1
|
Wang L, Zhang Z, Yu D, Yang L, Li L, He Y, Shi J. Recent research of BTK inhibitors: Methods of structural design, pharmacological activities, manmade derivatives and structure-activity relationship. Bioorg Chem 2023; 138:106577. [PMID: 37178649 DOI: 10.1016/j.bioorg.2023.106577] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Protein kinases constitute the largest group within the kinase family, and mutations and translocations of protein kinases due to genetic alterations are intimately linked to the pathogenesis of numerous diseases. Bruton's tyrosine kinase (BTK) is a member of the protein kinases and plays a pivotal role in the development and function of B cells. BTK belongs to the tyrosine TEC family. The aberrant activation of BTK is closely associated with the pathogenesis of B-cell lymphoma. Consequently, BTK has always been a critical target for treating hematological malignancies. To date, two generations of small-molecule covalent irreversible BTK inhibitors have been employed to treat malignant B-cell tumors, and have exhibited clinical efficacy in hitherto refractory diseases. However, these drugs are covalent BTK inhibitors, which inevitably lead to drug resistance after prolonged use, resulting in poor tolerance in patients. The third-generation non-covalent BTK inhibitor Pirtobrutinib has obtained approval for marketing in the United States, thereby circumventing drug resistance caused by C481 mutation. Currently, enhancing safety and tolerance constitutes the primary issue in developing novel BTK inhibitors. This article systematically summarizes recently discovered covalent and non-covalent BTK inhibitors and classifies them according to their structures. This article also provides a detailed discussion of binding modes, structural features, pharmacological activities, advantages and limitations of typical compounds within each structure type, providing valuable references and insights for developing safer, more effective and more targeted BTK inhibitors in future studies.
Collapse
Affiliation(s)
- Lin Wang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Zhengjie Zhang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Dongke Yu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Liuqing Yang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Ling Li
- School of Comprehensive Health Management, Xihua University, Chengdu, Sichuan 610039, China.
| | - Yuxin He
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China.
| |
Collapse
|
2
|
Prabaharan R, Rengan R, Thangavel SK, Małecki JG. Exploration of Antiproliferative Activity and Apoptosis Induction of New Nickel(II) Complexes Encompassing Carbazole Ligands. ACS OMEGA 2023; 8:12584-12591. [PMID: 37033823 PMCID: PMC10077545 DOI: 10.1021/acsomega.3c01252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
To attest the effectiveness of nickel complexes as anticancer drug candidates with minimum side effects, the present investigation describes the facile synthesis and anticancer activities of nickel(II) complexes enriched with three derivatives of carbazolone-based benzhydrazone ligands(L) having a [Ni(L)2] composition. Analytical and spectral techniques were used to characterize the synthesized Ni(II) complexes. The single-crystal X-ray diffraction performed for complex 4 confirmed the square planar geometry with a [Ni(κ2-N,O-L)2] arrangement. The MTT assay was carried out for the complexes to determine in vitro cytotoxicity against cancerous human-cervical carcinoma, human-colon carcinoma, and non-cancerous L929 (fibroblast) cells. All three complexes exhibited good toxicity against the cancer cells with a low IC50 concentration. Complex 4, containing -OCH3 fragment, exhibits high lipophilicity and revealed exceptional cytotoxicity against cancer cells. AO-EB fluorescent staining indicated apoptosis-associated cell morphological changes after exposure to complex 4. The apoptosis induction was further confirmed by a HOECHST-33342 fluorescent staining technique via chromosomal condensation and nuclear fragmentation. Further, reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) mechanistic studies revealed that complex 4 can raise ROS levels and reduce MMP and promote mitochondrial dysfunction-mediated apoptotic cell death. Further, stimulation of late apoptosis by complex 4 in cervical cancer cells was quantitatively differentiated through the staining of phosphatidylserine externalization by flow cytometry. Furthermore, the ELISA analysis confirmed that complex 4 induced apoptosis through caspase activation.
Collapse
Affiliation(s)
- Ramya Prabaharan
- Centre
for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Ramesh Rengan
- Centre
for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Sathiya Kamatchi Thangavel
- Centre
for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Jan Grzegorz Małecki
- Department
of Crystallography, Institute of Chemistry, University of Silesia, Katowice 40-006, Poland
| |
Collapse
|
7
|
von Hundelshausen P, Siess W. Bleeding by Bruton Tyrosine Kinase-Inhibitors: Dependency on Drug Type and Disease. Cancers (Basel) 2021; 13:1103. [PMID: 33806595 PMCID: PMC7961939 DOI: 10.3390/cancers13051103] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Bruton tyrosine kinase (Btk) is expressed in B-lymphocytes, myeloid cells and platelets, and Btk-inhibitors (BTKi) are used to treat patients with B-cell malignancies, developed against autoimmune diseases, have been proposed as novel antithrombotic drugs, and been tested in patients with severe COVID-19. However, mild bleeding is frequent in patients with B-cell malignancies treated with the irreversible BTKi ibrutinib and the recently approved 2nd generation BTKi acalabrutinib, zanubrutinib and tirabrutinib, and also in volunteers receiving in a phase-1 study the novel irreversible BTKi BI-705564. In contrast, no bleeding has been reported in clinical trials of other BTKi. These include the brain-penetrant irreversible tolebrutinib and evobrutinib (against multiple sclerosis), the irreversible branebrutinib, the reversible BMS-986142 and fenebrutinib (targeting rheumatoid arthritis and lupus erythematodes), and the reversible covalent rilzabrutinib (against pemphigus and immune thrombocytopenia). Remibrutinib, a novel highly selective covalent BTKi, is currently in clinical studies of autoimmune dermatological disorders. This review describes twelve BTKi approved or in clinical trials. By focusing on their pharmacological properties, targeted disease, bleeding side effects and actions on platelets it attempts to clarify the mechanisms underlying bleeding. Specific platelet function tests in blood might help to estimate the probability of bleeding of newly developed BTKi.
Collapse
Affiliation(s)
- Philipp von Hundelshausen
- Institute for Cardiovascular Prevention, Ludwig-Maximilians University (LMU), 80336 Munich, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Wolfgang Siess
- Institute for Cardiovascular Prevention, Ludwig-Maximilians University (LMU), 80336 Munich, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| |
Collapse
|
8
|
Ong LL, Vasta JD, Monereau L, Locke G, Ribeiro H, Pattoli MA, Skala S, Burke JR, Watterson SH, Tino JA, Meisenheimer PL, Arey B, Lippy J, Zhang L, Robers MB, Tebben A, Chaudhry C. A High-Throughput BRET Cellular Target Engagement Assay Links Biochemical to Cellular Activity for Bruton's Tyrosine Kinase. SLAS DISCOVERY 2019; 25:176-185. [PMID: 31709883 DOI: 10.1177/2472555219884881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Protein kinases are intensely studied mediators of cellular signaling. While traditional biochemical screens are capable of identifying compounds that modulate kinase activity, these assays are limited in their capability of predicting compound behavior in a cellular environment. Here, we aim to bridge target engagement and compound-cellular phenotypic behavior by utilizing a bioluminescence resonance energy transfer (BRET) assay to characterize target occupancy within living cells for Bruton's tyrosine kinase (BTK). Using a diverse chemical set of BTK inhibitors, we determine intracellular engagement affinity profiles and successfully correlate these measurements with BTK cellular functional readouts. In addition, we leveraged the kinetic capability of this technology to gain insight into in-cell target residence time and the duration of target engagement, and to explore a structural hypothesis.
Collapse
Affiliation(s)
- L L Ong
- Leads Discovery and Optimization, Bristol Myers Squibb, Princeton, NJ, USA
| | - J D Vasta
- Promega Corporation, Madison, WI, USA
| | - L Monereau
- Leads Discovery and Optimization, Bristol Myers Squibb, Princeton, NJ, USA
| | - G Locke
- Leads Discovery and Optimization, Bristol Myers Squibb, Princeton, NJ, USA
| | - H Ribeiro
- Leads Discovery and Optimization, Bristol Myers Squibb, Princeton, NJ, USA
| | - M A Pattoli
- Immunoscience Discovery Biology, Bristol Myers Squibb, Princeton, NJ, USA
| | - S Skala
- Immunoscience Discovery Biology, Bristol Myers Squibb, Princeton, NJ, USA
| | - J R Burke
- Immunoscience Discovery Biology, Bristol Myers Squibb, Princeton, NJ, USA
| | - S H Watterson
- Immunosciences Discovery Chemistry, Bristol Myers Squibb, Princeton, NJ, USA
| | - J A Tino
- Immunosciences Discovery Chemistry, Bristol Myers Squibb, Princeton, NJ, USA
| | | | - B Arey
- Leads Discovery and Optimization, Bristol Myers Squibb, Princeton, NJ, USA
| | - J Lippy
- Leads Discovery and Optimization, Bristol Myers Squibb, Princeton, NJ, USA
| | - L Zhang
- Leads Discovery and Optimization, Bristol Myers Squibb, Princeton, NJ, USA
| | | | - A Tebben
- Molecular Structure and Design, Molecular Discovery Technologies, Bristol Myers Squibb, Princeton, NJ, USA
| | - C Chaudhry
- Leads Discovery and Optimization, Bristol Myers Squibb, Princeton, NJ, USA
| |
Collapse
|
9
|
Watterson SH, Liu Q, Beaudoin Bertrand M, Batt DG, Li L, Pattoli MA, Skala S, Cheng L, Obermeier MT, Moore R, Yang Z, Vickery R, Elzinga PA, Discenza L, D’Arienzo C, Gillooly KM, Taylor TL, Pulicicchio C, Zhang Y, Heimrich E, McIntyre KW, Ruan Q, Westhouse RA, Catlett IM, Zheng N, Chaudhry C, Dai J, Galella MA, Tebben AJ, Pokross M, Li J, Zhao R, Smith D, Rampulla R, Allentoff A, Wallace MA, Mathur A, Salter-Cid L, Macor JE, Carter PH, Fura A, Burke JR, Tino JA. Discovery of Branebrutinib (BMS-986195): A Strategy for Identifying a Highly Potent and Selective Covalent Inhibitor Providing Rapid in Vivo Inactivation of Bruton’s Tyrosine Kinase (BTK). J Med Chem 2019; 62:3228-3250. [DOI: 10.1021/acs.jmedchem.9b00167] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Scott H. Watterson
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Qingjie Liu
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Myra Beaudoin Bertrand
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Douglas G. Batt
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Ling Li
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Mark A. Pattoli
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Stacey Skala
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Lihong Cheng
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Mary T. Obermeier
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Robin Moore
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Zheng Yang
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Rodney Vickery
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Paul A. Elzinga
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Lorell Discenza
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Celia D’Arienzo
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Kathleen M. Gillooly
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Tracy L. Taylor
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Claudine Pulicicchio
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Yifan Zhang
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Elizabeth Heimrich
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Kim W. McIntyre
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Qian Ruan
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Richard A. Westhouse
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Ian M. Catlett
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Naiyu Zheng
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Charu Chaudhry
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Jun Dai
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Michael A. Galella
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Andrew J. Tebben
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Matt Pokross
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Jianqing Li
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Rulin Zhao
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Daniel Smith
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Richard Rampulla
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Alban Allentoff
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Michael A. Wallace
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Arvind Mathur
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Luisa Salter-Cid
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - John E. Macor
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Percy H. Carter
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Aberra Fura
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - James R. Burke
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Joseph A. Tino
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| |
Collapse
|