1
|
Yu X, Zhao X, Li L, Huang Y, Cui C, Hu Q, Xu H, Yin B, Chen X, Zhao D, Qiu Y, Hou Y. Recent advances in small molecule Nav 1.7 inhibitors for cancer pain management. Bioorg Chem 2024; 150:107605. [PMID: 38971095 DOI: 10.1016/j.bioorg.2024.107605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/22/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
The dorsal root ganglion (DRG) is the primary neuron responsible for transmitting peripheral pain signals to the central nervous system and plays a crucial role in pain transduction. Modulation of DRG excitability is considered a viable approach for pain management. Neuronal excitability is intricately linked to the ion channels on the neurons. The small and medium-sized DRG neurons are chiefly engaged in pain conduction and have high levels of TTX-S sodium channels, with Nav1.7 accounting for approximately 80% of the current. Voltage-gated sodium channel (VGSC or Nav) blockers are vital targets for the management of central nervous system diseases, particularly chronic pain. VGSCs play a key role in controlling cellular excitability. Clinical research has shown that Nav1.7 plays a crucial role in pain sensation, and there is strong genetic evidence linking Nav1.7 and its encoding gene SCN9A gene to painful disorders in humans. Many studies have shown that Nav1.7 plays an important role in pain management. The role of Nav1.7 in pain signaling pathways makes it an attractive target for the potential development of new pain drugs. Meanwhile, understanding the architecture of Nav1.7 may help to develop the next generation of painkillers. This review provides updates on the recently reported molecular inhibitors targeting the Nav1.7 pathway, summarizes their structure-activity relationships (SARs), and discusses their therapeutic effects on painful diseases. Pharmaceutical chemists are working to improve the therapeutic index of Nav1.7 inhibitors, achieve better analgesic effects, and reduce side effects. We hope that this review will contribute to the development of novel Nav1.7 inhibitors as potential drugs.
Collapse
Affiliation(s)
- Xiaoquan Yu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xingyi Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Lingjun Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yufeng Huang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Chaoyang Cui
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Qiaoguan Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Haoyu Xu
- Yangtze River Pharmaceutical (Group) Co., Ltd., 1 South Yangtze River Road, Taizhou City, Jiangsu Province, 225321, China
| | - Bixi Yin
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd., 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Xiao Chen
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd., 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Dong Zhao
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd., 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Yue Qiu
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd., 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Yunlei Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| |
Collapse
|
2
|
Simon P, Lőrinczi B, Szatmári I. Alkoxyalkylation of Electron-Rich Aromatic Compounds. Int J Mol Sci 2024; 25:6966. [PMID: 39000077 PMCID: PMC11241777 DOI: 10.3390/ijms25136966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Alkoxyalkylation and hydroxyalkylation methods utilizing oxo-compound derivatives such as aldehydes, acetals or acetylenes and various alcohols or water are widely used tools in preparative organic chemistry to synthesize bioactive compounds, biosensors, supramolecular compounds and petrochemicals. The syntheses of such molecules of broad relevance are facilitated by acid, base or heterogenous catalysis. However, degradation of the N-analogous Mannich bases are reported to yield alkoxyalkyl derivatives via the retro-Mannich reaction. The mutual derivative of all mentioned species are quinone methides, which are reported to form under both alkoxy- and aminoalkylative conditions and via the degradation of the Mannich-products. The aim of this review is to summarize the alkoxyalkylation (most commonly alkoxymethylation) of electron-rich arenes sorted by the methods of alkoxyalkylation (direct or via retro-Mannich reaction) and the substrate arenes, such as phenolic and derived carbocycles, heterocycles and the widely examined indole derivatives.
Collapse
Affiliation(s)
- Péter Simon
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Bálint Lőrinczi
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - István Szatmári
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
- HUN REN SZTE Stereochemistry Research Group, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| |
Collapse
|
3
|
Karanjule N, Hayashi N, Suzuki S, Tsuda T, Tokumaru E, Tanaka K, Kimoto H, Domon Y, Takahashi S, Kubota K, Kitano Y, Yokoyama T, Koishi R, Fujiwara C, Inaba S, Asano D, Sakakura T, Takasuna K, Shinozuka T. N-Aryl Indoles as a Novel Class of Potent Na V1.7 Inhibitors. ACS Med Chem Lett 2023; 14:788-793. [PMID: 37312847 PMCID: PMC10258897 DOI: 10.1021/acsmedchemlett.3c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/18/2023] [Indexed: 06/15/2023] Open
Abstract
A novel class of potent NaV1.7 inhibitors has been discovered. The replacement of diaryl ether in compound I was investigated to enhance mouse NaV1.7 inhibitory activity, which resulted in the discovery of N-aryl indoles. The introduction of the 3-methyl group is crucial for high NaV1.7 in vitro potency. The adjustment of lipophilicity led to the discovery of 2e. Compound 2e (DS43260857) demonstrated high in vitro potencies against both human and mouse NaV1.7 with high selectivity over NaV1.1, NaV1.5, and hERG. In vivo evaluations revealed 2e demonstrating potent efficacy in PSL mice with excellent pharmacokinetics.
Collapse
Affiliation(s)
- Narayan Karanjule
- Daiichi
Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Noriyuki Hayashi
- Daiichi
Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Sayaka Suzuki
- Daiichi
Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Toshifumi Tsuda
- Daiichi
Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Eri Tokumaru
- Daiichi
Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kyosuke Tanaka
- Daiichi
Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Hiroko Kimoto
- Daiichi
Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Yuki Domon
- Daiichi
Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Sakiko Takahashi
- Daiichi
Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kazufumi Kubota
- Daiichi
Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Yutaka Kitano
- Daiichi
Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Tomihisa Yokoyama
- Daiichi
Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Ryuta Koishi
- Daiichi
Sankyo RD Novare Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Chie Fujiwara
- Daiichi
Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Shinichi Inaba
- Daiichi
Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Daigo Asano
- Daiichi
Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Tomoko Sakakura
- Daiichi
Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kiyoshi Takasuna
- Daiichi
Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Tsuyoshi Shinozuka
- Daiichi
Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| |
Collapse
|
4
|
Patel MV, Peltier HM, Matulenko MA, Koenig JR, C Scanio MJ, Gum RJ, El-Kouhen OF, Fricano MM, Lundgaard GL, Neelands T, Zhang XF, Zhan C, Pai M, Ghoreishi-Haack N, Hudzik T, Gintant G, Martin R, McGaraughty S, Xu J, Bow D, Kalvass JC, Kym PR, DeGoey DA, Kort ME. Discovery of (R)-(3-fluoropyrrolidin-1-yl)(6-((5-(trifluoromethyl)pyridin-2-yl)oxy)quinolin-2-yl)methanone (ABBV-318) and analogs as small molecule Na v1.7/ Nav1.8 blockers for the treatment of pain. Bioorg Med Chem 2022; 63:116743. [PMID: 35436748 DOI: 10.1016/j.bmc.2022.116743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 11/24/2022]
Abstract
The voltage-gated sodium channel Nav1.7 is an attractive target for the treatment of pain based on the high level of target validation with genetic evidence linking Nav1.7 to pain in humans. Our effort to identify selective, CNS-penetrant Nav1.7 blockers with oral activity, improved selectivity, good drug-like properties, and safety led to the discovery of 2-substituted quinolines and quinolones as potent small molecule Nav1.7 blockers. The design of these molecules focused on maintaining potency at Nav1.7, improving selectivity over the hERG channel, and overcoming phospholipidosis observed with the initial leads. The structure-activity relationship (SAR) studies leading to the discovery of (R)-(3-fluoropyrrolidin-1-yl)(6-((5-(trifluoromethyl)pyridin-2-yl)oxy)quinolin-2-yl)methanone (ABBV-318) are described herein. ABBV-318 displayed robust in vivo efficacy in both inflammatory and neuropathic rodent models of pain. ABBV-318 also inhibited Nav1.8, another sodium channel isoform that is an active target for the development of new pain treatments.
Collapse
Affiliation(s)
- Meena V Patel
- AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA.
| | - Hillary M Peltier
- AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Mark A Matulenko
- AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - John R Koenig
- AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Marc J C Scanio
- AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Rebecca J Gum
- AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Odile F El-Kouhen
- AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Meagan M Fricano
- AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Greta L Lundgaard
- AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Torben Neelands
- AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Xu-Feng Zhang
- AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Cenchen Zhan
- AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Madhavi Pai
- AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | | | - Thomas Hudzik
- AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Gary Gintant
- AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Ruth Martin
- AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Steve McGaraughty
- AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Jun Xu
- AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Daniel Bow
- AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - John C Kalvass
- AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Philip R Kym
- AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - David A DeGoey
- AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Michael E Kort
- AbbVie, Research and Development, 1 North Waukegan Road, North Chicago, IL 60064, USA
| |
Collapse
|
5
|
Čubiňák M, Edlová T, Polák P, Tobrman T. Indolylboronic Acids: Preparation and Applications. Molecules 2019; 24:E3523. [PMID: 31569441 PMCID: PMC6803883 DOI: 10.3390/molecules24193523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 11/16/2022] Open
Abstract
Indole derivatives are associated with a variety of both biological activities and applications in the field of material chemistry. A number of different strategies for synthesizing substituted indoles by means of the reactions of indolylboronic acids with electrophilic compounds are considered the methods of choice for modifying indoles because indolylboronic acids are easily available, stable, non-toxic and new reactions using indolylboronic acids have been described in the literature. Thus, the aim of this review is to summarize the methods available for the preparation of indolylboronic acids as well as their chemical transformations. The review covers the period 2010-2019.
Collapse
Affiliation(s)
- Marek Čubiňák
- Department of Organic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Tereza Edlová
- Department of Organic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Peter Polák
- Department of Organic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Tomáš Tobrman
- Department of Organic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
6
|
Luo G, Chen L, Easton A, Newton A, Bourin C, Shields E, Mosure K, Soars MG, Knox RJ, Matchett M, Pieschl RL, Post-Munson DJ, Wang S, Herrington J, Graef J, Newberry K, Sivarao DV, Senapati A, Bristow LJ, Meanwell NA, Thompson LA, Dzierba C. Discovery of Indole- and Indazole-acylsulfonamides as Potent and Selective Na V1.7 Inhibitors for the Treatment of Pain. J Med Chem 2019; 62:831-856. [PMID: 30576602 DOI: 10.1021/acs.jmedchem.8b01550] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
3-Aryl-indole and 3-aryl-indazole derivatives were identified as potent and selective Nav1.7 inhibitors. Compound 29 was shown to be efficacious in the mouse formalin assay and also reduced complete Freund's adjuvant (CFA)-induced thermal hyperalgesia and chronic constriction injury (CCI) induced cold allodynia and models of inflammatory and neuropathic pain, respectively, following intraperitoneal (IP) doses of 30 mg/kg. The observed efficacy could be correlated with the mouse dorsal root ganglion exposure and NaV1.7 potency associated with 29.
Collapse
Affiliation(s)
- Guanglin Luo
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Ling Chen
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Amy Easton
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Amy Newton
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Clotilde Bourin
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Eric Shields
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Kathy Mosure
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Matthew G Soars
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Ronald J Knox
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Michele Matchett
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Rick L Pieschl
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Debra J Post-Munson
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Shuya Wang
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - James Herrington
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - John Graef
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Kimberly Newberry
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Digavalli V Sivarao
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Arun Senapati
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Linda J Bristow
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Nicholas A Meanwell
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Lorin A Thompson
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| | - Carolyn Dzierba
- Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton , New Jersey 08543-4000 , United States
| |
Collapse
|