1
|
Kong S, Peng Y, Liu Q, Xie Q, Qiu L, Lin J, Xie M. Preclinical Evaluation of a PSMA Aptamer-Based Bifunctional PET and Fluorescent Probe. Bioconjug Chem 2024; 35:1352-1362. [PMID: 39187748 DOI: 10.1021/acs.bioconjchem.4c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Prostate cancer is the most prevalent malignant tumor affecting male individuals worldwide. The accurate early detection of prostate cancer is crucial to preventing unnecessary diagnosis and subsequent excessive treatment. Prostate-specific membrane antigen (PSMA) has emerged as a promising biomarker for the diagnosis of prostate cancer. In this study, a dual-modality imaging probe utilizing aptamer technology was developed for positron emission tomography/near-infrared fluorescence (PET/NIRF) imaging, and the specificity and sensitivity of the probe toward PSMA were evaluated both in vitro and in vivo. The probe precursor NOTA-PSMA-Cy5 was synthesized via automated solid-phase oligonucleotide synthesis. Subsequently, the PET/NIRF dual-modality probe [68Ga]Ga-NOTA-PSMA-Cy5 was successfully prepared and exhibited favorable fluorescence properties and stability in vitro. The binding specificity of [68Ga]Ga-NOTA-PSMA-Cy5 to PSMA was assessed through flow cytometry, fluorescence imaging, and cellular uptake experiments in LNCaP cells and PC-3 cells. In vivo PET/NIRF imaging studies demonstrated the sensitive and specific binding of [68Ga]Ga-NOTA-PSMA-Cy5 to PSMA. Overall, the PET/NIRF dual-modality probe [68Ga]Ga-NOTA-PSMA-Cy5 shows promise for the diagnosis of prostate cancer and for the fluorescence-guided identification of PSMA-positive cancer lesions during surgical procedures.
Collapse
Affiliation(s)
- Sudong Kong
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
- Suzhou Biosyntech Co., Ltd., Suzhou 215300, China
| | - Ying Peng
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Qingzhu Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Quan Xie
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Ling Qiu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Jianguo Lin
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Minhao Xie
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| |
Collapse
|
2
|
Berehova N, Buckle T, van Meerbeek MP, Bunschoten A, Velders AH, van Leeuwen FWB. Nerve Targeting via Myelin Protein Zero and the Impact of Dimerization on Binding Affinity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27249015. [PMID: 36558148 PMCID: PMC9786614 DOI: 10.3390/molecules27249015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Surgically induced nerve damage is a common but debilitating side effect. By developing tracers that specifically target the most abundant protein in peripheral myelin, namely myelin protein zero (P0), we intend to support fluorescence-guided nerve-sparing surgery. To that end, we aimed to develop a dimeric tracer that shows a superior affinity for P0. METHODS Following truncation of homotypic P0 protein-based peptide sequences and fluorescence labeling, the lead compound Cy5-P0101-125 was selected. Using a bifunctional fluorescent dye, the dimeric Cy5-(P0101-125)2 was created. Assessment of the performance of the mono- and bi-labeled compounds was based on (photo)physical evaluation. This was followed by in vitro assessment in P0 expressing Schwannoma cell cultures by means of fluorescence confocal imaging (specificity, location of binding) and flow cytometry (binding affinity; KD). RESULTS Dimerization resulted in a 1.5-fold increase in affinity compared to the mono-labeled counterpart (70.3 +/- 10.0 nM vs. 104.9 +/- 16.7 nM; p = 0.003) which resulted in a 4-fold increase in staining efficiency in P0 expressing Schwannoma cells. Presence of two targeting vectors also improves a pharmacokinetics of labeled compounds by lowering serum binding and optical stability by preventing dye stacking. CONCLUSIONS Dimerization of the nerve-targeting peptide P0101-125 proves a valid strategy to improve P0 targeting.
Collapse
Affiliation(s)
- Nataliia Berehova
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
| | - Tessa Buckle
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
| | - Maarten P. van Meerbeek
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
| | - Anton Bunschoten
- Laboratory of BioNanoTechnology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Aldrik H. Velders
- Laboratory of BioNanoTechnology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Fijs W. B. van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
- Laboratory of BioNanoTechnology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
- Correspondence:
| |
Collapse
|
3
|
Meher N, Ashley GW, Bidkar AP, Dhrona S, Fong C, Fontaine SD, Beckford Vera DR, Wilson DM, Seo Y, Santi DV, VanBrocklin HF, Flavell RR. Prostate-Specific Membrane Antigen Targeted Deep Tumor Penetration of Polymer Nanocarriers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50569-50582. [PMID: 36318757 PMCID: PMC9673064 DOI: 10.1021/acsami.2c15095] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/24/2022] [Indexed: 05/05/2023]
Abstract
Tumoral uptake of large-size nanoparticles is mediated by the enhanced permeability and retention (EPR) effect, with variable accumulation and heterogenous tumor tissue penetration depending on the tumor phenotype. The performance of nanocarriers via specific targeting has the potential to improve imaging contrast and therapeutic efficacy in vivo with increased deep tissue penetration. To address this hypothesis, we designed and synthesized prostate cancer-targeting starPEG nanocarriers (40 kDa, 15 nm), [89Zr]PEG-(DFB)3(ACUPA)1 and [89Zr]PEG-(DFB)1(ACUPA)3, with one or three prostate-specific membrane antigen (PSMA)-targeting ACUPA ligands. The in vitro PSMA binding affinity and in vivo pharmacokinetics of the targeted nanocarriers were compared with a nontargeted starPEG, [89Zr]PEG-(DFB)4, in PSMA+ PC3-Pip and PSMA- PC3-Flu cells, and xenografts. Increasing the number of ACUPA ligands improved the in vitro binding affinity of PEG-derived polymers to PC3-Pip cells. While both PSMA-targeted nanocarriers significantly improved tissue penetration in PC3-Pip tumors, the multivalent [89Zr]PEG-(DFB)1(ACUPA)3 showed a remarkably higher PC3-Pip/blood ratio and background clearance. In contrast, the nontargeted [89Zr]PEG-(DFB)4 showed low EPR-mediated accumulation with poor tumor tissue penetration. Overall, ACUPA conjugated targeted starPEGs significantly improve tumor retention with deep tumor tissue penetration in low EPR PC3-Pip xenografts. These data suggest that PSMA targeting with multivalent ACUPA ligands may be a generally applicable strategy to increase nanocarrier delivery to prostate cancer. These targeted multivalent nanocarriers with high tumor binding and low healthy tissue retention could be employed in imaging and therapeutic applications.
Collapse
Affiliation(s)
- Niranjan Meher
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, California 94143, United States
| | - Gary W. Ashley
- ProLynx
Inc., San Francisco, California 94158, United States
| | - Anil P. Bidkar
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, California 94143, United States
| | - Suchi Dhrona
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, California 94143, United States
| | - Cyril Fong
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, California 94143, United States
| | | | - Denis R. Beckford Vera
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, California 94143, United States
| | - David M. Wilson
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, California 94143, United States
- Helen
Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143-0981, United States
| | - Youngho Seo
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, California 94143, United States
- Helen
Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143-0981, United States
| | - Daniel V. Santi
- ProLynx
Inc., San Francisco, California 94158, United States
| | - Henry F. VanBrocklin
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, California 94143, United States
- Helen
Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143-0981, United States
| | - Robert R. Flavell
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, California 94143, United States
- Helen
Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143-0981, United States
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, California 94158-2517, United States
| |
Collapse
|
4
|
Yi X, Wang Z, Hu X, Yu A. Affinity probes based on small-molecule inhibitors for tumor imaging. Front Oncol 2022; 12:1028493. [PMID: 36387103 PMCID: PMC9647038 DOI: 10.3389/fonc.2022.1028493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/17/2022] [Indexed: 11/29/2022] Open
Abstract
Methods for molecular imaging of target areas, including optical imaging, radionuclide imaging, magnetic resonance imaging and other imaging technologies, are helpful for the early diagnosis and precise treatment of cancers. In addition to cancer management, small-molecule inhibitors are also used for developing cancer target probes since they act as the tight-binding ligands of overexpressed proteins in cancer cells. This review aims to summarize the structural designs of affinity probes based on small-molecule inhibitors from the aspects of the inhibitor, linker, dye and radionuclide, and discusses the influence of the modification of these structures on affinity and pharmacokinetics. We also present examples of inhibitor affinity probes in clinical applications, and these summaries will provide insights for future research and clinical translations.
Collapse
Affiliation(s)
| | | | - Xiang Hu
- *Correspondence: Aixi Yu, ; Xiang Hu,
| | - Aixi Yu
- *Correspondence: Aixi Yu, ; Xiang Hu,
| |
Collapse
|
5
|
Buckle T, van Willigen DM, Welling MM, van Leeuwen FW. Pre-clinical development of fluorescent tracers and translation towards clinical application. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
6
|
Petrov SA, Zyk NY, Machulkin AE, Beloglazkina EK, Majouga AG. PSMA-targeted low-molecular double conjugates for diagnostics and therapy. Eur J Med Chem 2021; 225:113752. [PMID: 34464875 DOI: 10.1016/j.ejmech.2021.113752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/27/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022]
Abstract
This review presents data on dual conjugates of therapeutic and diagnostic action for targeted delivery to prostate cancer cells. The works of the last ten years on this topic were analyzed. The mail attention focuses on low-molecular-weight conjugates directed to the prostate-specific membrane antigen (PSMA); the comparison of high and low molecular weight PSMA-targeted conjugates was made. The considered conjugates were divided in the review into two main classes: diagnostic bimodal conjugates (which are containing two fragments for different types of diagnostics), theranostic conjugates (containing both therapeutic and diagnostic agents); also bimodal high molecular weight therapeutic conjugates containing two therapeutic agents are briefly discussed. The data of in vitro and in vivo studies for PSMA-targeted double conjugates available by the beginning of 2021 have been analyzed.
Collapse
Affiliation(s)
- Stanislav A Petrov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Nikolay Y Zyk
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Alexander G Majouga
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia; Laboratory of Biomedical Nanomaterials, National University of Science and Technology MISiS, Moscow, Russia; Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| |
Collapse
|
7
|
Zhang L, Shi X, Li Y, Duan X, Zhang Z, Fu H, Yang X, Tian J, Hu Z, Cui M. Visualizing Tumors in Real Time: A Highly Sensitive PSMA Probe for NIR-II Imaging and Intraoperative Tumor Resection. J Med Chem 2021; 64:7735-7745. [PMID: 34047189 DOI: 10.1021/acs.jmedchem.1c00444] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Owing to the complex anatomical structure, precise resection of a tumor while maintaining adjacent tissue is a challenge in radical prostatectomy for prostate cancer (PCa). Optical imaging in near-infrared window II (NIR-II) is a promising technology for intraoperative guidance, whereas there is no available probe for PCa yet. In this article, a novel probe (PSMA-1092) bearing two prostate-specific membrane antigen (PSMA) binding motifs was developed, displaying excellent optical properties (λmax = 1092 nm) and ultrahigh affinity (Ki = 80 pM) toward PSMA. The tumor was visualized with high resolution (tissue-to-normal tissue ratio = 7.62 ± 1.05) and clear margin by NIR-II imaging using PSMA-1092 in a mouse model. During the tumor resection, residual tumors missed by visible inspection were detected by the real-time imaging. Overall, PSMA-1092 displayed excellent performance in delineating the tumor margin and detecting residual tumors, demonstrating promising potential for precise PCa tumor resection in clinical practice.
Collapse
Affiliation(s)
- Longfei Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiaojing Shi
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuying Li
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiaojiang Duan
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Zeyu Zhang
- School of Medical Science and Engineering, Beihang University, Beijing 100191, China
| | - Hualong Fu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xing Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhenhua Hu
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Mengchao Cui
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.,Center for Advanced Materials Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, China
| |
Collapse
|
8
|
Kwon YD, Oh JM, Chun S, Kim HK. Synthesis and evaluation of multivalent nitroimidazole-based near-infrared fluorescent agents for neuroblastoma and colon cancer imaging. Bioorg Chem 2021; 113:104990. [PMID: 34051414 DOI: 10.1016/j.bioorg.2021.104990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/13/2021] [Accepted: 05/11/2021] [Indexed: 01/03/2023]
Abstract
Hypoxia is one of key characteristics of microenvironments of solid tumors, and evaluation of hypoxia status in solid tumors is important to determine cancer stage and appropriate treatment. In the present study, novel, multivalent, near-infrared (NIR) fluorescent imaging agents were developed to measure tumor hypoxia. These agents were synthesized using an amino acid as a backbone to connect mono-, bis-, or tris-2-nitroimidazole as a hypoxia-sensitive moiety to enhance uptake by the tumor and to attach sulfo-Cyanine 5.5 as an NIR fluorophore to visualize tumor accumulation. Studies of physical characteristics demonstrated that the novel NIR imaging agents showed suitable optical properties for in vitro and in vivo imaging and were stable in serum. In vitro cellular uptake studies in SK-N-BE(2) and SW620 cell lines demonstrated that NIR imaging agents bearing 2-nitroimidazole structures showed significantly higher tumor uptake in hypoxic cells than in normoxic cells. Moreover, in vivo optical imaging studies using SK-N-BE(2) and SW620 xenografted mice demonstrated that novel, multivalent, 2-nitroimadazole NIR imaging agents with two or three 2-nitroimidazole moieties showed higher uptake in tumor than the control agents with only one 2-nitroimidazole. These observations suggest that novel, multivalent, NIR agents could serve as potential optical imaging agents for evaluating tumor hypoxia.
Collapse
Affiliation(s)
- Young-Do Kwon
- Department of Chemistry, Rice University, Houston, TX 77005, USA; Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
| | - Jung-Mi Oh
- Department of Physiology, Jeonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju 54907, Republic of Korea
| | - Sungkun Chun
- Department of Physiology, Jeonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju 54907, Republic of Korea.
| | - Hee-Kwon Kim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea; Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea.
| |
Collapse
|
9
|
Synthesis and preclinical evaluation of an Al 18F radiofluorinated bivalent PSMA ligand. Eur J Med Chem 2021; 221:113502. [PMID: 33965863 DOI: 10.1016/j.ejmech.2021.113502] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/12/2021] [Accepted: 04/16/2021] [Indexed: 11/22/2022]
Abstract
Prostate-specific membrane antigen (PSMA) has become as an outstanding prostate cancer-related target for diagnostic imaging and targeted radiotherapy. Clinical studies on a few PSMA radiotracers are currently underway to determine their efficacy as imaging agents to detect prostate cancer. To improve tumor retention and tumor-to-normal tissue contrast, we herein report the synthesis and preclinical evaluation of an Al18F-labeled bivalent PSMA ligand (18F-Bi-PSMA). 18F-Bi-PSMA was successful automated preparation and in vitro evaluation showed that 18F-Bi-PSMA was potent binding affinity, high specificity, and rapid internalization in PSMA-expressing cells. Biodistribution studies revealed a high and specific tumor uptake of 20.5 ± 3.5 %ID/g in 22Rv1 tumor-bearing mice. Furthermore, compared to the clinically used monomeric PSMA-targeting tracers, 68Ga-PSMA-11 and 18F-PSMA-1007, 18F-Bi-PSMA exhibited improved pharmacokinetics and higher tumor uptake, as well as better tumor-to-normal tissue contrast, resulting in considerably high imaging quality. Our findings indicated that the bivalent PSMA radioligand, 18F-Bi-PSMA, was successfully synthesized and ideal imaging properties.
Collapse
|
10
|
Hensbergen A, van Willigen DM, van Beurden F, van Leeuwen PJ, Buckle T, Schottelius M, Maurer T, Wester HJ, van Leeuwen FWB. Image-Guided Surgery: Are We Getting the Most Out of Small-Molecule Prostate-Specific-Membrane-Antigen-Targeted Tracers? Bioconjug Chem 2020; 31:375-395. [PMID: 31855410 PMCID: PMC7033908 DOI: 10.1021/acs.bioconjchem.9b00758] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/19/2019] [Indexed: 12/12/2022]
Abstract
Expressed on virtually all prostate cancers and their metastases, the transmembrane protein prostate-specific membrane antigen (PSMA) provides a valuable target for the imaging of prostate cancer. Not only does PSMA provide a target for noninvasive diagnostic imaging, e.g., PSMA-positron emission tomography (PSMA-PET), it can also be used to guide surgical resections of PSMA-positive lesions. The latter characteristic has led to the development of a plethora of PSMA-targeted tracers, i.e., radiolabeled, fluorescent, or hybrid. With image-guided surgery applications in mind, this review discusses these compounds based on clinical need. Here, the focus is on the chemical aspects (e.g., imaging label, spacer moiety, and targeting vector) and their impact on in vitro and in vivo tracer characteristics (e.g., affinity, tumor uptake, and clearance pattern).
Collapse
Affiliation(s)
- Albertus
Wijnand Hensbergen
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Danny M. van Willigen
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Florian van Beurden
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department
of Urology, Netherlands Cancer Institute-Antoni
van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands
| | - Pim J. van Leeuwen
- Department
of Urology, Netherlands Cancer Institute-Antoni
van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands
| | - Tessa Buckle
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department
of Urology, Netherlands Cancer Institute-Antoni
van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands
| | - Margret Schottelius
- Translational
Radiopharmaceutical Sciences, Department of Nuclear Medicine, Centre
Hospitalier Universitaire Vaudois (CHUV) and Department of Oncology, University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Tobias Maurer
- Department
of Urology and Martini-Klinik, Universitätsklinikum
Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Hans-Jürgen Wester
- Pharmazeutische
Radiochemie, Technische Universität
München, 85748 Garching, Germany
| | - Fijs W. B. van Leeuwen
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department
of Urology, Netherlands Cancer Institute-Antoni
van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
11
|
Kwon YD, Lee JY, La MT, Lee SJ, Lee SH, Park JH, Kim HK. Novel multifunctional 18F-labelled PET tracer with prostate-specific membrane antigen-targeting and hypoxia-sensitive moieties. Eur J Med Chem 2020; 189:112099. [PMID: 32014792 DOI: 10.1016/j.ejmech.2020.112099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/19/2020] [Accepted: 01/22/2020] [Indexed: 11/18/2022]
Abstract
Prostate cancer is one of the most frequently found cancers in men worldwide. Prostate-specific membrane antigen (PSMA) is typically highly expressed in prostate cancer, and the Glu-Urea-Lys (GUL) structure has recently received considerable attention as a key unit of PSMA-targeting agents. Additionally, one of the common characteristics of many solid tumors, such as prostate cancer, is hypoxia. In this study, novel multifunctional PSMA inhibitors containing a PSMA-targeting moiety either with or without a hypoxia-sensitive moiety (18F-PEG3-ADIBOT-2NI-GUL and 18F-PEG3-ADIBOT-GUL, respectively; ADIBOT: azadibenzocyclooctatriazole, 2NI: 2-nitroimidazole) were designed and synthesized, and their feasibility as PET tracers for prostate cancer imaging studies was examined. The compounds labelled with 18F via the copper-free click reaction were stable in human serum and showed nanomolar binding affinities in in vitro PSMA binding assays. Micro-PET and biodistribution studies indicate that both 18F-labelled inhibitors successfully accumulated in prostate cancer regions, and 18F-PEG3-ADIBOT-2NI-GUL showed a 2-fold higher tumor-to-total non-target organ ratio than that of 18F-PEG3-ADIBOT-GUL, suggesting that the synergistic effects of the PSMA-targeting GUL moiety and the hypoxia-sensitive 2-nitroimidazole moiety can increase tumor uptake of the novel PET tracers in prostate cancer. These findings suggest that this novel multifunctional PET tracer with an 18F-labelled PSMA inhibitor and a 2-nitroimidazole moiety is a potent candidate to provide better diagnosis of prostate cancer via PET imaging studies.
Collapse
Affiliation(s)
- Young-Do Kwon
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Biomedical Research Institute, Jeonbuk National University Medical School and Hospital, Jeonju, 54907, Republic of Korea
| | - Jun Young Lee
- Radiation Instrumentation Research Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Minh Thanh La
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Biomedical Research Institute, Jeonbuk National University Medical School and Hospital, Jeonju, 54907, Republic of Korea
| | - Sun Joo Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Sun-Hwa Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Jeong Hoon Park
- Radiation Instrumentation Research Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea.
| | - Hee-Kwon Kim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Biomedical Research Institute, Jeonbuk National University Medical School and Hospital, Jeonju, 54907, Republic of Korea; Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, 54907, Republic of Korea.
| |
Collapse
|
12
|
Hensbergen AW, Buckle T, van Willigen DM, Schottelius M, Welling MM, van der Wijk FA, Maurer T, van der Poel HG, van der Pluijm G, van Weerden WM, Wester HJ, van Leeuwen FWB. Hybrid Tracers Based on Cyanine Backbones Targeting Prostate-Specific Membrane Antigen: Tuning Pharmacokinetic Properties and Exploring Dye-Protein Interaction. J Nucl Med 2019; 61:234-241. [PMID: 31481575 DOI: 10.2967/jnumed.119.233064] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/06/2019] [Indexed: 12/14/2022] Open
Abstract
Prostate cancer surgery is currently being revolutionized by the use of prostate-specific membrane antigen (PSMA)-targeted radiotracers, for example, 99mTc-labeled PSMA tracer analogs for radioguided surgery. The purpose of this study was to develop a second-generation 99mTc-labeled PSMA-targeted tracer incorporating a fluorescent dye. Methods: Several PSMA-targeted hybrid tracers were synthesized: glutamic acid-urea-lysine (EuK)-Cy5-mas3, EuK-(SO3)Cy5-mas3, EuK-Cy5(SO3)-mas3, EuK-(Ar)Cy5-mas3, and EuK-Cy5(Ar)-mas3; the Cy5 dye acts as a functional backbone between the EuK targeting vector and the 2-mercaptoacetyl-seryl-seryl-seryl (mas3) chelate to study the dye's interaction with PSMA's amphipathic entrance funnel. The compounds were evaluated for their photophysical and chemical properties and PSMA affinity. After radiolabeling with 99mTc, we performed in vivo SPECT imaging, biodistribution, and fluorescence imaging on BALB/c nude mice with orthotopically transplanted PC346C tumors. Results: The dye composition influenced the photophysical properties (brightness range 0.3-1.5 × 104 M-1 × cm-1), plasma protein interactions (range 85.0% ± 2.3%-90.7% ± 1.3% bound to serum, range 76% ± 0%-89% ± 6% stability in serum), PSMA affinity (half-maximal inhibitory concentration [IC50] range 19.2 ± 5.8-175.3 ± 61.1 nM) and in vivo characteristics (tumor-to-prostate and tumor-to-muscle ratios range 0.02 ± 0.00-154.73 ± 28.48 and 0.46 ± 0.28-5,157.50 ± 949.17, respectively; renal, splenic, and salivary retention). Even though all tracer analogs allowed tumor identification with SPECT and fluorescence imaging, 99mTc-EuK-(SO3)Cy5-mas3 had the most promising properties (e.g., half-maximal inhibitory concentration, 19.2 ± 5.8, tumor-to-muscle ratio, 5,157.50 ± 949.17). Conclusion: Our findings demonstrate the intrinsic integration of a fluorophore in the pharmacophore in PSMA-targeted small-molecule tracers. In this design, having 1 sulfonate on the indole moiety adjacent to EuK (99mTc-EuK-(SO3)Cy5-mas3) yielded the most promising tracer candidate for imaging of PSMA.
Collapse
Affiliation(s)
- Albertus W Hensbergen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tessa Buckle
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Danny M van Willigen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Margret Schottelius
- Pharmazeutische Radiochemie, Technische Universität München, Garching, Germany
| | - Mick M Welling
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Felicia A van der Wijk
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tobias Maurer
- Martini-Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Henk G van der Poel
- Department of Urology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Gabri van der Pluijm
- Department of Urology, Leiden University Medical Centre, Leiden, The Netherlands; and
| | - Wytske M van Weerden
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Hans-Jürgen Wester
- Pharmazeutische Radiochemie, Technische Universität München, Garching, Germany
| | - Fijs W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
13
|
Tumor Uptake of Triazine Dendrimers Decorated with Four, Sixteen, and Sixty-Four PSMA-Targeted Ligands: Passive versus Active Tumor Targeting. Biomolecules 2019; 9:biom9090421. [PMID: 31466360 PMCID: PMC6770530 DOI: 10.3390/biom9090421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 12/20/2022] Open
Abstract
Various glutamate urea ligands have displayed high affinities to prostate specific membrane antigen (PSMA), which is highly overexpressed in prostate and other cancer sites. The multivalent versions of small PSMA-targeted molecules are known to be even more efficiently bound to the receptor. Here, we employ a well-known urea-based ligand, 2-[3-(1,3-dicarboxypropyl)-ureido] pentanedioic acid (DUPA) and triazine dendrimers in order to study the effect of molecular size on multivalent targeting in prostate cancer. The synthetic route starts with the preparation of a dichlorotriazine bearing DUPA in 67% overall yield over five steps. This dichlorotriazine reacts with G1, G3, and G5 triazine dendrimers bearing a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) group for 64Cu-labeling at the core to afford poly(monochlorotriazine) intermediates. Addition of 4-aminomethylpiperidine (4-AMP) and the following deprotection produce the target compounds, G1-(DUPA)4, G3-(DUPA)16, and G5-(DUPA)64. These targets include 4/16/64 DUPA groups on the surface and a DOTA group at the core, respectively. In vitro cell assay using PC3-PIP (PSMA positive) and PC3-FLU (PSMA negative) cells reveals that G1-(DUPA)4 has the highest PC3-PIP to PC3-FLU uptake ratio (10-fold) through the PSMA-mediated specific uptake. While G5-(DUPA)64 displayed approximately 12 times higher binding affinity (IC50 23.6 nM) to PC3-PIP cells than G1-(DUPA)4 (IC50 282.3 nM) as evaluated in a competitive binding assay, the G5 dendrimer also showed high non-specific binding to PC3-FLU cells. In vivo uptake of the 64Cu-labeled dendrimers was also evaluated in severe combined inmmunodeficient (SCID) mice bearing PC3-PIP and PC3-FLU xenografts on each shoulder, respectively. Interestingly, quantitative imaging analysis of positron emission tomograph (PET) displayed the lowest tumor uptake in PC3-PIP cells for the midsize dendrimer G3-(DUPA)16 (19.4 kDa) (0.66 ± 0.15%ID/g at 1 h. p.i., 0.64 ± 0.11%ID/g at 4 h. p.i., and 0.67 ± 0.08%ID/g at 24 h. p.i.). Through the specific binding of G1-(DUPA)4 to PSMA, the smallest dendrimer (5.1 kDa) demonstrated the highest PC3-PIP to muscle and PC3-PIP to PC3-FLU uptake ratios (17.7 ± 5.5 and 6.7 ± 3.0 at 4 h p.i., respectively). In addition, the enhanced permeability and retention (EPR) effect appeared to be an overwhelming factor for tumor uptake of the largest dendrimer G5-(DUPA)64 as the uptake was at a similar level irrelevant to the PSMA expression.
Collapse
|
14
|
Kwon YD, Oh JM, La MT, Chung HJ, Lee SJ, Chun S, Lee SH, Jeong BH, Kim HK. Synthesis and Evaluation of Multifunctional Fluorescent Inhibitors with Synergistic Interaction of Prostate-Specific Membrane Antigen and Hypoxia for Prostate Cancer. Bioconjug Chem 2019; 30:90-100. [PMID: 30485073 DOI: 10.1021/acs.bioconjchem.8b00767] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Prostate cancer is one of the most common cancers in the world. It is widely known that prostate-specific membrane antigen (PSMA) is highly expressed in prostate cancer, and hypoxia is a common characteristic of many solid tumors, including prostate cancer. In this study, we designed multifunctional fluorescent inhibitors to target PSMA and tumor hypoxia in order to increase the tumor uptake of inhibitors. Novel PSMA inhibitors were prepared using lysine as the backbone to connect three different functional groups: the glutamate-urea-lysine (GUL) structure for inhibiting PSMA, 2-nitroimidazole for the hypoxia-sensitive moiety, and a near-infrared fluorophore (sulfo-Cyanine 5.5). According to the in vitro PSMA binding assay, novel fluorescent inhibitors were demonstrated to have nanomolar binding affinities. Multifunctional inhibitor 2 with one 2-nitroimidazole had a similar inhibitory activity to inhibitor 1 that did not contain the hypoxia targeting moiety, but multifunctional inhibitor 3 with two 2-nitroimidazoles showed lower inhibitory activity than inhibitor 1 due to the bulky structure of the hypoxia-sensitive group. However, in vivo optical imaging and ex vivo biodistribution studies indicated that both multifunctional inhibitors 2 and 3 had higher accumulation in tumors than inhibitor 1 due to a synergistic combination of PSMA and hypoxia targeting moieties. These observations suggest that this novel multifunctional strategy might be a promising approach to improve the diagnosis and therapy of prostate cancer.
Collapse
Affiliation(s)
- Young-Do Kwon
- Department of Nuclear Medicine , Yonsei University College of Medicine , 50-1 Yonsei-ro , Seodaemun-gu, Seoul 03722 , Republic of Korea
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center , Chonbuk National University Medical School and Hospital , 20 Geonji-ro , Deokjin-gu, Jeonju 54907 , Republic of Korea
| | - Jung-Mi Oh
- Department of Physiology , Chonbuk National University Medical School , 20 Geonji-ro , Deokjin-gu, Jeonju 54907 , Republic of Korea
| | - Minh Thanh La
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center , Chonbuk National University Medical School and Hospital , 20 Geonji-ro , Deokjin-gu, Jeonju 54907 , Republic of Korea
| | - Hea-Jong Chung
- Department of Biomedical Sciences and Institute for Medical Science , Chonbuk National University Medical School , 20 Geonji-ro , Deokjin-gu, Jeonju 54907 , Republic of Korea
| | - Sun Joo Lee
- New Drug Development Center , Daegu-Gyeongbuk Medical Innovation Foundation , 80 Cheombok-ro , Dong-gu, Daegu 41061 , Republic of Korea
| | - Sungkun Chun
- Department of Physiology , Chonbuk National University Medical School , 20 Geonji-ro , Deokjin-gu, Jeonju 54907 , Republic of Korea
| | - Sun-Hwa Lee
- New Drug Development Center , Daegu-Gyeongbuk Medical Innovation Foundation , 80 Cheombok-ro , Dong-gu, Daegu 41061 , Republic of Korea
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute , Chonbuk National University , 820-120 Hana-ro , Iksan 54531 , Republic of Korea
| | - Hee-Kwon Kim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center , Chonbuk National University Medical School and Hospital , 20 Geonji-ro , Deokjin-gu, Jeonju 54907 , Republic of Korea
- Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, 20 Geonji-ro , Deokjin-gu, Jeonju 54907 , Republic of Korea
| |
Collapse
|