlighted through diverse applications, including gram-scale reactions and the synthesis of biologically significant compounds such as tryptanthrin and the chemo/biosensor derivative.
Collapse
Affiliation(s)
- Ajay Kant Gola
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Naveen Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Satyendra Kumar Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| |
Collapse
|
3
|
Xiao D, Wang Y, Gao C, Zhang X, Feng W, Lu X, Feng B. A New Quinazolinone Alkaloid along with Known Compounds with Seed-Germination-Promoting Activity from Rhodiola tibetica Endophytic Fungus Penicillium sp. HJT-A-6. Molecules 2024; 29:2112. [PMID: 38731603 PMCID: PMC11085523 DOI: 10.3390/molecules29092112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
A new quinazolinone alkaloid named peniquinazolinone A (1), as well as eleven known compounds, 2-(2-hydroxy-3-phenylpropionamido)-N-methylbenzamide (2), viridicatin (3), viridicatol (4), (±)-cyclopeptin (5a/5b), dehydrocyclopeptin (6), cyclopenin (7), cyclopenol (8), methyl-indole-3-carboxylate (9), 2,5-dihydroxyphenyl acetate (10), methyl m-hydroxyphenylacetate (11), and conidiogenone B (12), were isolated from the endophytic Penicillium sp. HJT-A-6. The chemical structures of all the compounds were elucidated by comprehensive spectroscopic analysis, including 1D and 2D NMR and HRESIMS. The absolute configuration at C-13 of peniquinazolinone A (1) was established by applying the modified Mosher's method. Compounds 2, 3, and 7 exhibited an optimal promoting effect on the seed germination of Rhodiola tibetica at a concentration of 0.01 mg/mL, while the optimal concentration for compounds 4 and 9 to promote Rhodiola tibetica seed germination was 0.001 mg/mL. Compound 12 showed optimal seed-germination-promoting activity at a concentration of 0.1 mg/mL. Compared with the positive drug 6-benzyladenine (6-BA), compounds 2, 3, 4, 7, 9, and 12 could extend the seed germination period of Rhodiola tibetica up to the 11th day.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuan Lu
- College of Life and Health, Dalian University, Dalian 116622, China; (D.X.); (Y.W.); (C.G.); (X.Z.); (W.F.)
| | - Baomin Feng
- College of Life and Health, Dalian University, Dalian 116622, China; (D.X.); (Y.W.); (C.G.); (X.Z.); (W.F.)
| |
Collapse
|
4
|
Lish MS, Milanes JE, Sanders KM, Guzei IA, Morris JC, Golden JE. Mannich-Type Condensation and Domino Quinazolinone-Amidine Rearrangement Affords Ring-Fused Mackinazolinones with Anti-Amoebic Activity. Adv Synth Catal 2023; 365:4567-4575. [PMID: 39507369 PMCID: PMC11537234 DOI: 10.1002/adsc.202300994] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Indexed: 11/08/2024]
Abstract
A three-step synthesis of anti-amoebic, ring-fused mackinazolinones has been developed. A Mannich-type reaction between quinazolin-4-ones and N-Cbz propanal in the presence of AgOTf afforded quinazolinones (19-94% isolated yield) bearing a newly formed heterocycle with an alkylamine appendage that, upon N-Cbz deprotection and basification, triggered a domino rearrangement to afford 45 separable, ring-fused products. Several compounds inhibited growth of Naegleria fowleri parasites that can cause a lethal human brain infection. Thus, the methodology provides immediate access to a promising anti-amoebic scaffold.
Collapse
Affiliation(s)
- Matthew S Lish
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States
| | - Jillian E Milanes
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, 29634, United States
| | - Kyana M Sanders
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States
- Molecular Structure Laboratory, Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Ilia A Guzei
- Molecular Structure Laboratory, Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - James C Morris
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, 29634, United States
| | - Jennifer E Golden
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, 53705, United States
| |
Collapse
|
5
|
Men Y, Li Z, Wang H, Liu Y, Liu X, Chen B. Synthesis and antiproliferative evaluation of novel 1,3,4-thiadiazole-S-alkyl derivatives based on quinazolinone. PHOSPHORUS SULFUR 2023. [DOI: 10.1080/10426507.2023.2176500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Yanle Men
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Zijian Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Hongying Wang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Yuming Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Xuguang Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Baoquan Chen
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| |
Collapse
|
6
|
Acid‐Catalysed Cyclization of
o
‐Aminobenzamide with
α
‐Oxodithioesters: A Divergent and Regioselective Synthesis of Quinazolinones and 1,3‐Benzothiazinones. ChemistrySelect 2023. [DOI: 10.1002/slct.202203618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
7
|
Fitz-Henley JN, Rozema SD, Golden JE. Dihydropyrazinoquinazolinones via S N2 Sulfamidate Ring-Opening and a Sequential Quinazolinone-Amidine Rearrangement Strategy (SQuAReS). J Org Chem 2022; 87:14889-14898. [PMID: 36194836 PMCID: PMC9795801 DOI: 10.1021/acs.joc.2c01717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A synthesis of dihydropyrazino-[2,1-b]-quinazolinones is described using a 2-alkylaminoquinazolinone-mediated ring opening of a-/chiral sulfamidates, followed by a tandem quinazolinone-amidine rearrangement termed SQuAReS. This approach takes advantage of sulfamidates whose regioselective ring opening, after hydrolysis, appends an optimally distanced nucleophilic amine to a quinazolinone such that subsequent domino rearrangements are favored, integrating unique substitution patterns on a privileged core. This three-step protocol integrated five telescoped transformations and generated 20 pyrazinoquinazolinones in up to 74% yield with high enantiomeric fidelity and diastereoselectivity.
Collapse
Affiliation(s)
- Jhewelle N Fitz-Henley
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin─Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Soren D Rozema
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin─Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Jennifer E Golden
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin─Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| |
Collapse
|
8
|
Sahoo S, Pal S. Copper-Catalyzed One-Pot Synthesis of Quinazolinones from 2-Nitrobenzaldehydes with Aldehydes: Application toward the Synthesis of Natural Products. J Org Chem 2021; 86:18067-18080. [PMID: 34813342 DOI: 10.1021/acs.joc.1c02343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A novel, efficient, and atom-economical approach for the construction of quinazolinones from 2-nitrobenzaldehydes has been unveiled via copper-catalyzed nitrile formation, hydrolysis, and reduction in one pot for the first time. In this reaction, urea is used as a source of nitrogen for nitrile formation, hydrazine hydrate is used for both the reduction of the nitro group and the hydrolysis of nitrile, and atmospheric oxygen is used as the sole oxidant. The method portrays a wide substrate scope with good functional group tolerances. Moreover, this method was applied for the synthesis of schizocommunin, tryptanthrin, phaitanthrin-A, phaitanthrin-B, and 8H-quinazolino[4,3-b]quinazolin-8-one.
Collapse
Affiliation(s)
- Subrata Sahoo
- Organic Chemistry Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India
| | - Shantanu Pal
- Organic Chemistry Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India
| |
Collapse
|
9
|
Zheng L, Xie Z, Cai L, Liu G, Mei W, Zou X, Zhuo X, Fan X, Guo W. Green Catalyst‐ and Additive‐Free Three‐Component Deamination Cyclization Synthesis of 3‐Substituted‐4‐ oxo‐2‐quinazolinonyl Sulfides. ChemistrySelect 2021. [DOI: 10.1002/slct.202103747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lvyin Zheng
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Zhen Xie
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Liuhuan Cai
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Gongping Liu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Weijie Mei
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Xiaoying Zou
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Xiaoya Zhuo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Xiaolin Fan
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Wei Guo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| |
Collapse
|
10
|
Botta L, Cesarini S, Zippilli C, Bizzarri BM, Fanelli A, Saladino R. Multicomponent reactions in the synthesis of antiviral compounds. Curr Med Chem 2021; 29:2013-2050. [PMID: 34620058 DOI: 10.2174/0929867328666211007121837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/16/2021] [Accepted: 08/18/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Multicomponent reactions are one-pot processes for the synthesis of highly functionalized hetero-cyclic and hetero-acyclic compounds, often endowed with biological activity. OBJECTIVE Multicomponent reactions are considered green processes with high atom economy. In addition, they present advantages compared to the classic synthetic methods such as high efficiency and low wastes production. METHOD In these reactions two or more reagents are combined together in the same flask to yield a product containing almost all the atoms of the starting materials. RESULTS The scope of this review is to present an overview of the application of multicomponent reactions in the synthesis of compounds endowed with antiviral activity. The syntheses are classified depending on the viral target. CONCLUSION Multicomponent reactions can be applied to all the stages of the drug discovery and development process making them very useful in the search for new agents active against emerging (viral) pathogens.
Collapse
Affiliation(s)
- Lorenzo Botta
- Department Biological and Ecological Sciences, University of Tuscia, Viterbo. Italy
| | - Silvia Cesarini
- Department Biological and Ecological Sciences, University of Tuscia, Viterbo. Italy
| | - Claudio Zippilli
- Department Biological and Ecological Sciences, University of Tuscia, Viterbo. Italy
| | | | - Angelica Fanelli
- Department Biological and Ecological Sciences, University of Tuscia, Viterbo. Italy
| | - Raffaele Saladino
- Department Biological and Ecological Sciences, University of Tuscia, Viterbo. Italy
| |
Collapse
|
11
|
Selective Synthesis of 2-(1,2,3-Triazoyl) Quinazolinones through Copper-Catalyzed Multicomponent Reaction. Catalysts 2021. [DOI: 10.3390/catal11101170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We describe here our results from the copper-catalyzed three component reaction of 2-azidobenzaldehyde, anthranilamide and terminal alkynes, using Et3N as base, and DMSO as solvent. Depending on the temperature and amount of Et3N used in the reactions, 1,2,3-triazolyl-quinazolinones or 1,2,3-triazolyl-dihydroquinazolinone could be obtained. When the reactions were performed at 100 °C using 2 equivalents of Et3N, 1,2,3-triazolyl-dihydroquinazolinone was formed in 82% yield, whereas reactions carried out at 120 °C using 1 equivalent of Et3N provided 1,2,3-triazolyl-quinazolinones in moderate-to-good yields.
Collapse
|
12
|
Peng JW, Yin XD, Li H, Ma KY, Zhang ZJ, Zhou R, Wang YL, Hu GF, Liu YQ. Design, Synthesis, and Structure-Activity Relationship of Quinazolinone Derivatives as Potential Fungicides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4604-4614. [PMID: 33872004 DOI: 10.1021/acs.jafc.0c05475] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plant diseases caused by phytopathogenic fungi reduce the yield and quality of crops. To develop novel antifungal agents, we designed and synthesized eight series of quinazolinone derivatives and evaluated their anti-phytopathogenic fungal activity. The bioassay results revealed that compounds KZL-15, KZL-22, 5b, 6b, 6c, 8e, and 8f exhibited remarkable antifungal activity in vitro. Especially, compound 6c displayed the highest bioactivity against Sclerotinia sclerotiorum, Pellicularia sasakii, Fusarium graminearum, and Fusarium oxysporum, displaying appreciable IC50 values (50% inhibitory concentration) of 2.46, 2.94, 6.03, and 11.9 μg/mL, respectively. A further mechanism interrogation revealed abnormal mycelia, damaged organelles, and changed permeability of cell membranes in S. sclerotiorum treated with compound 6c. In addition, the in vivo bioassay indicated that compound 6c possessed comparable curative and protective effects (87.3 and 90.7%, respectively) to the positive control azoxystrobin (89.5 and 91.2%, respectively) at 100 μg/mL concentration against S. sclerotiorum. This work validated the potential of compound 6c as a new and promising fungicide candidate, contributing to the exploration of potent antifungal agents.
Collapse
Affiliation(s)
- Jing-Wen Peng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xiao-Dan Yin
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Hu Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Kun-Yuan Ma
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Rui Zhou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yu-Ling Wang
- Gansu Academy of Agricultural Sciences, Lanzhou 730000, People's Republic of China
| | - Guan-Fang Hu
- Gansu Academy of Agricultural Sciences, Lanzhou 730000, People's Republic of China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
13
|
Synthesis of non-nucleoside anti-viral cyclopropylcarboxacyl hydrazones and initial anti-HSV-1 structure-activity relationship studies. Bioorg Med Chem Lett 2020; 30:127559. [PMID: 32961320 DOI: 10.1016/j.bmcl.2020.127559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/12/2020] [Accepted: 09/13/2020] [Indexed: 10/23/2022]
Abstract
The synthesis of a lead anti-viral cyclopropyl carboxy acyl hydrazone 4F17 (5) and three sequential arrays of structural analogues along with the initial assessment and optimization of the antiviral pharmacophore against the herpes simplex virus type 1 (HSV-1) are reported.
Collapse
|
14
|
Mohammadi‐Khanaposhtani M, Yahyavi H, Imanparast S, Harandi FN, Faramarzi MA, Foroumadi A, Larijani B, Biglar M, Mahdavi M. Benzoylquinazolinone derivatives as new potential antidiabetic agents: α‐Glucosidase inhibition, kinetic, and docking studies. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201900268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Maryam Mohammadi‐Khanaposhtani
- Cellular and Molecular Biology Research CenterHealth Research Institute, Babol University of Medical Sciences Babol Iran
| | - Hoda Yahyavi
- Department of Medicinal ChemistryFaculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences Tehran Iran
| | - Somaye Imanparast
- Department of Pharmaceutical BiotechnologyFaculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences Tehran Iran
| | | | - Mohammad Ali Faramarzi
- Department of Pharmaceutical BiotechnologyFaculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences Tehran Iran
| | - Alireza Foroumadi
- Department of Medicinal ChemistryFaculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences Tehran Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research CenterEndocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Mahmood Biglar
- Endocrinology and Metabolism Research CenterEndocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research CenterEndocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
15
|
Bose P, Siddique MUM, Acharya R, Jayaprakash V, Sinha BN, Lapenna A, Pattanayak SP. Quinazolinone derivative BNUA-3 ameliorated [NDEA+2-AAF]-induced liver carcinogenesis in SD rats by modulating AhR-CYP1B1-Nrf2-Keap1 pathway. Clin Exp Pharmacol Physiol 2019; 47:143-157. [PMID: 31563143 DOI: 10.1111/1440-1681.13184] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/23/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022]
Abstract
Cytochrome P450 1B1, considered as one of the novel chemotherapeutic targets involved in cancer prevention and therapy is also associated with the conversion of procarcinogens into their active metabolites. The aryl hydrocarbon receptor (AhR) is responsible for mediating different biological responses to a wide variety of environmental pollutants and also causes transcriptional activation of cytochrome P450 enzymes including CYP1B1 and thus plays a pivotal role for initiating cancer and its progression. On the other hand, active carcinogenic metabolites and reactive oxygen species-mediated stress alter different molecular signalling pathways and gene expressions. Quinazoline derivatives are recognized for their diversified biological activities including anticancer properties. The current study was designed for evaluation of chemotherapeutic efficacy of a synthetic quinazolinone derivative BNUA-3 against hepatocellular cancer in Sprague-Dawley (SD) rats. A detailed in vivo analysis was performed by administrating BNUA-3 (15, 30 mg/kg b.w. for 28 days, i.p.) in N-Nitrosodiethylamine + 2-Acetylaminofluorene induced partially hepatectomized liver cancer in SD rats. This was followed by morphological evaluations, biochemical estimations and analysis of different mRNA and protein expressions. The results demonstrated the potency of BNUA-3 in efficient restoration of the altered morphology of liver, its protective effect against lipid peroxidation, enzymic and non-enzymic antioxidants levels in liver tissue which was disrupted after cancer induction. The study also demonstrated downregulation of AhR, CYP1B1 and Keap1 expressions with subsequent augmentation of protective Nrf2, HO-1, NQO1 and GSTA1 expressions thus, revealing the chemotherapeutic potency of BNUA-3 in inhibiting liver carcinogenesis through AhR/CYP1B1/Nrf2/Keap1 pathway.
Collapse
Affiliation(s)
- Pritha Bose
- Division of Advanced Pharmacology, Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology Mesra, Ranchi, India
| | - Mohd Usman M Siddique
- Division of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology Mesra, Ranchi, India
| | - Reetuparna Acharya
- Division of Advanced Pharmacology, Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology Mesra, Ranchi, India
| | - Venkatesan Jayaprakash
- Division of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology Mesra, Ranchi, India
| | - Barij Nayan Sinha
- Division of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology Mesra, Ranchi, India
| | - Antonio Lapenna
- Department of Oncology & Metabolism, Medical School, University of Sheffield, Sheffield, UK
| | - Shakti P Pattanayak
- Division of Advanced Pharmacology, Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology Mesra, Ranchi, India
| |
Collapse
|
16
|
Xia Q, Shi Z, Yuan J, Bian Q, Xu Y, Liu B, Huang Y, Yang X, Xu H. Visible‐Light‐Enabled Selective Oxidation of Primary Alcohols through Hydrogen‐Atom Transfer and its Application in the Synthesis of Quinazolinones. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900491] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qiangqiang Xia
- Institute of Functional Organic Molecular EngineeringCollege of Chemistry and Chemical EngineeringHenan University Kaifeng 475004 China
| | - Zuodong Shi
- Institute of Functional Organic Molecular EngineeringCollege of Chemistry and Chemical EngineeringHenan University Kaifeng 475004 China
| | - Jiangpei Yuan
- Institute of Functional Organic Molecular EngineeringCollege of Chemistry and Chemical EngineeringHenan University Kaifeng 475004 China
| | - Qilong Bian
- Institute of Functional Organic Molecular EngineeringCollege of Chemistry and Chemical EngineeringHenan University Kaifeng 475004 China
| | - Yuanqing Xu
- Institute of Functional Organic Molecular EngineeringCollege of Chemistry and Chemical EngineeringHenan University Kaifeng 475004 China
| | - Baoying Liu
- Institute of Functional Organic Molecular EngineeringCollege of Chemistry and Chemical EngineeringHenan University Kaifeng 475004 China
| | - Yongwei Huang
- Institute of Functional Organic Molecular EngineeringCollege of Chemistry and Chemical EngineeringHenan University Kaifeng 475004 China
| | - Xiaobo Yang
- Institute of Catalysis for Energy and EnvironmentCollege ofChemistry and Chemical EngineeringShenyang Normal University Shenyang, Liaoning 110034 China
| | - Hao Xu
- Institute of Functional Organic Molecular EngineeringCollege of Chemistry and Chemical EngineeringHenan University Kaifeng 475004 China
| |
Collapse
|
17
|
Liang Y, Tan Z, Jiang H, Zhu Z, Zhang M. Copper-Catalyzed Oxidative Multicomponent Annulation Reaction for Direct Synthesis of Quinazolinones via an Imine-Protection Strategy. Org Lett 2019; 21:4725-4728. [PMID: 31184195 DOI: 10.1021/acs.orglett.9b01608] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Via an imine-protection strategy, we herein present an unprecedented copper-catalyzed oxidative multicomponent annulation reaction for direct synthesis of quinazolinones. The construction of various products is achieved via formation of three C-N and one C-C bonds in conjunction with the benzylic functionalization. The merits of easily available feedstocks, naturally abundant catalyst, good functional group and substrate compatibility, and release of H2O as the byproduct make the developed chemistry a practical way to access quinazolinones.
Collapse
Affiliation(s)
- Yantang Liang
- Key Lab of Functional Molecular Engineering of Guangdong Province and Guangdong Engineering Research Center for Green Fine Chemicals, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou , 510640 , P. R. China
| | - Zhenda Tan
- Key Lab of Functional Molecular Engineering of Guangdong Province and Guangdong Engineering Research Center for Green Fine Chemicals, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou , 510640 , P. R. China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province and Guangdong Engineering Research Center for Green Fine Chemicals, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou , 510640 , P. R. China
| | - Zhibo Zhu
- Integrated Hospital of Traditional Chinese Medicine , Southern Medical University , 13# Shiliugang Road, Haizhu district , Guangzhou 510315 , China
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province and Guangdong Engineering Research Center for Green Fine Chemicals, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou , 510640 , P. R. China
| |
Collapse
|
18
|
Keskar K, Zepeda-Velazquez C, Dokuburra CB, Jenkins HA, McNulty J. The synthesis of densely functionalised α-acyloxy enaminals and enaminones via a novel homogeneous silver(i) catalysed rearrangement. Chem Commun (Camb) 2019; 55:10868-10871. [DOI: 10.1039/c9cc05614a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A synthesis of densely functionalised α-acyloxy enaminals and enaminones via a novel homogeneous silver(i) catalyzed rearrangement of 1-acyloxy-3-azido ketones is reported.
Collapse
Affiliation(s)
- Kunal Keskar
- Department of Chemistry & Chemical Biology
- McMaster University
- Hamilton
- Canada
| | | | | | - Hilary A. Jenkins
- Department of Chemistry & Chemical Biology
- McMaster University
- Hamilton
- Canada
| | - James McNulty
- Department of Chemistry & Chemical Biology
- McMaster University
- Hamilton
- Canada
| |
Collapse
|
19
|
Brown C, Kong T, Britten JF, Werstiuk NH, McNulty J, D’Aiuto L, Demers M, Nimgaonkar VL. Asymmetric Entry into 10 b-aza-Analogues of Amaryllidaceae Alkaloids Reveals a Pronounced Electronic Effect on Antiviral Activity. ACS OMEGA 2018; 3:11469-11476. [PMID: 30320263 PMCID: PMC6173499 DOI: 10.1021/acsomega.8b01987] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
Development of a chiral pool-based synthesis of 10b-aza-analogues of biologically active Amaryllidaceae alkaloids is described, involving a concise reductive amination and condensation sequence, leading to ring-B/C-modified, fully functionalized ring-C derivatives. Differentiated anticancer and antiviral activities of these analogues are presented. Despite complete conformational and functional group overlap, the 10b-aza-analogues have diminished anticancer activity and no antiviral activity. These unprecedented electronic effects suggest a possible role for π-type secondary orbital interactions with the biological target.
Collapse
Affiliation(s)
- Carla
E. Brown
- Department
of Chemistry & Chemical Biology, McMaster
University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Tiffany Kong
- Department
of Chemistry & Chemical Biology, McMaster
University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - James F. Britten
- Department
of Chemistry & Chemical Biology, McMaster
University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Nick H. Werstiuk
- Department
of Chemistry & Chemical Biology, McMaster
University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - James McNulty
- Department
of Chemistry & Chemical Biology, McMaster
University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Leonardo D’Aiuto
- Department
of Psychiatry, University of Pittsburgh
School of Medicine, 3811
O’Hara Street, Pittsburgh, Pennsylvania 15213, United States
| | - Matthew Demers
- Department
of Psychiatry, University of Pittsburgh
School of Medicine, 3811
O’Hara Street, Pittsburgh, Pennsylvania 15213, United States
| | - Vishwajit L. Nimgaonkar
- Department
of Psychiatry, University of Pittsburgh
School of Medicine, 3811
O’Hara Street, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
20
|
Brown CE, Kong T, Bordón C, Yolken R, Jones-Brando L, McNulty J. One-pot, multicomponent synthesis of 2,3-disubstituted quinazolin-ones with potent and selective activity against Toxoplasma gondii. Bioorg Med Chem Lett 2018; 28:1642-1646. [DOI: 10.1016/j.bmcl.2018.03.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/15/2018] [Indexed: 10/17/2022]
|