1
|
Benary GE, Kilgenstein F, Koller S, Scherkenbeck J. Monophthalates of betulinic acid and related pentacyclic triterpenes inhibit efficiently the SOS-mediated nucleotide exchange and impact PI3K/AKT signaling in oncogenic K-RAS4B proteins. RSC Adv 2025; 15:883-895. [PMID: 39802464 PMCID: PMC11719397 DOI: 10.1039/d4ra08503e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Betulinic acid and other herbal pentacyclic triterpenes have attracted interest in cancer research as these natural products induce apoptosis and suppress tumor progression. However, the molecular basis of the antitumor effect is still unknown. Here we show that monophthalates of betulinic acid and related triterpenes inhibit GDP/GTP exchange in oncogenic K-RAS4B proteins via the PI3K/AKT downstream cascade. According to a binding model based on molecular modelling, these derivatives act like a molecular glue that stabilizes an unproductive K-RAS4Ballo:SOS complex. This represents a new mode of action and could be an attractive route for targeting RAS-related cancers.
Collapse
Affiliation(s)
- Gerrit E Benary
- University of Wuppertal, School of Mathematics and Natural Sciences Gaussstrasse 2042119 Wuppertal Germany
| | - Frank Kilgenstein
- University of Wuppertal, School of Mathematics and Natural Sciences Gaussstrasse 2042119 Wuppertal Germany
| | - Sascha Koller
- University of Wuppertal, School of Mathematics and Natural Sciences Gaussstrasse 2042119 Wuppertal Germany
| | - Jürgen Scherkenbeck
- University of Wuppertal, School of Mathematics and Natural Sciences Gaussstrasse 2042119 Wuppertal Germany
| |
Collapse
|
2
|
Khwaza V, Aderibigbe BA. Potential Pharmacological Properties of Triterpene Derivatives of Ursolic Acid. Molecules 2024; 29:3884. [PMID: 39202963 PMCID: PMC11356970 DOI: 10.3390/molecules29163884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Ursolic acid (UA) and its derivatives have garnered significant attention due to their extensive pharmacological activity. UA is a pentacyclic triterpenoid found in a variety of plants, such as apples, rosemary, thyme, etc., and it possesses a range of pharmacological properties. Researchers have synthesized various derivatives of UA through structural modifications to enhance its potential pharmacological properties. Various in vitro and in vivo studies have indicated that UA and its derivatives possess diverse biological activities, such as anticancer, antifungal, antidiabetic, antioxidant, antibacterial, anti-inflammatory and antiviral properties. This review article provides a review of the biological activities of UA and its derivatives to show their valuable therapeutic properties useful in the treatment of different diseases, mainly focusing on the relevant structure-activity relationships (SARs), the underlying molecular targets/pathways, and modes of action.
Collapse
Affiliation(s)
- Vuyolwethu Khwaza
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa
| | - Blessing A. Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa
| |
Collapse
|
3
|
Kornel A, Nadile M, Retsidou MI, Sakellakis M, Gioti K, Beloukas A, Sze NSK, Klentrou P, Tsiani E. Ursolic Acid against Prostate and Urogenital Cancers: A Review of In Vitro and In Vivo Studies. Int J Mol Sci 2023; 24:ijms24087414. [PMID: 37108576 PMCID: PMC10138876 DOI: 10.3390/ijms24087414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Prostate cancer is the second most diagnosed form of cancer in men worldwide and accounted for roughly 1.3 million cases and 359,000 deaths globally in 2018, despite all the available treatment strategies including surgery, radiotherapy, and chemotherapy. Finding novel approaches to prevent and treat prostate and other urogenital cancers effectively is of major importance. Chemicals derived from plants, such as docetaxel and paclitaxel, have been used in cancer treatment, and in recent years, research interest has focused on finding other plant-derived chemicals that can be used in the fight against cancer. Ursolic acid, found in high concentrations in cranberries, is a pentacyclic triterpenoid compound demonstrated to have anti-inflammatory, antioxidant, and anticancer properties. In the present review, we summarize the research studies examining the effects of ursolic acid and its derivatives against prostate and other urogenital cancers. Collectively, the existing data indicate that ursolic acid inhibits human prostate, renal, bladder, and testicular cancer cell proliferation and induces apoptosis. A limited number of studies have shown significant reduction in tumor volume in animals xenografted with human prostate cancer cells and treated with ursolic acid. More animal studies and human clinical studies are required to examine the potential of ursolic acid to inhibit prostate and other urogenital cancers in vivo.
Collapse
Affiliation(s)
- Amanda Kornel
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Matteo Nadile
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Maria Ilektra Retsidou
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Minas Sakellakis
- Department of Medical Oncology, Metropolitan Hospital, 18547 Athens, Greece
| | - Katerina Gioti
- Department of Biomedical Sciences, School of Health Sciences, University of West Attica, 12243 Athens, Greece
| | - Apostolos Beloukas
- Department of Biomedical Sciences, School of Health Sciences, University of West Attica, 12243 Athens, Greece
- National AIDS Reference Centre of Southern Greece, School of Public Health, University of West Attica, 11521 Athens, Greece
| | - Newman Siu Kwan Sze
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Panagiota Klentrou
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Bone and Muscle Health, Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Evangelia Tsiani
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Bone and Muscle Health, Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
4
|
Ursolic Acid Analogs as Potential Therapeutics for Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248981. [PMID: 36558113 PMCID: PMC9785537 DOI: 10.3390/molecules27248981] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Ursolic acid (UA) is a pentacyclic triterpene isolated from a large variety of vegetables, fruits and many traditional medicinal plants. It is a structural isomer of Oleanolic Acid. The medicinal application of UA has been explored extensively over the last two decades. The diverse pharmacological properties of UA include anti-inflammatory, antimicrobial, antiviral, antioxidant, anti-proliferative, etc. Especially, UA holds a promising position, potentially, as a cancer preventive and therapeutic agent due to its relatively non-toxic properties against normal cells but its antioxidant and antiproliferative activities against cancer cells. Cell culture studies have shown interference of UA with multiple pharmacological and molecular targets that play a critical role in many cells signaling pathways. Although UA is considered a privileged natural product, its clinical applications are limited due to its low absorption through the gastro-intestinal track and rapid elimination. The low bioavailability of UA limits its use as a therapeutic drug. To overcome these drawbacks and utilize the importance of the scaffold, many researchers have been engaged in designing and developing synthetic analogs of UA via structural modifications. This present review summarizes the synthetic UA analogs and their cytotoxic antiproliferative properties reported in the last two decades.
Collapse
|
5
|
Synthesis and Evaluation of NF-κB Inhibitory Activity of Mollugin Derivatives. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227925. [PMID: 36432026 PMCID: PMC9695821 DOI: 10.3390/molecules27227925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
Abstract
(1) Background: Nuclear factor κB (NF-κB) is an important transcriptional regulator that regulates the inflammatory pathway and plays a key role in cellular inflammatory and immune responses. The presence of a high concentration of NF-κB is positively correlated with the severity of inflammation. Therefore, the inhibition of this pathway is an important therapeutic target for the treatment of various types of inflammation; (2) Methods: we designed and synthesized 23 mollugin derivatives and evaluated their inhibitory activity against NF-κB transcription; (3) Results: Compound 6d exhibited the most promising inhibitory activity (IC50 = 3.81 µM) and did not show any significant cytotoxicity against the tested cell lines. Investigation of the mechanism of action indicated that 6d down-regulated NF-κB expression, possibly by suppressing TNF-α-induced expression of the p65 protein. Most of the compounds exhibited potent anti-inflammatory activity. Compound 4f was the most potent compound with 83.08% inhibition of inflammation after intraperitoneal administration, which was more potent than mollugin and the reference drugs (ibuprofen and mesalazine). ADMET prediction analysis indicated that compounds 6d and 4f had good pharmacokinetics and drug-like behavior; (4) Conclusions: Several series of mollugin derivatives were designed, synthesized, and evaluated for NF-κB inhibitory activity and toxicity. These results provide an initial basis for the development of 4f and 6d as potential anti-inflammatory agents.
Collapse
|
6
|
Li C, Zhang T, Zhang Q, Liu X, Zou J, Bai X. Screening of Ursolic Acid Analogs with HIF-1α and COX-2-Inhibiting Effects. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03821-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Huang X, Zhang CH, Deng H, Wu D, Guo HY, Lee JJ, Chen FE, Shen QK, Jin LL, Quan ZS. Synthesis and evaluation of anticancer activity of quillaic acid derivatives: A cell cycle arrest and apoptosis inducer through NF-κB and MAPK pathways. Front Chem 2022; 10:951713. [PMID: 36157038 PMCID: PMC9490060 DOI: 10.3389/fchem.2022.951713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/16/2022] [Indexed: 12/24/2022] Open
Abstract
A series of quillaic acid derivatives with different substituents on the 28-carboxyl group were designed and synthesized. Five human cancer cell lines (HCT116, BEL7402, HepG2, SW620, and MCF-7) were evaluated for their antitumor activity in vitro. Some of the tested derivatives showed improved antiproliferative activity compared to the lead compound, quillaic acid. Among them, compound E (IC50 = 2.46 ± 0.44 μM) showed the strongest antiproliferative activity against HCT116 cells; compared with quillaic acid (IC50 > 10 μM), its efficacy against HCT116 cancer cells was approximately 4-fold higher than that of quillaic acid. Compound E also induces cell cycle arrest and apoptosis by modulating NF-κB and MAPK pathways. Therefore, the development of compound E is certainly valuable for anti-tumor applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Li-Li Jin
- *Correspondence: Li-Li Jin, ; Zhe-Shan Quan,
| | | |
Collapse
|
8
|
Saikia RA, Dutta A, Sarma B, Thakur AJ. Metal-Free Regioselective N 2-Arylation of 1 H-Tetrazoles with Diaryliodonium Salts. J Org Chem 2022; 87:9782-9796. [PMID: 35849501 DOI: 10.1021/acs.joc.2c00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe a simple, metal-free regioselective N2-arylation strategy for 5-substituted-1H-tetrazoles with diaryliodonium salts to access 2-aryl-5-substituted-tetrazoles. Diaryliodonium salts with a wide range of both electron-rich and previously challenged electron-deficient aryl groups are applicable in this method. Diversely functionalized tetrazoles are tolerable also. We have devised a one-pot system to synthesize 2,5-diaryl-tetrazoles directly from nitriles. The synthetic utility of this method is furthered extended to late-stage arylation of two biologically active molecules.
Collapse
Affiliation(s)
- Raktim Abha Saikia
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, India
| | - Anurag Dutta
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, India
| | - Bipul Sarma
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, India
| | - Ashim Jyoti Thakur
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, India
| |
Collapse
|
9
|
Verma A, Kaur B, Venugopal S, Wadhwa P, Sahu S, Kaur P, Kumar D, Sharma A. Tetrazole: A privileged scaffold for the discovery of anti-cancer agents. Chem Biol Drug Des 2022; 100:419-442. [PMID: 35713482 DOI: 10.1111/cbdd.14103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/02/2022] [Accepted: 06/12/2022] [Indexed: 11/28/2022]
Abstract
Carcinoma, characterized by abnormal growth of cells and tissue, is a ubiquitously leading cause of mortality across the globe due to some carcinogenic factors. Currently, several anticancer agents are commercially available in the global market. However, due to their resistance and cost, researchers are gaining more interest in developing newer novel potential anticancer agents. In the search for new drugs for clinical use, the tetrazole ring system has emerged as an exciting prospect in the optimization studies of promising lead molecules. Among the various heterocyclic agents, tetrazole-containing compounds have shown significant promise in the treatment of a wide range of diseases, particularly cancer. Here, in this review, we focused on several synthetic approaches for the synthesis of tetrazole analogues, their targets for treating cancer along with the biological activity of some of the recently reported tetrazole-containing anticancer agents.
Collapse
Affiliation(s)
- Anil Verma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Balwinder Kaur
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Sneha Venugopal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Pankaj Wadhwa
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Sanjeev Sahu
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Paranjeet Kaur
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Deepak Kumar
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, India
| | - Ajit Sharma
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
10
|
Synthesis, Cytotoxicity, and α-glucosidase Inhibitory Activity of Triterpenic and Sitosterol Tetrazole Derivatives. Chem Heterocycl Compd (N Y) 2021. [DOI: 10.1007/s10593-021-03001-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Upadhyay N, Tilekar K, Safuan S, Kumar AP, Stalin J, Ruegg C, Ramaa C S. Recent Anti‐angiogenic Drug Discovery Efforts To Combat Cancer. ChemistrySelect 2021. [DOI: 10.1002/slct.202101792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Neha Upadhyay
- Department of Pharmaceutical Chemistry Bharati Vidyapeeth's College of Pharmacy Sector 8, CBD Belapur Navi Mumbai 400614 India
| | - Kalpana Tilekar
- Department of Pharmaceutical Chemistry Bharati Vidyapeeth's College of Pharmacy Sector 8, CBD Belapur Navi Mumbai 400614 India
| | - Sabreena Safuan
- Pusat pengajian sains School of Health Sciences Universiti Sains Malaysia Malaysia 16150 Kubang Kerian Kelantan
| | - Alan P. Kumar
- Department of Pharmacology National University of Singapore Singapore
| | - Jimmy Stalin
- Department of Oncology Microbiology, and Immunology University of Fribourg Chemin du Musée 18, PER17, CH 1700 Fribourg Switzerland
| | - Curzio Ruegg
- Department of Oncology Microbiology, and Immunology University of Fribourg Chemin du Musée 18, PER17, CH 1700 Fribourg Switzerland
| | - Ramaa C S
- Department of Pharmaceutical Chemistry Bharati Vidyapeeth's College of Pharmacy Sector 8, CBD Belapur Navi Mumbai 400614 India
| |
Collapse
|
12
|
Synthesis and evaluation of HIF-1α inhibitory activities of novel panaxadiol derivatives. Bioorg Med Chem Lett 2020; 30:127652. [PMID: 33130293 DOI: 10.1016/j.bmcl.2020.127652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 12/23/2022]
Abstract
Hypoxia-inducible factor 1α (HIF-1α) is a known regulator of tumor cell proliferation, migration, and angiogenesis. The presence of a high concentration of HIF-1α is positively correlated with the severity of cancer. Therefore, the inhibition of this pathway represents an important therapeutic target for the treatment of various types of cancer. Here, we designed and synthesized 30 panaxadiol (PD) derivatives and evaluated their inhibitory activities against HIF-1α transcription. Of these, compound 3l exhibited the most promising inhibitory activity (IC50 = 3.7 µM) and showed significantly decreased cytotoxicity compared with PD. Compound 9e exhibited the strongest cytotoxic effect and may be considered for further preclinical development.
Collapse
|
13
|
Zhang LH, Jin LL, Liu F, Jin C, Jin CM, Wei ZY. Evaluation of ursolic acid derivatives with potential anti-Toxoplasma gondii activity. Exp Parasitol 2020; 216:107935. [PMID: 32569599 DOI: 10.1016/j.exppara.2020.107935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/22/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023]
Abstract
Toxoplasma gondii is an important pathogen that causes serious public health problems. Currently, therapeutic drugs for toxoplasmosis cause serious side effects, and more effective and novel substances with relatively low toxicity are urgently needed. Ursolic acid (UA) has many properties that can be beneficial to healthcare. In this study, we synthesized eight series of UA derivatives bearing a tetrazole moiety and evaluated their anti-T. gondii activity in vitro using spiramycin as a positive control. Most of the synthesized derivatives exhibited better anti-T. gondii activity in vitro than UA, among which compound 12a exhibited the most potent anti-T. gondii activity. Furthermore, the results of biochemical parameter determination indicated that 12a effectively restored the normal body weight of mice infected with T. gondii, reduced hepatotoxicity, and exerted significant anti-oxidative effects compared with the findings for spiramycin. Additionally, our molecular docking study indicated that the synthesized compounds could act as potential inhibitors of T. gondii calcium-dependent protein kinase 1 (TgCDPK1), with 12a possessing strong affinity for TgCDPK1 via binding to the key amino acids GLU129 and TYR131.
Collapse
Affiliation(s)
- Lin-Hao Zhang
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji, 133002, China
| | - Li-Li Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji, 133002, China
| | - Fang Liu
- Department of Pharmacy, Yanbian University Hospital, Yanji, 133002, China
| | - Chunmei Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji, 133002, China
| | - Chun-Mei Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji, 133002, China.
| | - Zhi-Yu Wei
- Medical College of Dalian University, Dalian, 116622, China.
| |
Collapse
|
14
|
Guo XY, Zhang JD, Li YY, Li XJ, Meng XR. Synthesis, structure, and BSA binding studies of a new Co(II) complex based on 2-(1H-tetrazol-1-methyl)-1H-imidazole-4,5-dicarboxylic acid. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Khwaza V, Oyedeji OO, Aderibigbe BA. Ursolic Acid-Based Derivatives as Potential Anti-Cancer Agents: An Update. Int J Mol Sci 2020; 21:E5920. [PMID: 32824664 PMCID: PMC7460570 DOI: 10.3390/ijms21165920] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/12/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
Ursolic acid is a pharmacologically active pentacyclic triterpenoid derived from medicinal plants, fruit, and vegetables. The pharmacological activities of ursolic acid have been extensively studied over the past few years and various reports have revealed that ursolic acid has multiple biological activities, which include anti-inflammatory, antioxidant, anti-cancer, etc. In terms of cancer treatment, ursolic acid interacts with a number of molecular targets that play an essential role in many cell signaling pathways. It suppresses transformation, inhibits proliferation, and induces apoptosis of tumor cells. Although ursolic acid has many benefits, its therapeutic applications in clinical medicine are limited by its poor bioavailability and absorption. To overcome such disadvantages, researchers around the globe have designed and developed synthetic ursolic acid derivatives with enhanced therapeutic effects by structurally modifying the parent skeleton of ursolic acid. These structurally modified compounds display enhanced therapeutic effects when compared to ursolic acid. This present review summarizes various synthesized derivatives of ursolic acid with anti-cancer activity which were reported from 2015 to date.
Collapse
Affiliation(s)
| | | | - Blessing A. Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa; (V.K.); (O.O.O.)
| |
Collapse
|
16
|
Nasrollahzadeh M, Motahharifar N. Synthesis of novel
N
‐aryl‐
N
‐(1
H
‐tetrazol‐5‐yl)benzenesulfonamides in water. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Narjes Motahharifar
- Department of Chemistry, Faculty of Science University of Qom PO Box 37185‐359 Qom Iran
| |
Collapse
|
17
|
Synthesis, molecular structure and BSA-binding properties of a new binuclear Cd(II) complex based on 2-(1H-tetrazol-1-methyl)-1H-imidazole-4,5-dicarboxylic acid. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2020. [DOI: 10.1515/znb-2020-0017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract
A new binuclear Cd(II) complex, [Cd2(H2tmidc)4(H2O)2]·6H2O (1) based on 2-(1H-tetrazol-1-methyl)-1H-imidazole-4,5-dicarboxylic acid (H3tmidc) has been synthesized and structurally characterized. The single-crystal X-ray diffraction analysis has revealed that there are two crystallographically distinct H2tmidc– anions in complex 1, one of which is coordinated to Cd(II) ion in a terminal fashion, while the other acts as a bis-connector linking two Cd(II) cations to form the dinuclear structure. The dimeric units are stabilized by intra-molecular O–H···O hydrogen bonds and π-π stacking interactions and are further connected into a three-dimensional supramolecular architecture through inter-molecular hydrogen bonds and π-π stacking interactions. The interactions of complex 1 with bovine serum albumin (BSA) were analyzed by fluorescence measurements under physiological conditions. The results have indicated that the fluorescence intensity of BSA was decreased considerably upon the addition of complex 1 through a static quenching mechanism. The synchronous fluorescence spectrum suggested that the interaction of complex 1 with BSA affects the conformations of tryptophan and tyrosine residues and thereby has an influence on the conformation of BSA.
Collapse
|
18
|
Dhiman N, Kaur K, Jaitak V. Tetrazoles as anticancer agents: A review on synthetic strategies, mechanism of action and SAR studies. Bioorg Med Chem 2020; 28:115599. [PMID: 32631569 DOI: 10.1016/j.bmc.2020.115599] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022]
Abstract
Cancer is a leading cause of death worldwide. Even after the availability of numerous drugs and treatments in the market, scientists and researchers are focusing on new therapies because of their resistance and toxicity issues. The newly synthesized drug candidates are able to demonstrate in vitro activity but are unable to reach clinical trials due to their rapid metabolism and low bioavailability. Therefore there is an imperative requisite to expand novel anticancer negotiators with tremendous activity as well as in vivo efficacy. Tetrazole is a promising pharmacophore which is metabolically more stable and acts as a bioisosteric analogue for many functional groups. Tetrazole fragment is often castoff with other pharmacophores in the expansion of novel anticancer drugs. This is the first systematic review that emphasizes on contemporary strategies used for the inclusion of tetrazole moiety, mechanistic targets along with comprehensive structural activity relationship studies to provide perspective into the rational design of high-efficiency tetrazole-based anticancer drug candidates.
Collapse
Affiliation(s)
- Neha Dhiman
- Department of Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151 001, India
| | - Kamalpreet Kaur
- Department of Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151 001, India
| | - Vikas Jaitak
- Department of Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151 001, India.
| |
Collapse
|
19
|
Chang CW, Cheng MC, Lee GH, Peng SM. Facile synthesis of 1,5-disubstituted tetrazoles by reacting a ruthenium acetylide complex with trimethylsilyl azide. Dalton Trans 2019; 48:11732-11742. [PMID: 31298242 DOI: 10.1039/c9dt02363a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Treatment of [Ru]-C[triple bond, length as m-dash]CPh (1, [Ru] = (η5-C5H5)(dppe)Ru, dppe = Ph2PCH2CH2PPh2) with trimethylsilyl azide afforded the cationic nitrile complex {[Ru]NCCH2Ph}[N3] (2) and the further cycloaddition of 2 with trimethylsilyl azide at 60 °C afforded the N(2)-bound tetrazolato complex [Ru]N4CCH2Ph (3). The regiospecific alkylation of 3 gave a series of cationic N(2)-bound N(4)-alkylated-5-benzyl tetrazolato complexes {[Ru]N4(CH2R)CCH2Ph}[Br] (4a, R = C6F5; 4b, R = Ph; 4c, R = 4-CN-C6H4; 4d, R = 2,6-F2-C6H3; 4e, R = 6-CH2Br-C5NH3) and the subsequent cleavage of the Ru-N bond of 4a-4e gave N(1)-alkylated-5-benzyl tetrazoles N4(CH2R)CCH2Ph (5a-5e) in good to excellent yields and [Ru]-Br, which, on reacting with phenylacetylene, resulted in the formation of 1 thus forming a reaction cycle. The structures of 2, 3, 4a, 4c and 5a were confirmed by single-crystal X-ray diffraction analysis.
Collapse
Affiliation(s)
- Chao-Wan Chang
- Division of Preparatory Programs for Overseas Chinese Students, National Taiwan Normal University, New Taipei City 24449, Linkou, Taiwan.
| | - Ming-Chuan Cheng
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan and Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Gene-Hsiang Lee
- Instrumentation Center, National Taiwan University, Taipei 10617, Taiwan
| | - Shie-Ming Peng
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan and Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|