1
|
Zhao Y, Ye D, Xie C, Quan H, Zheng M, Miao X. Progress in the study of chemical composition, biological activity, and its metabolism of the Picrasma quassioides. Heliyon 2024; 10:e35761. [PMID: 39170506 PMCID: PMC11337047 DOI: 10.1016/j.heliyon.2024.e35761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Picrasma quassioides (D.Don) Benn is a member of the Simaroubaceae family, which has a long history of medicinal use in China, the composition of compounds is complex, mainly including alkaloids, lignin, triterpenoids, and other compounds. As a traditional Chinese medicine, P. quassioides has pharmacological effects such as anti-inflammatory, antipyretic, antiviral, blood pressure lowering and anticancer. Scholars at home and abroad have been studying P. quassioides for about 50 years. In the present review, the research status of the chemical composition, pharmacological activity and pharmacokinetics of P. quassioides was provided, as a reference for further developing the value of P. quassioides.
Collapse
Affiliation(s)
- Yiye Zhao
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Dan Ye
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Chen Xie
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Haoyang Quan
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Min Zheng
- Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Xiaolei Miao
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| |
Collapse
|
2
|
Jia Q, Yang PY, Zhang X, Song SJ, Huang XX. Aromatic glycosides and lignans glycosides with their acetylcholinesterase inhibitory activities from the leaves of Picrasma quassioides. Fitoterapia 2024; 172:105701. [PMID: 37832877 DOI: 10.1016/j.fitote.2023.105701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
In this study, eight new natural products were isolated from the leaves of Picrasma quassioides. Spectroscopic techniques were used for the elucidation of their planar structures. Their absolute configurations were elucidated on the basis of electron circular dichroism (ECD) techniques combined with the P/M helicity rule for the 2,3-dihydrobenzofuran chromophore, and saccharide hydrolysis. Cholinesterase inhibitors are often used as Alzheimer's disease inhibitors.Thus, acetylcholinesterase and butyrylcholinesterase inhibitory activity of these eight compounds were tested, and results showed that only compound 6 showed weakly acetylcholinesterase inhibitory activity. In particular, molecular docking was used to illustrate the bindings between compound 6 and the active sites of AChE.
Collapse
Affiliation(s)
- Qi Jia
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Pei-Yuan Yang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xin Zhang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
3
|
Fan X, Han Y, Deng L, Song J, Zhu Y, Yang T, Liu T, Zhang L, Liao H. Quassinoids from Picrasma chinensis with Insecticidal Activity against Adults and Larvae of Diaphorina citri Kuwayama and Neuroprotective Effect. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:457-468. [PMID: 36542849 DOI: 10.1021/acs.jafc.2c06243] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Eleven new tetracyclic quassinoids, picrachinensin A-K (1-11), along with six known congeners, were isolated from the stems and leaves of Picrasma chinensis. Their structures were elucidated by integrated multiple spectroscopic techniques, single-crystal X-ray diffraction analysis, and electronic circular dichroism. Notably, compounds 3 and 4 are a pair of undescribed epimers, and 8 and 9 are unusual quassinoids with a hydroxymethyl group at C-13. Biologically, compound 7 exhibited insecticidal activity on both adults and larvae of Diaphorina citri Kuwayama even more effectively than the positive control (abamectin), with an LD50 of 55.69 mg/L for adults and a corrected mortality rate of 30.42 ± 2.78% for larvae (100 mg/L). According to preliminary structure-activity relationship investigations, the hydroxymethyl at the C-13 position of quassinoids was beneficial for their insecticidal activity. In addition, compounds 1, 4, and 12 exhibited excellent neuroprotective effect against H2O2-induced oxidative injury on SH-SY5Y cells, with more potent activity than the positive control (Trolox), and all the compounds exhibited no cytotoxicity to SH-SY5Y and BV-2 cells at the indicated concentrations.
Collapse
Affiliation(s)
- Xianzhe Fan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Yang Han
- Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin 541004, People's Republic of China
| | - Li Deng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Jiaqi Song
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Yangli Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Tingmi Yang
- Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin 541004, People's Republic of China
| | - Ting Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Lijun Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Haibing Liao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| |
Collapse
|
4
|
Li X, Zhao Z, Sun Z, Sun Z, Ma G, Zhao X, Xu X, Yang M, Wu X, Wu H, Zou Q, Zhang J. Cytotoxic cycloartane triterpenoid saponins from Actaea vaginata and their mechanism of action. Carbohydr Res 2022; 521:108673. [PMID: 36148696 DOI: 10.1016/j.carres.2022.108673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/02/2022]
Abstract
A further phytochemical investigation of the whole plants of Actaea vaginata afforded two new cycloartane triterpenoid saponins, (20S*,24R*)-15α,16β-diacetoxy-20,24-epoxy-9,19-cyclolanostane-3β,25-diol-3-O-β-d-xylopyranoside (1) and (20S)-15β,16β -diacetoxy-18,20-epoxy-3β,25-diol-24-oxo-9,19-cyclolanostan-3-O-β-D-xylo-pyrano-syl-25-O-β-d-glucopyranoside (2), together with four known compounds (3-6). Their structures were established on the basis of extensive analysis of NMR and HRESIMS data as well as by comparison with the reported data in the literature. All the isolates were evaluated for their cytotoxic activities against human hepatocellular carcinoma HepG2 cell line. Compounds 1 and 2 exhibited weak cytotoxicity with IC50 values of 36.10 and 27.39 μM, respectively. In addition, beesioside I (6) was found to significantly inhibit proliferation and induce apoptosis in HepG2 cells. A closer examination of underlying mechanism revealed that beesioside I could increase the levels of ROS and caspase-3 and promote phosphorylation of JNK in the JNK signaling pathway. Molecular modeling studies also shed further light on how beesioside I interacted with the key protein kinase.
Collapse
Affiliation(s)
- Xiangyuan Li
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Zixuan Zhao
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Zhaocui Sun
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Zhonghao Sun
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Guoxu Ma
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Xiaohong Zhao
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Xudong Xu
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Meihua Yang
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Xianjin Wu
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province and Key Laboratory of Hunan Higher Education for Western Hunan Medicinal Plant and Ethnobotany, Huaihua University, Huaihua, 418008, China
| | - Haifeng Wu
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province and Key Laboratory of Hunan Higher Education for Western Hunan Medicinal Plant and Ethnobotany, Huaihua University, Huaihua, 418008, China.
| | - Qiongyu Zou
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province and Key Laboratory of Hunan Higher Education for Western Hunan Medicinal Plant and Ethnobotany, Huaihua University, Huaihua, 418008, China.
| | - Ji Zhang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection/Jiangsu Key Laboratory for Eco-Agricultura Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China.
| |
Collapse
|
5
|
Zhang Y, Sui M, Bai Z, Zhou D, Lin B, Chen G, Hou Y, Li N. Study on components with neuroinflammation inhibitory activities from Croton tiglium L. var. xiaopadou. Chem Biodivers 2022; 19:e202200473. [PMID: 35931661 DOI: 10.1002/cbdv.202200473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/05/2022] [Indexed: 11/12/2022]
Abstract
An undescribed tigliane diterpenoid 12- O -tiglyl-13-acetyl-17- O -tiglyl-phorbol, together with thirty-three known components, were isolated from the stems of Croton tiglium L. var. xiaopadou (Euphorbiaceae). Their structures were established based on spectroscopic data and calculated ECD spectra. Their anti-neuroinflammatory effects were evaluated in LPS-induced BV-2 microglia. Thirteen tested compounds showed significant inhibitory activities, especially compounds 10 , 16 , 18 and 21 exhibited an inhibitory effect with IC 50 values in the range of 12.39 to 17.80 μM, which are comparable with that of the positive control (minocycline, IC 50 13.92 μM).
Collapse
Affiliation(s)
- Yanping Zhang
- Shenyang Pharmaceutical University, School of Traditional Chinese Materia Medica, Wenhua Road 103, Shenyang, CHINA
| | - Minghao Sui
- Shenyang Pharmaceutical University, School of Traditional Chinese Materia Medica, Wenhua Road 103, Shenyang, CHINA
| | - Zisong Bai
- Northeastern University, College of Life and Health Sciences, Shenyang 110004, Shenyang, CHINA
| | - Di Zhou
- Shenyang Pharmaceutical University, School of Traditional Chinese Materia Medica, Wenhua Road 103, Shenyang, CHINA
| | - Bin Lin
- Shenyang Pharmaceutical University, School of Pharmaceutical Engineering, Wenhua Road 103, Shenyang, CHINA
| | - Gang Chen
- Shenyang Pharmaceutical University, School of Traditional Chinese Materia Medica, Wenhua Road 103, Shenyang, CHINA
| | - Yue Hou
- Northeastern University, College of Life and Health Sciences, Shenyang 110004, Shenyang, CHINA
| | - Ning Li
- Shenyang Pharmaceutical University, School of Traditional Chinese Materia Medica , Key Laboratory of Structure-Based Drug Design and Discovery, Wenhua Road 103, Not Available, 110016, Shenyang, CHINA
| |
Collapse
|
6
|
Yu JH, Yu ZP, Capon RJ, Zhang H. Natural Enantiomers: Occurrence, Biogenesis and Biological Properties. Molecules 2022; 27:1279. [PMID: 35209066 PMCID: PMC8880303 DOI: 10.3390/molecules27041279] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 02/01/2023] Open
Abstract
The knowledge that natural products (NPs) are potent and selective modulators of important biomacromolecules (e.g., DNA and proteins) has inspired some of the world's most successful pharmaceuticals and agrochemicals. Notwithstanding these successes and despite a growing number of reports on naturally occurring pairs of enantiomers, this area of NP science still remains largely unexplored, consistent with the adage "If you don't seek, you don't find". Statistically, a rapidly growing number of enantiomeric NPs have been reported in the last several years. The current review provides a comprehensive overview of recent records on natural enantiomers, with the aim of advancing awareness and providing a better understanding of the chemical diversity and biogenetic context, as well as the biological properties and therapeutic (drug discovery) potential, of enantiomeric NPs.
Collapse
Affiliation(s)
- Jin-Hai Yu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (J.-H.Y.); (Z.-P.Y.)
| | - Zhi-Pu Yu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (J.-H.Y.); (Z.-P.Y.)
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Hua Zhang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
7
|
Hu H, Hu C, Peng J, Ghosh AK, Khan A, Sun D, Luyten W. Bioassay-Guided Interpretation of Antimicrobial Compounds in Kumu, a TCM Preparation From Picrasma quassioides' Stem via UHPLC-Orbitrap-Ion Trap Mass Spectrometry Combined With Fragmentation and Retention Time Calculation. Front Pharmacol 2021; 12:761751. [PMID: 34776978 PMCID: PMC8581800 DOI: 10.3389/fphar.2021.761751] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/16/2021] [Indexed: 12/03/2022] Open
Abstract
The stem of Picrasma quassioides (PQ) was recorded as a prominent traditional Chinese medicine, Kumu, which was effective for microbial infection, inflammation, fever, and dysentery, etc. At present, Kumu is widely used in China to develop different medicines, even as injection (Kumu zhusheye), for combating infections. However, the chemical basis of its antimicrobial activity has still not been elucidated. To examine the active chemicals, its stem was extracted to perform bioassay-guided purification against Staphylococcus aureus and Escherichia coli. In this study, two types of columns (normal and reverse-phase) were used for speedy bioassay-guided isolation from Kumu, and the active peaks were collected and identified via an UHPLC-Orbitrap-Ion Trap Mass Spectrometer, combined with MS Fragmenter and ChromGenius. For identification, the COCONUT Database (largest database of natural products) and a manually built PQ database were used, in combination with prediction and calculation of mass fragmentation and retention time to better infer their structures, especially for isomers. Moreover, three standards were analyzed under different conditions for developing and validating the MS method. A total of 25 active compounds were identified, including 24 alkaloids and 1 triterpenoid against S. aureus, whereas only β-carboline-1-carboxylic acid and picrasidine S were active against E. coli. Here, the good antimicrobial activity of 18 chemicals was reported for the first time. Furthermore, the spectrum of three abundant β-carbolines was assessed via their IC50 and MBC against various human pathogens. All of them exhibited strong antimicrobial activities with good potential to be developed as antibiotics. This study clearly showed the antimicrobial chemical basis of Kumu, and the results demonstrated that HRMS coupled with MS Fragmenter and ChromGenius was a powerful tool for compound analysis, which can be used for other complex samples. Beta-carbolines reported here are important lead compounds in antibiotic discovery.
Collapse
Affiliation(s)
- Haibo Hu
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Leuven, Belgium.,National Engineering Research Center for Modernization of Traditional Chinese Medicine - Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Changling Hu
- Laboratory for Functional Foods and Human Health, Center for Excellence in Postharvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC, United States
| | - Jinnian Peng
- National Engineering Research Center for Modernization of Traditional Chinese Medicine - Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Alokesh Kumar Ghosh
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Leuven, Belgium
| | - Ajmal Khan
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Leuven, Belgium
| | - Dan Sun
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Leuven, Belgium.,College of Life Sciences, NanKai University, Tianjin, China
| | - Walter Luyten
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Velmurugan BK, Lin JT, Mahalakshmi B, Lin CC, Chuang YC, Lo YS, Ho HY, Hsieh MJ, Chen MK. Dehydrocrenatidine inhibits head and neck cancer cells invasion and migration by modulating JNK1/2 and ERK1/2 pathway and decreases MMP-2 expression. ENVIRONMENTAL TOXICOLOGY 2021; 36:1848-1856. [PMID: 34076342 DOI: 10.1002/tox.23305] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Head and neck cancer is associated with poor prognosis because of its highly metastatic nature. For the better management of head and neck cancer patients, it is very important to diagnose the cancer at an early stage, as well as to prevent the rapid spread of cancer either through direct invasion or lymphatic metastasis. In present study, the effect of dehydrocrenatidine, which is a beta-carboline alkaloid found in the medicinal plant Picrasma quassioides, on human head and neck cancer metastasis was investigated. The study results revealed the treatment of FaDu, SCC9, and SCC47 cells with 5, 10, and 20 μM of dehydrocrenatidine significantly decreased the motility, migration, and invasion of head and neck cancer cells. Moreover, the dehydrocrenatidine treatment significantly decreased the expression of MMP-2 and phosphorylation of ERK1/2 and JNK1/2. Additional experiments revealed that the cotreatment of dehydrocrenatidine with either ERK1/2 or JNK1/2 inhibitor caused further reduction in cancer cell motility and migration compared to that in dehydrocrenatidine treatment alone. Moreover, similar trend was observed in case of ERK1/2 and JNK1/2 phosphorylation and MMP-2 expression after the cotreatment. Taken together, the mechanism by which dehydrocrenatidine can decrease the phosphorylation of ERK1/2 and JNK1/2, follow decrease the expression of MMP-2 and inhibits head and neck cancer cells invasion and migration. This present study identifies dehydrocrenatidine as a potent antimetastatic agent that can be used clinically to improve head and neck cancer prognosis.
Collapse
Affiliation(s)
| | - Jen-Tsun Lin
- Division of Hematology and Oncology, Department of Medicine, Changhua Christian Hospital, Changhua, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Post Baccalaureate Medicine, National Chung Hsing University, Taichung, Taiwan
| | - B Mahalakshmi
- Department of Research and Development, Vels Publishers, Tamilnadu, India
| | - Chia-Chieh Lin
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Yi-Ching Chuang
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Yu-Sheng Lo
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Hsin-Yu Ho
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Ming-Ju Hsieh
- Post Baccalaureate Medicine, National Chung Hsing University, Taichung, Taiwan
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Mu-Kuan Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
| |
Collapse
|
9
|
Gong YX, Liu Y, Jin YH, Jin MH, Han YH, Li J, Shen GN, Xie DP, Ren CX, Yu LY, Lee DS, Kim JS, Jo YJ, Kwon J, Lee J, Park YH, Kwon T, Cui YD, Sun HN. Picrasma quassioides Extract Elevates the Cervical Cancer Cell Apoptosis Through ROS-Mitochondrial Axis Activated p38 MAPK Signaling Pathway. In Vivo 2021; 34:1823-1833. [PMID: 32606152 DOI: 10.21873/invivo.11977] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/24/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND/AIM Picrasma quassioides (P. quassioides) is used in traditional Asian medicine widely for the treatment of anemopyretic cold, eczema, nausea, loss of appetite, diabetes mellitus, hypertension etc. In this study we aimed to understand the effect of P. quassioides ethanol extract on SiHa cervical cancer cell apoptosis. MATERIALS AND METHODS The P. quassioides extract-induced apoptosis was analyzed using the MTT assay, fluorescence microscopy, flow cytometry and western blotting. RESULTS P. quassioides extract induced cellular apoptosis by increasing the accumulation of cellular and mitochondrial reactive oxygen species (ROS) levels and inhibiting ATP synthesis. Pretreatment with N-Acetylcysteine (NAC), a classic antioxidant, decreased the intracellular ROS production and inhibited apoptosis. In addition, the P38 MAPK signaling pathway is a key in the apoptosis of SiHa cells induced by the P. quassioides extract. CONCLUSION The P. quassioides extract exerts its anti-cancer properties on SiHa cells through ROS-mitochondria axis and P38 MAPK signaling. Our data provide a new insight for P. quassioides as a therapeutic strategy for cervical cancer treatment.
Collapse
Affiliation(s)
- Yi-Xi Gong
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, P.R. China
| | - Yue Liu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, P.R. China
| | - Ying-Hua Jin
- Library and Information Center, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Mei-Hua Jin
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, P.R. China
| | - Ying-Hao Han
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, P.R. China
| | - Jing Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, P.R. China
| | - Gui-Nan Shen
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, P.R. China
| | - Dan-Ping Xie
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, P.R. China
| | - Chen-Xi Ren
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, P.R. China
| | - Li-Yun Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, P.R. China
| | - Dong-Seok Lee
- School of Life Sciences, KNU Creative BioResearch Group (BK21 plus project), Kyungpook National University, Daegu, Republic of Korea
| | - Ji-Su Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Yu-Jin Jo
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Jeongwoo Kwon
- Department of Animal Sciences, Chungbuk Natonal University, Cheongju, Republic of Korea
| | - Jaihyung Lee
- Haeam Convalescence Hospital, Gyeonggi, Republic of Korea
| | - Yang Ho Park
- Park Yang Ho BRM Institute, Seoul, Republic of Korea
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Republic of Korea
| | - Yu-Dong Cui
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, P.R. China
| | - Hu-Nan Sun
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Heilongjiang, Daqing, P.R. China
| |
Collapse
|
10
|
Paudel SB, Han AR, Choi H, Nam JW. Phytochemical constituents of leaves and twigs of Elaeagnus umbellata. BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2020.104178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Zhang DD, Bai M, Yan ZY, Huang XX, Song SJ. Chemical constituents from Ailanthus altissima (Mill.) Swingle and chemotaxonomic significance. BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2020.104174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
12
|
Mohd Jamil MDH, Taher M, Susanti D, Rahman MA, Zakaria ZA. Phytochemistry, Traditional Use and Pharmacological Activity of Picrasma quassioides: A Critical Reviews. Nutrients 2020; 12:nu12092584. [PMID: 32858812 PMCID: PMC7551903 DOI: 10.3390/nu12092584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 01/04/2023] Open
Abstract
Picrasma quassioides is a member of the Simaroubaceae family commonly grown in the regions of Asia, the Himalayas, and India and has been used as a traditional herbal medicine to treat various illnesses such as fever, gastric discomfort, and pediculosis. This study aims to critically review the presence of phytochemicals in P. quassioides and correlate their pharmacological activities with the significance of its use as traditional medicine. Data were collected by reviewing numerous scientific articles from several journal databases on the pharmacological activities of P. quassioides using certain keywords. As a result, approximately 94 phytochemicals extracted from P. quassioides were found to be associated with quassinoids, β-carbolines and canthinones. These molecules exhibited various pharmacological benefits such as anti-inflammatory, antioxidant, anti-cancer, anti-microbial, and anti-parasitic activities which help to treat different diseases. However, P. quassioides were also found to have several toxicity effects in high doses, although the evidence regarding these effects is limited in proving its safe use and efficacy as herbal medicine. Accordingly, while it can be concluded that P. quassioides may have many potential pharmacological benefits with more phytochemistry discoveries, further research is required to determine its real value in terms of quality, safety, and efficacy of use.
Collapse
Affiliation(s)
- Muhammad Daniel Hakim Mohd Jamil
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia;
| | - Muhammad Taher
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia;
- Correspondence: (M.T.); (D.S.); (Z.A.Z.); Tel.: +60-(09)-5704842 (M.T.); +60-(19)-2117090 (Z.A.Z.)
| | - Deny Susanti
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Kuantan 25200, Malaysia
- Correspondence: (M.T.); (D.S.); (Z.A.Z.); Tel.: +60-(09)-5704842 (M.T.); +60-(19)-2117090 (Z.A.Z.)
| | - Md Atiar Rahman
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh;
| | - Zainul Amiruddin Zakaria
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
- Correspondence: (M.T.); (D.S.); (Z.A.Z.); Tel.: +60-(09)-5704842 (M.T.); +60-(19)-2117090 (Z.A.Z.)
| |
Collapse
|
13
|
Flourat AL, Peru AAM, Haudrechy A, Renault JH, Allais F. First Total Synthesis of (β-5)-(β- O-4) Dihydroxytrimer and Dihydrotrimer of Coniferyl Alcohol (G): Advanced Lignin Model Compounds. Front Chem 2019; 7:842. [PMID: 31921767 PMCID: PMC6913187 DOI: 10.3389/fchem.2019.00842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/19/2019] [Indexed: 11/13/2022] Open
Abstract
To investigate lignin degradation, scientists commonly use model compounds. Unfortunately, these models are most of the time simple β-O-4 dimers and do not sufficiently mimic the wide complexity of lignin structure (i.e., aliphatic side chains and robust C-C bonds). Herein, we present a methodology to access advanced lignin models through the first synthesis of two trimers of monolignol G—possessing side-chains and both robust β-5 bond and labile β-O-4 bond—via a chemo-enzymatic pathway. Key steps were (1) the C-C coupling via laccase-mediated oxidation, (2) the C-O coupling via a simple SN2 between a phenolate and a bromoketoester, and (3) a modified Upjohn dihydroxylation or a palladium-catalyzed hydrogenation. (β-5)-(β-O-4) dihydroxytrimer and dihydrotrimer of coniferyl alcohol (G) were obtained in good global yield, 9 and 20%, respectively, over nine steps starting from ferulic acid.
Collapse
Affiliation(s)
- Amandine L Flourat
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle, France.,Université de Reims Champagne Ardenne, CNRS, Institut de Chimie Moléculaire de Reims, UMR 7312, SFR Condorcet FR CNRS 3417, Reims, France
| | - Aurélien A M Peru
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle, France
| | - Arnaud Haudrechy
- Université de Reims Champagne Ardenne, CNRS, Institut de Chimie Moléculaire de Reims, UMR 7312, SFR Condorcet FR CNRS 3417, Reims, France
| | - Jean-Hugues Renault
- Université de Reims Champagne Ardenne, CNRS, Institut de Chimie Moléculaire de Reims, UMR 7312, SFR Condorcet FR CNRS 3417, Reims, France
| | - Florent Allais
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle, France
| |
Collapse
|
14
|
Zálešák F, Bon DJYD, Pospíšil J. Lignans and Neolignans: Plant secondary metabolites as a reservoir of biologically active substances. Pharmacol Res 2019; 146:104284. [PMID: 31136813 DOI: 10.1016/j.phrs.2019.104284] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/19/2022]
Abstract
Lignans and neolignans are plant secondary metabolites derived from the oxidative coupling of phenylpropanoids. Biological activity of these phenolic compounds ranges from antioxidant, antitumor (terminaloside P, IC50 = 10 nM), anti-inflammatory, anti-neurodegenerative (schibitubin B, IC50 = 3.2 nM) and antiviral (patentiflorin A, IC50 = 14-23 nM) to antimicrobial. In addition, it was observed that several members of this group, namely enterolactone and its biochemical precursors also known as phytoestrogens, possess important protective properties. Most of these lignans and neolignans are presented in reasonable amounts in one's diet and thus the protection they provide against the colon and breast cancer, to name a few, is even more important to note. Similarly, neuroprotective properties were observed (schisanwilsonin G, IC50 = 3.2 nM) These structural motives also serve as an important starting point in the development of anticancer drugs. Presumably the most famous members of this family, etoposide and teniposide, synthetic derivatives of podophyllotoxin, are used in the clinical treatment of lymphocytic leukemia, certain brain tumors, and lung tumors already for nearly 20 years. This review describes 413 lignans and neolignans which have been isolated between 2016 and mid-2018 being reported in more than 300 peer-reviewed articles. It covers their source, structure elucidation, and bioactivity. Within the review, the structure-based overview of compounds as well as the bioactivity-based overview of compounds are described.
Collapse
Affiliation(s)
- František Zálešák
- Department of Organic Chemistry, Faculty of Science, Palacky University, tř. 17. listopadu 1192/12, CZ-771 46 Olomouc, Czech Republic.
| | - David Jean-Yves Denis Bon
- Department of Organic Chemistry, Faculty of Science, Palacky University, tř. 17. listopadu 1192/12, CZ-771 46 Olomouc, Czech Republic.
| | - Jiří Pospíšil
- Department of Organic Chemistry, Faculty of Science, Palacky University, tř. 17. listopadu 1192/12, CZ-771 46 Olomouc, Czech Republic; Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic.
| |
Collapse
|
15
|
Odonbayar B, Murata T, Suganuma K, Ishikawa Y, Buyankhishig B, Batkhuu J, Sasaki K. Acylated Lignans Isolated from Brachanthemum gobicum and Their Trypanocidal Activity. JOURNAL OF NATURAL PRODUCTS 2019; 82:774-784. [PMID: 30896183 DOI: 10.1021/acs.jnatprod.8b00670] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Eight isovaleryllignans (1-4 and 8-11), three isovalerylphenylpropanoids (5-7), three known lignans (12-14), and four known compounds were isolated from an extract of the aerial part of Brachanthemum gobicum. The structures of the isolated compounds were elucidated based on NMR and MS data analyses. The enantiomers of compounds 1-3, 5, 8, and 9 were isolated using chiral-phase HPLC, and the absolute configurations of 1a/1b-3a/3b, 5a/5b, 8a/8b, and 9a/9b were elucidated from their optical rotations and ECD spectra; the other lignans were assumed to be racemic or scalemic by chiral-phase HPLC analyses and optical rotation data. Some of the acylated lignans (racemic mixtures) (1-4, 8, 9, and 12-14) exhibited moderate inhibitory activities against Trypanosoma congolense, the causative agent of nagana disease in animals.
Collapse
Affiliation(s)
- Batsukh Odonbayar
- Department of Pharmacognosy , Tohoku Medical and Pharmaceutical University , Aoba-ku, Sendai 981-8558 , Japan
| | - Toshihiro Murata
- Department of Pharmacognosy , Tohoku Medical and Pharmaceutical University , Aoba-ku, Sendai 981-8558 , Japan
| | | | - Yoshinobu Ishikawa
- School of Pharmaceutical Sciences , University of Shizuoka , 52-1, Yada , Suruga-ku , Shizuoka 422-8526 , Japan
| | - Buyanmandakh Buyankhishig
- Department of Pharmacognosy , Tohoku Medical and Pharmaceutical University , Aoba-ku, Sendai 981-8558 , Japan
| | - Javzan Batkhuu
- School of Engineering and Applied Sciences , National University of Mongolia , POB-617, Ulaanbaatar -46A, 14201 , Mongolia
| | - Kenroh Sasaki
- Department of Pharmacognosy , Tohoku Medical and Pharmaceutical University , Aoba-ku, Sendai 981-8558 , Japan
| |
Collapse
|
16
|
Chen X, Xu PS, Zou ZX, Liu Y, Zhou WH, Ren Q, Li D, Li XM, Xu KP, Tan GS. Sinensiols B-G, six novel neolignans from Selaginella sinensis. Fitoterapia 2019; 134:256-263. [DOI: 10.1016/j.fitote.2019.02.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 01/13/2023]
|
17
|
Ma C, Wang Y, Dong F, Wang Z, Zhao Y, Shan Y, Gu W, Wang S. Synthesis and antitumor activity of isolongifoleno[7,8-d]thiazolo[3,2-a]pyrimidine derivatives via enhancing ROS level. Chem Biol Drug Des 2019; 94:1457-1466. [PMID: 30920166 DOI: 10.1111/cbdd.13522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/25/2019] [Accepted: 03/05/2019] [Indexed: 11/30/2022]
Abstract
A series of novel isolongifoleno[7,8-d]thiazolo[3,2-a]pyrimidine derivatives (4a-4x) were synthesized from isolongifolanone according fragment-based design strategy, and their anticancer activity against human aortic smooth muscle cells (HASMC), human breast cancer (MCF-7) cells, human cervical cancer (HeLa) cells, and human liver cancer (HepG2) cells were investigated. Results of the anticancer activity illustrated that most of the compounds showed potent antitumor activity and compound 4i proved to be the most active derivative with IC50 values of 0.33 ± 0.24 (for MCF-7 cells), 0.52 ± 0.13 (for HeLa cells), and 3.09 ± 0.11 μM (for HepG2 cells), respectively. Moreover, we assessed the effects of 4i on cell apoptosis, cell cycle distribution, mitochondrial membrane potential, and reactive oxygen species (ROS) generation. The results indicated that compound 4i altered mitochondrial membrane potential and produced ROS leading to cell apoptosis of MCF-7 cells in a dose-dependent manner, however, without affecting cell cycle progression. These findings suggested that 4i was an effective compound and provided a promising candidate for anticancer drugs.
Collapse
Affiliation(s)
- Chonghui Ma
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Yunyun Wang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Fuhao Dong
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Zhonglong Wang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Yuxun Zhao
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Yu Shan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Wen Gu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China.,Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Shifa Wang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China.,Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
18
|
Cytisine-Pterocarpan-Derived Compounds: Biomimetic Synthesis and Apoptosis-Inducing Activity in Human Breast Cancer Cells. Molecules 2018; 23:molecules23123059. [PMID: 30467293 PMCID: PMC6321416 DOI: 10.3390/molecules23123059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/13/2018] [Accepted: 11/20/2018] [Indexed: 12/15/2022] Open
Abstract
Cytisine-pterocarpan derived compounds were biomimetically synthesized with (-)-cytisine and (-)-maackiain via a N,N-4-dimethyl-4-aminopyridine (DMAP)-mediated synthetic strategy in a mild manner. In the present study, tonkinensine B (4) was elaborated in good and high yields with the optimized reaction conditions. The in vitro cytotoxicity of compound 4 was evaluated against breast cancer cell lines and showed that 4 had a better cytotoxicity against MDA-MB-231 cells (IC50 = 19.2 μM). Depending on the research on cytotoxicities of 4 against RAW 264.7 and BV2 cells, it was suggested that 4 produced low cytotoxic effects on the central nervous system. Further study indicated that 4 demonstrated cytotoxic activity against MDA-MB-231 cells and the cytotoxic activity was induced by apoptosis. The results implied that the apoptosis might be induced by mitochondrion-mediated apoptosis via regulating the ratio of Bax/Bcl-2 and promoting the release of cytochrome c from the mitochondrion to the cytoplasm in MDA-MB-231 cells.
Collapse
|
19
|
Three New Iridoid Derivatives Have Been Isolated from the Stems of Neonauclea reticulata (Havil.) Merr. with Cytotoxic Activity on Hepatocellular Carcinoma Cells. Molecules 2018; 23:molecules23092297. [PMID: 30205569 PMCID: PMC6225429 DOI: 10.3390/molecules23092297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 08/26/2018] [Accepted: 09/06/2018] [Indexed: 11/26/2022] Open
Abstract
Three new iridoids, namely neonanin A (1), neonanin B (2) and neoretinin A (3), as well as twelve known compounds, 6-hydroxy-7-methyl-1-oxo-4-carbomethoxyoctahydrocyclopenta[c]pyran (4), 4-epi-alyxialactone (5), loganetin (6), loganin (7), phenylcoumaran-α′-aldehyde (8), cleomiscosin A (9), ficusal (10), balanophonin (11), vanillic acid (12), p-coumaric acid (13), cis,trans-abscisic acid (14), and trans,trans-abscisic acid (15) were isolated from the stems of Neonauclea reticulata (Havil.) Merr. These new structures were determined by the detailed analysis of spectroscopic data and comparison with the data of known analogues. Compounds 1–13 were evaluated using an in-vitro MTT cytotoxic assay for hepatocellular carcinoma (HCC) cells, and the preliminary results showed that ficusal (10), balanophonin (11), and p-coumaric acid (13) exhibited moderate cytotoxic activity, with EC50 values of 85.36 ± 4.36, 92.63 ± 1.41, and 29.18 ± 3.48 µg/mL against Hep3B cells, respectively.
Collapse
|