1
|
Shtaiwi A. Thiadiazine-thiones as inhibitors of leishmania pteridine reductase (PTR1) target: investigations and in silico approach. J Biomol Struct Dyn 2024; 42:8588-8597. [PMID: 37578348 DOI: 10.1080/07391102.2023.2246589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 08/05/2023] [Indexed: 08/15/2023]
Abstract
Leishmaniasis is a widespread parasitic disease and is one of the major public health concerns in developing countries. Many drugs have been identified for leishmania as targets, but the potential toxicity and long-term treatment remain the most significant problems in terms of further development. The present study employed physicochemical investigations, structure-based virtual screening, ADMET analysis, molecular dynamics simulation, and MM-PBSA, to identify potential compounds for Leishmania. We evaluated 30,926 natural products from the NPASS database, and four potentials passed the pharmacokinetic ADMET studies and were verified using the molecular docking approach. Molecular docking results showed good binding interaction of the compounds with the active site of leishmania pteridine reductase enzyme PTR1, with compound TTC1 showing FRED and Autodock binding energies of -10.33 and -10.94, respectively, which were comparable with the antileishmania drugs of Allopurinol, Miltefosine and the original ligand, methotrexate. TTC1 compound was found to be favorable for hydrophobic interaction with PTR1. In addition, the physicochemical properties of the compounds were studied using the SwissADME web server. All compounds followed Lipinski's rule of five and can be considered as good oral candidates. The analysis of the 100 ns molecular dynamics simulation results based on the best-docked TTC1 with PTR1 receptor demonstrates stable interactions, and the complex undergoes low conformational fluctuations. The average of the calculated binding free energy of the TTC1-1e7w complex is (-68.67 kJ/mol), and the result demonstrated that the TTC1 promoted stability to the Leishmania-PTR1 complex. The potential compounds can be further explored for their antileishmanial activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amneh Shtaiwi
- Faculty of Pharmacy, Middle East University, Amman, Jordan
| |
Collapse
|
2
|
Khan H, Hakami MA, Alamri MA, Alotaibi BS, Ullah N, Khan R, Khalid A, Abdalla AN, Wadood A. Identification of Novel Antileishmanial Chemotypes By High-Throughput Virtual and In Vitro Screening. Acta Parasitol 2024; 69:1439-1457. [PMID: 39150581 DOI: 10.1007/s11686-024-00899-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/30/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Leishmaniasis is a deadly protozoan parasitic disease and a significant health problem in underdeveloped and developing countries. The global spread of the parasite, coupled with the emergence of drug resistance and severe side effects associated with existing treatments, has necessitated the identification of new and potential drugs. OBJECTIVE This study aimed to identify promising compounds for the treatment of leishmaniasis by targeting two essential enzymes of Leishmania donovani: trypanothione reductase (Try-R) and trypanothione synthetase (Try-S). METHODS High-throughput virtual and in vitro screening of in-house and commercial databases was conducted. A pharmacophore model with seven features was developed and validated using the Guner-Henery method. The pharmacophore-based virtual screening yielded 690 hits, which were further filtered through Lipinski's rule, ADMET analysis, and molecular docking against Try-R and Try-S. Molecular dynamics studies were performed on selected compounds, and in vitro experiments were conducted to evaluate their activity against the promastigote and amastigote forms of L. donovani. RESULTS The virtual screening and subsequent analysis identified 33 promising compounds. Molecular dynamics studies of two compounds (comp-1 and comp-2) demonstrated stable binding interactions with the target enzymes and high affinity. In vitro experiments revealed that 13 compounds exhibited moderate activity against both the promastigote (IC50, 41 µM-76 µM) and the amastigote (IC50, 44 µM-72 µM) forms of L. donovani. Compounds 1 and 2 showed the highest percent inhibition and the lowest IC50 values. CONCLUSION The identified compounds demonstrated significant inhibitory activity against Leishmania donovani and stable interactions with target enzymes. These findings suggest that the compounds could serve as promising leads for developing new treatments for leishmaniasis.
Collapse
Affiliation(s)
- Huma Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra Univesity, Al-Quwayiyah-19257, Riyadh, Saudi Arabia
| | - Mubarak A Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Bader S Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra Univesity, Al-Quwayiyah-19257, Riyadh, Saudi Arabia
| | - Nazif Ullah
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Rasool Khan
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Pakistan
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, 45142, Jazan, Saudi Arabia.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan.
| |
Collapse
|
3
|
Tamanna, Fu C, Qadir M, Shah MIA, Shtaiwi A, Khan R, Khan SU, Htar TT, Zada A, Lodhi MA, Ateeq M, Ali A, Naeem M, Ibrahim M, Khan SW. Thiadiazine thione derivatives as anti-leishmanial agents: synthesis, biological evaluation, structure activity relationship, ADMET, molecular docking and molecular dynamics simulation studies. J Biomol Struct Dyn 2024; 42:7758-7772. [PMID: 37551015 DOI: 10.1080/07391102.2023.2245480] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/21/2023] [Indexed: 08/09/2023]
Abstract
During last decades, 3,5-disubstituted-tetrahydro-2H-thiadiazine-2-thione scaffold remains the center of interest due to their ease of preparation, diverse range substituents at N-3 and N-5 positions, and profound biological activities. In the current study, a series of 3,5-disubstituted-tetrahydro-2H-thiadiazine-2-thiones were synthesized in good to excellent yield, and the structure of the compounds were confirmed by various spectroscopic techniques such as FTIR, 1H-NMR, 13C-NMR and Mass spectrometry, and finally evaluated against Leishmania major. Whereas, all the evaluated compounds (1-33), demonstrate potential leishmanicidal activities with IC50 values in the range of (1.30- 149.98 uM). Among the evaluated compounds such as 3, 4, 6, and 10 exhibited excellent leishmanicidal activities with IC50 values of (2.17 μM), (2.39 μM), (2.00 μM), and (1.39 μM), respectively even better than the standard amphotericin B (IC50 = 0.50) and pentamidine (IC50 = 7.52). In order to investigate binding interaction of the most active compounds, molecular docking study was conducted with Leishmania major. Further molecular dynamic simulation study was also carried out to assess the stability and correct binding of the most active compound 10, within active site of the Leishamania major. Likewise, the physiochemical properties, drug likeness, and ADMET of the most active compounds were investigated, it was found that none of the compounds violate Lipiniski's rule of five, which show that this class of compounds had enough potential to be used as drug candidate in near future.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tamanna
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Chaoping Fu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, P.R. China
| | - Meshil Qadir
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | | | - Amneh Shtaiwi
- School of Pharmacy, Middle East University, Amman, Jordan
| | - Rasool Khan
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Pakistan
| | - Shafi Ullah Khan
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Thet Thet Htar
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Amir Zada
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | | | - Muhammad Ateeq
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Arif Ali
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Mohammad Naeem
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Mohammad Ibrahim
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Sher Wali Khan
- Department of Chemistry, Shaheed Benazir Bhutto University, Sheringal Upper Dir, Pakistan
| |
Collapse
|
4
|
Gul A, Halim SA, Khan A, Khan R, Xian-Dao P, Zafar S, Akbar N, Jan A, Muhsinah AB, Gojayev A, Al-Harrasi A. One pot synthesis of 5-hydroxyalkylated thiadiazine thiones: Implication in pain management and bactericidal properties. Heliyon 2024; 10:e30435. [PMID: 38765157 PMCID: PMC11098799 DOI: 10.1016/j.heliyon.2024.e30435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/21/2024] Open
Abstract
The synthesis of a new series of thiadiazine thiones including 5-(2-hydroxyethyl)-3-alkyl/aryl-1, 3, 5-thiadiazine-2-thiones (1-5), 5-(2-hydroxypropyl)-3-alkyl/aryl-1, 3, 5-thiadiazine-2-thiones (6-8), 3,5-dipropyl-1, 3, 5-thiadiazine-2-thione (9) and (2-(5-alkyl/aryl-6-thioxo-1, 3, 5-thiadiazine-3-yl) alkyl acetate/benzoate) (10-17) was accomplished via one pot reaction. The structures of the synthesized compounds were characterized through NMR and Mass spectrometry. The anti-nociceptive activity of compounds was performed on BALB/C mice by hot plate method, where compounds 3, 5 (50 μg/kg), and 8 (50, 100 μg/kg) exhibited significant effect (P < 0.01, P < 0.05) in latency time of 15, 30, and 60 min, while compounds 6 and 16 (100 μg/kg) exhibited significant effect (P < 0.01, P < 0.05) in latency time interval of 15 and 30 min. Compounds 1, 12-13, and 15 showed moderate activity. Among the tested hits, compounds 5 (17.3 ± 2.2), 11 (16.2 ± 2.1), and 8 (16.1 ± 2.1) showed significant anti-nociceptive potential. Molecular docking studies on the most active anti-nociceptive hits indicated that the activity might be attributed to the ability of the compounds to target μ-opioid receptor (μOR) effectively. Furthermore, compounds 14 and 11 showed anti-bacterial activity against Pseudomonas aeruginosa and MSRA with MIC of 40.97 and 54.77 μg/mL, respectively. In addition, the predicted ADMET profile of 5, 9, and 11 indicates that these molecules follow the drug-likeness criteria, and their activity can be enhanced through structural optimization.
Collapse
Affiliation(s)
- Asma Gul
- Institute of Chemical Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, P. O. Box-33, Postal Code-616, Birkat Al-Mauz, Nizwa, Sultanate of Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, P. O. Box-33, Postal Code-616, Birkat Al-Mauz, Nizwa, Sultanate of Oman
| | - Rasool Khan
- Institute of Chemical Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - P.A.N. Xian-Dao
- Institute of Material Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Salman Zafar
- Institute of Chemical Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Noor Akbar
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, 27272, Unites Arab Emirates
| | - Afnan Jan
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Abdullatif Bin Muhsinah
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 62529, Kingdom of Saudi Arabia
| | - Anar Gojayev
- School of Education, General Education Program, ADA University, Ahmadbey Aghaoghlu Str. 11, Baku, AZ1008, Azerbaijan
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P. O. Box-33, Postal Code-616, Birkat Al-Mauz, Nizwa, Sultanate of Oman
| |
Collapse
|
5
|
Ortiz M, Rodríguez H, Lucci E, Coro J, Pernía B, Montero-Calderon A, Tingo-Jácome FJ, Espinoza L, Spencer LM. Serological Cross-Reaction between Six Thiadiazine by Indirect ELISA Test and Their Antimicrobial Activity. Methods Protoc 2023; 6:mps6020037. [PMID: 37104019 PMCID: PMC10146945 DOI: 10.3390/mps6020037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Malaria is a parasitic infection caused by a protozoon of the genus Plasmodium, transmitted to humans by female biting mosquitoes of the genus Anopheles. Chloroquine and its derivates have caused the parasite to develop drug resistance in endemic areas. For this reason, new anti-malarial drugs as treatments are crucial. This work aimed to evaluate the humoral response. with hyper-immune sera, of mice immunized with six derivatives of tetrahydro-(2H)-1,3,5-thiadiazine-2-thione (bis-THTT) by indirect ELISA test. The cross-reactivity between the compounds as antigens and their microbial activity on Gram-positive and Gram-negative bacteria was evaluated. The results of the humoral evaluation by indirect ELISA show that three bis-THTTs react with almost all of the above. Besides, three compounds used as antigens stimulate the BALB/c mice’s immune system. The best combination of two antigens as a combined therapy displays similar absorbances between the antigens in the mixture, showing similar recognition by antibodies and their compounds. In addition, our results showed that different bis-THTT presented antimicrobial activity on Gram-positive bacteria, mainly on Staphylococcus aureus strains, and no inhibitory activity was observed on the Gram-negative bacteria tested.
Collapse
Affiliation(s)
- Mishell Ortiz
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí 100119, Ecuador
| | - Hortensia Rodríguez
- School of Chemical Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí 100119, Ecuador
| | - Elisabetta Lucci
- Departamento de Tecnología de Procesos Biológicos y Bioquímicos, Universidad Simón Bolívar, Caracas 89000, Venezuela
| | - Julieta Coro
- Laboratory of Chemical and Biomolecular Synthesis, Faculty of Chemistry, Habana University, Habana 10400, Cuba
| | - Beatriz Pernía
- Faculty of Natural Sciences, University of Guayaquil, Av. Raúl Gómez Lince s/n y Av. Juan Tanca Marengo, Guayaquil 090150, Ecuador
| | - Abigail Montero-Calderon
- School of Agricultural and Agro-Industrial Sciences, Yachay Tech University, San Miguel de Urcuquí 100119, Ecuador
| | | | - Leslie Espinoza
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí 100119, Ecuador
| | - Lilian M. Spencer
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí 100119, Ecuador
- Cell Biology Department, Simón Bolívar University, Valle de Sartenejas, Caracas 89000, Venezuela
| |
Collapse
|
6
|
Arshad N, Jawaid S, Hashim J, Ullah I, Gul S, Aziz A, Wadood A, Khan A. Highly potent anti-inflammatory, analgesic and antioxidant activities of 3,5-disubstituted tetrahydro-2H-1,3,5-thiadiazine thiones. Bioorg Med Chem Lett 2023; 79:129068. [PMID: 36395994 DOI: 10.1016/j.bmcl.2022.129068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/11/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Four series of tetrahydro-2H-1,3,5-thiadiazine-2-thiones (series A and B including two novel enantiopure isomers), tetrahydro-2H-1,3,5-thiadiazine-6-thiones (series C) and N-3 ester derivatives of tetrahydro-2H-1,3,5-thiadiazine-6-thiones (series D) were synthesized and evaluated for their anti-inflammatory, analgesic and anti-oxidant activities. These THTT analogues specially series D were first time examined for their in vitro anti-inflammatory, in vivo analgesic and anti-oxidant activities. Among them lipophilic compounds (series B and D) were found to be highly active for anti-inflammatory evaluation with IC50 values between 5.1-16.9 and 4.1-32.4 μM, respectively when compared with the standard drug ibuprofen IC50 = 11.2 μM. The structure-activity relationship exposed the importance of lipophilic substituents especially ester and n-propyl group for inhibition of inflammation. The molecular docking studies demonstrated that all the active analogues of THTT have notable binding relations with Arg120 of the active sites of COX-1 enzyme either through CS moiety of the THTT nucleus or with COO attached at N-3 of THTT nucleus. In vivo analgesic activity of the selected THTT compounds 14, 17, 18, 19 (series B) and 28 (series D) were also carried out by acetic acid-induced writhing procedure. The compound 28 showed significant anti-nociceptive/analgesic activity at the oral dose of 5 mg/kg body weight with the percent protection (32.05 %) when compared with standard indomethacin at 10 mg/kg (48.83 %). Additionally, these compounds demonstrated the moderate level of antioxidant potential with IC50 values in the range of 60.9 to 93.6 μM (standard butylated hyroxyanisole; IC50 = 44.2 μM). These results indicated that this class of heterocyclic compounds may be a template specially to design better anti-inflammatory and analgesic agents.
Collapse
Affiliation(s)
- Nuzhat Arshad
- Department of Chemistry, NED University of Engineering and Technology, Karachi 75270, Pakistan.
| | - Shumaila Jawaid
- Department of Chemistry, NED University of Engineering and Technology, Karachi 75270, Pakistan
| | - Jamshed Hashim
- Department of Chemistry, NED University of Engineering and Technology, Karachi 75270, Pakistan; H.E.J. Research Institute of Chemistry, ICCBS, University of Karachi, Karachi 75270, Pakistan; Department of Chemical Sciences, University of Lakki Marwat, Lakki Marwat 28420, Pakistan.
| | - Irfan Ullah
- H.E.J. Research Institute of Chemistry, ICCBS, University of Karachi, Karachi 75270, Pakistan; Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Somia Gul
- Faculty of Pharmacy, Jinnah University for Women, Karachi 74600, Pakistan
| | - Aisha Aziz
- Faculty of Pharmacy, Jinnah University for Women, Karachi 74600, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Alamzeb Khan
- Department of Pediatrics, Yale School of Medicine, Yale University, New Haven CT-06511, United States
| |
Collapse
|
7
|
Qureshi S, Ali G, Muhammad T, Idrees M, Ullah S, Ali Khan S, Ullah R, Khan R, Ul-Haq Z, Haseeb Mohsin A, Kong IK. Thiadiazine-thione derivatives ameliorate STZ-induced diabetic neuropathy by regulating insulin and neuroinflammatory signaling. Int Immunopharmacol 2022; 113:109421. [PMID: 36403520 DOI: 10.1016/j.intimp.2022.109421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/18/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022]
Abstract
Diabetes Mellitus is accompanied by chronic hyperglycemia, inflammation, and related molecular processes, which leads to diabetic neuropathy. In this work, we tested Thiadiazine-thione (TDT) synthetic derivatives TDT1 and TDT2 against streptozotocin (STZ)-induced diabetic neuropathy. Sprague Dawley's rats, SH-SY5Y neuronal and BV2 microglial cells were employed in this work, followed by behavioral, biochemical, and morphological studies utilizing RT-qPCR, ELISA, Immunoblotting, immunohistochemistry, Immunofluorescence, and in silico analyses. TDT1 and TDT2 abolished STZ-induced allodynia and hyperalgesia. Next, we examined IRS1/PI3K/AKT signaling to assess TDT1 and TDT2's impact on diabetic neuropathy. STZ downregulated IRS1, PI3K, AKT mRNA and protein expression in rat spinal cord and SH-SY5Y neuronal cells. TDT1 and TDT2 improved IRS1, PI3k, and AKT mRNA and protein expression. STZ elevated GSK3β mRNA and protein expression in vivo and in vitro, whereas TDT1 and TDT2 mitigated it. STZ increased the expression of inflammatory mediators such as p-NF-κB, TNF-α, and COX-2 in rat spinal cord lysates. TDT1 and TDT2 co-treatment with STZ decreased inflammatory cytokine expression by ameliorating astrocytosis (revealed by increased GFAP) and microgliosis (indicated by increased Iba1). TDT1 and TDT2 reduced STZ-induced JNK, Iba1, and COX-2 upregulation in BV2 microglial cells validating our in vivo findings. In silico molecular docking and MD simulations analyses suggested that TDT1 and TDT2 have IRS binding affinity, however, both compounds had an identical binding affinity, but distinct interaction pattern with IRS protein residues. Overall, these findings demonstrate that TDT derivatives mitigated STZ-induced neuropathy through modulating the insulin and inflammatory signaling pathways.
Collapse
Affiliation(s)
- Sonia Qureshi
- Department of Pharmacy, University of Peshawar, Peshawar, 25120, Pakistan; Krembil Research Institute, University Health Network, M5G 1L7, Toronto, Ontario, Canada
| | - Gowhar Ali
- Department of Pharmacy, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Tahir Muhammad
- Molecular Neuropsychiatry and Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Muhammad Idrees
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea; Institute of Agriculture and Life Science, Gyeongsang National University, Gyeongnam Province, Republic of Korea
| | - Sultan Ullah
- Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL, 33458, USA
| | - Salman Ali Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Rahim Ullah
- Department of Pharmacy, University of Peshawar, Peshawar, 25120, Pakistan
| | - Rasool Khan
- Institute of chemical sciences, University of Peshawar, Peshawar, Pakistan
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan; Institute of chemical sciences, University of Peshawar, Peshawar, Pakistan
| | | | - Il-Keun Kong
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea; Institute of Agriculture and Life Science, Gyeongsang National University, Gyeongnam Province, Republic of Korea; The Kingkong Co. Ltd., Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea
| |
Collapse
|
8
|
Raheem S, Khan R, Pan X, Ullah R, Ahsan Halim S, Khan A, Al-Harrasi A. One pot domino synthesis of new 3,5-disubstituted-tetrahydro-2H-1,3,5-thiadiazine-2-thiones (THTTs) as anti-inflammatory and antinociceptive candidates: A proof from in-vivo to in-vitro and in-silico mechanistic studies. Bioorg Chem 2022; 127:105974. [DOI: 10.1016/j.bioorg.2022.105974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 11/29/2022]
|
9
|
Qureshi S, Ali G, Idrees M, Muhammad T, Kong IK, Abbas M, Shah MIA, Ahmad S, Sewell RDE, Ullah S. Selected Thiadiazine-Thione Derivatives Attenuate Neuroinflammation in Chronic Constriction Injury Induced Neuropathy. Front Mol Neurosci 2021; 14:728128. [PMID: 34975395 PMCID: PMC8716630 DOI: 10.3389/fnmol.2021.728128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Neuropathic pain refers to a lesion or disease of peripheral and/or central somatosensory neurons and is an important body response to actual or potential nerve damage. We investigated the therapeutic potential of two thiadiazine-thione [TDT] derivatives, 2-(5-propyl-6-thioxo-1, 3, 5-thiadiazinan-3-yl) acetic acid [TDT1] and 2-(5-propyl-2-thioxo-1, 3, 5-thiadiazinan-3-yl) acetic acid [TDT2] against CCI (chronic constriction injury)-induced neuroinflammation and neuropathic pain. Mice were used for assessment of acute toxicity of TDT derivatives and no major toxic/bizarre responses were observed. Anti-inflammatory activity was assessed using the carrageenan test, and both TDT1 and TDT2 significantly reduced carrageenan-induced inflammation. We also used rats for the induction of CCI and performed allodynia and hyperalgesia-related behavioral tests followed by biochemical and morphological analysis using RT-qPCR, immunoblotting, immunohistochemistry and immunofluorescence. Our findings revealed that CCI induced clear-cut allodynia and hyperalgesia which was reversed by TDT1 and TDT2. To determine the function of TDT1 and TDT2 in glia-mediated neuroinflammation, Iba1 mRNA and protein levels were measured in spinal cord tissue sections from various experimental groups. Interestingly, TDT1 and TDT2 substantially reduced the mRNA expression and protein level of Iba1, implying that TDT1 and TDT2 may mitigate CCI-induced astrogliosis. In silico molecular docking studies predicted that both compounds had an effective binding affinity for TNF-α and COX-2. The compounds interactions with the proteins were dominated by both hydrogen bonding and van der Waals interactions. Overall, these results suggest that TDT1 and TDT2 exert their neuroprotective and analgesic potentials by ameliorating CCI-induced allodynia, hyperalgesia, neuroinflammation and neuronal degeneration in a dose-dependent manner.
Collapse
Affiliation(s)
- Sonia Qureshi
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Gowhar Ali
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
- Laboratory of Neurogenomics and Novel Therapies, The Ken and Ruth Davee Department of Neurology, Department of Neurology and Clinical Neurosciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Muhammad Idrees
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, South Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
| | - Tahir Muhammad
- Molecular Neuropsychiatry and Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Il-Keun Kong
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, South Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
- The Kingkong Co., Ltd., Gyeongsang National University, Jinju, South Korea
| | - Muzaffar Abbas
- Faculty of Pharmacy, Capital University of Science & Technology, Islamabad, Pakistan
| | | | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Robert D. E. Sewell
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Sami Ullah
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| |
Collapse
|
10
|
Das A, Ashraf MW, Banik BK. Thione Derivatives as Medicinally Important Compounds. ChemistrySelect 2021. [DOI: 10.1002/slct.202102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Aparna Das
- Department of Mathematics and Natural Sciences College of Sciences and Human Studies Prince Mohammad Bin Fahd University Al Khobar 31952, Kingdom of Saudi Arabia
| | - Muhammad Waqar Ashraf
- Department of Mathematics and Natural Sciences College of Sciences and Human Studies Prince Mohammad Bin Fahd University Al Khobar 31952, Kingdom of Saudi Arabia
| | - Bimal Krishna Banik
- Department of Mathematics and Natural Sciences College of Sciences and Human Studies Prince Mohammad Bin Fahd University Al Khobar 31952, Kingdom of Saudi Arabia
| |
Collapse
|
11
|
Hashim J, Arshad N, Yaseen M, Khan R, Iqbal T, Zehra Hamid S, Kanwal A, Safi I, Ullah I. 3,5-Disubstituted Tetrahydro-2H-1,3,5-thiadiazine-thiones Ester Derivatives and Their Antimicrobial Evaluation. HETEROCYCLES 2021. [DOI: 10.3987/com-20-14402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Yan J, Si W, Hu H, Zhao X, Chen M, Wang X. Design, synthesis and antimicrobial activities of novel 1,3,5-thiadiazine-2-thione derivatives containing a 1,3,4-thiadiazole group. PeerJ 2019; 7:e7581. [PMID: 31534848 PMCID: PMC6733239 DOI: 10.7717/peerj.7581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 07/29/2019] [Indexed: 11/20/2022] Open
Abstract
A series of novel 1,3,5-thiadiazine-2-thione derivatives containing a 1,3,4-thiadiazole group was designed and synthesized. The structures of all the compounds were well characterized using 1H NMR, 13C NMR and high-resolution mass spectrometer, and further confirmed by the X-ray diffraction analysis of 8d. The antimicrobial activities of all the target compounds against Xanthomonas oryzae pv. oryzicola, X. oryzae pv. oryzae, Rhizoctonia solani and Fusarium graminearum were evaluated. The in vitro antimicrobial bioassays indicated that some title compounds exhibited noteworthy antimicrobial effects against the above strains. Notably, the compound N-(5-(ethylthio)-1,3,4-thiadiazol-2-yl)-2-(5-methyl-6-thioxo-1,3,5-thiadiazinan-3-yl)acetamide (8a) displayed obvious antibacterial effects against X. oryzae pv. oryzicola and X. oryzae pv. oryzae at 100 μg/mL with the inhibition rates of 30% and 56%, respectively, which was better than the commercial bactericide thiodiazole-copper. In addition, the anti-R. solani EC50 value of 8a was 33.70 μg/mL, which was more effective than that of the commercial fungicide hymexazol (67.10 μg/mL). It was found that the substitutes in the 1,3,5-thiadiazine-2-thione and the 1,3,4-thiadiazole rings played a vital role in the antimicrobial activities of the title compounds. More active title compounds against phytopathogenic microorganisms might be obtained via further structural modification.
Collapse
Affiliation(s)
- Jinghua Yan
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Weijie Si
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, China.,Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Haoran Hu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Xu Zhao
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Min Chen
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Xiaobin Wang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| |
Collapse
|
13
|
Wang X, Fu X, Chen M, Wang A, Yan J, Mei Y, Wang M, Yang C. Novel 1,3,5-thiadiazine-2-thione derivatives containing a hydrazide moiety: Design, synthesis and bioactive evaluation against phytopathogenic fungi in vitro and in vivo. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.03.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Verma G, Khan MF, Mohan Nainwal L, Ishaq M, Akhter M, Bakht A, Anwer T, Afrin F, Islamuddin M, Husain I, Alam MM, Shaquiquzzaman M. Targeting malaria and leishmaniasis: Synthesis and pharmacological evaluation of novel pyrazole-1,3,4-oxadiazole hybrids. Part II. Bioorg Chem 2019; 89:102986. [PMID: 31146198 DOI: 10.1016/j.bioorg.2019.102986] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 04/06/2019] [Accepted: 05/16/2019] [Indexed: 11/24/2022]
Abstract
In continuance with earlier reported work, an extension has been carried out by the same research group. Mulling over the ongoing condition of resistance to existing antimalarial agents, we had reported synthesis and antimalarial activity of certain pyrazole-1,3,4-oxadiazole hybrid compounds. Bearing previous results in mind, our research group ideated to design and synthesize some more derivatives with varied substitutions of acetophenone and hydrazide. Following this, derivatives 5a-r were synthesized and tested for antimalarial efficacy by schizont maturation inhibition assay. Further, depending on the literature support and results of our previous series, certain potent compounds (5f, 5n and 5r) were subjected to Falcipain-2 inhibitory assay. Results obtained for these particular compounds further strengthened our hypothesis. Here, in this series, compound 5f having unsubstituted acetophenone part and a furan moiety linked to oxadiazole ring emerged as the most potent compound and results were found to be comparable to that of the most potent compound (indole bearing) of previous series. Additionally, depending on the available literature, compounds (5a-r) were tested for their antileishmanial potential. Compounds 5a, 5c and 5r demonstrated dose-dependent killing of the promastigotes. Their IC50 values were found to be 33.3 ± 1.68, 40.1 ± 1.0 and 19.0 ± 1.47 μg/mL respectively. These compounds (5a, 5c and 5r) also had effects on amastigote infectivity with IC50 of 44.2 ± 2.72, 66.8 ± 2.05 and 73.1 ± 1.69 μg/mL respectively. Further target validation was done using molecular docking studies. Acute oral toxicity studies for most active compounds were also performed.
Collapse
Affiliation(s)
- Garima Verma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohemmed Faraz Khan
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Lalit Mohan Nainwal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Ishaq
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mymoona Akhter
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Afroz Bakht
- Department of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, P.O. Box-173, Al-Kharj, Saudi Arabia
| | - Tariq Anwer
- Department of Pharmacology, College of Pharmacy, Jazan University, P.O. Box 114, Gizan, Saudi Arabia
| | - Farhat Afrin
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Taibah University, Madina, Saudi Arabia
| | - Mohammad Islamuddin
- Molecular Virology Lab, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia University, New Delhi, India
| | - Ibraheem Husain
- Molecular Virology Lab, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia University, New Delhi, India
| | - Mohammad Mumtaz Alam
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Mohammad Shaquiquzzaman
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
15
|
Design and synthesis of novel 2-(6-thioxo-1,3,5-thiadiazinan-3-yl)-N'-phenylacethydrazide derivatives as potential fungicides. Mol Divers 2018; 23:573-583. [PMID: 30465251 DOI: 10.1007/s11030-018-9891-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/03/2018] [Indexed: 02/06/2023]
Abstract
A series of novel 2-(6-thioxo-1,3,5-thiadiazinan-3-yl)-N'-phenylacethydrazide derivatives were designed, synthesized and evaluated for their antifungal activities against Fusarium graminearum (Fg), Rhizoctonia solani (Rs), Botrytis cinerea (Bc) and Colletotrichum capsici (Cc). The bioassay results in vitro showed that most of the title compounds exhibited impressive antifungal activities against the above plant fungi. Particularly, the compounds 5c, 5f, 5g, 5i, 5m and 5p displayed desirable anti-Rs activities, with the corresponding EC50 values of 0.37, 0.32, 0.49, 0.50, 0.46 and 0.45 µg/mL, respectively, which are superior to the positive control carbendazim (0.55 µg/mL). Further in vivo bioassay results showed that the anti-Rs activity of title compound 5f at 200 µg/mL reached 95.84% on detached rice leaves and 93.96% on rice plants. Featuring convenient synthesis, novel structures and desirable antifungal activity, these 2-(6-thioxo-1,3,5-thiadiazinan-3-yl)-N'-phenylacethydrazide derivatives could be further studied as the potential candidates of novel agricultural fungicides.
Collapse
|