1
|
Shmuel O, Rasti A, Zaknoun M, Astman N, Golan-Goldhirsh A, Sagi O, Gopas J. Anti- Leishmania major Properties of Nuphar lutea (Yellow Water Lily) Leaf Extracts and Purified 6,6' Dihydroxythiobinupharidine (DTBN). Pathogens 2024; 13:384. [PMID: 38787236 PMCID: PMC11124111 DOI: 10.3390/pathogens13050384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Cutaneous leishmaniasis (CL) is a zoonotic disease, manifested as chronic ulcers, potentially leaving unattractive scars. There is no preventive vaccination or optimal medication against leishmaniasis. Chemotherapy generally depends upon a small group of compounds, each with its own efficacy, toxicity, and rate of drug resistance. To date, no standardized, simple, safe, and highly effective regimen for treating CL exists. Therefore, there is an urgent need to develop new optimal medication for this disease. Sesquiterpen thio-alkaloids constitute a group of plant secondary metabolites that bear great potential for medicinal uses. The nupharidines found in Nuphar lutea belong to this group of compounds. We have previously published that Nuphar lutea semi-purified extract containing major components of nupharidines has strong anti-leishmanial activity in vitro. Here, we present in vivo data on the therapeutic benefit of the extract against Leishmania major (L. major) in infected mice. We also expanded these observations by establishing the therapeutic effect of the extract-purified nupharidine 6,6'-dihydroxythiobinupharidine (DTBN) in vitro against promastigotes and intracellular amastigotes as well as in vivo in L. major-infected mice. The results suggest that this novel anti-parasitic small molecule has the potential to be further developed against Leishmania.
Collapse
Affiliation(s)
- Orit Shmuel
- Shraga Segal Dept. of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel; (O.S.); (A.R.); (O.S.)
| | - Aviv Rasti
- Shraga Segal Dept. of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel; (O.S.); (A.R.); (O.S.)
| | - Melodie Zaknoun
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel;
| | - Nadav Astman
- Department of Dermatology, Sheba Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Tel Aviv 39040, Israel;
| | - Avi Golan-Goldhirsh
- The Jacob Blaustein Institutes for Desert Research (BIDR), French Associates Institute for Agriculture and Biotechnology of Drylands, Ben-Gurion University of the Negev, Sede Boqer Campus, Beer Sheva 8410501, Israel;
| | - Orly Sagi
- Shraga Segal Dept. of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel; (O.S.); (A.R.); (O.S.)
- Laboratory of Microbiology, Soroka University Medical Center, Beer Sheva 84101, Israel
| | - Jacob Gopas
- Shraga Segal Dept. of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel; (O.S.); (A.R.); (O.S.)
| |
Collapse
|
2
|
Landau D, Khalilia J, Arazi E, Tobar AF, Benharroch D, Golan-Goldhirsh A, Gopas J, Segev Y. A Nuphar lutea plant active ingredient, 6,6'-dihydroxythiobinupharidine, ameliorates kidney damage and inflammation in a mouse model of chronic kidney disease. Sci Rep 2024; 14:7577. [PMID: 38555397 PMCID: PMC10981724 DOI: 10.1038/s41598-024-58055-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
Chronic Kidney Disease (CKD) associated complications are associated with increased inflammation through the innate immune response, which can be modulated with anti-inflammatory agents. An active ingredient derived from the Nuphar lutea aquatic plant, 6,6'-dihydroxythiobinupharidine (DTBN) has anti-inflammatory properties, mainly through the inhibition of NF-κB. We tested the effects of DTBN on mice with CKD. After preliminary safety and dosing experiments, we exposed 8 weeks old male C57BL/6J mice to adenine diet to induce CKD. Control and CKD animals were treated with IP injections of DTBN (25 μg QOD) or saline and sacrificed after 8 weeks. Serum urea and creatinine were significantly decreased in CKD-DTBN Vs CKD mice. Kidney histology showed a decrease in F4/80 positive macrophage infiltration, damaged renal area, as well as decreased kidney TGF-β in CKD-DTBN Vs CKD mice. Kidney inflammation indices (IL-1β, IL-6 and P-STAT3) were significantly decreased in CKD-DTBN as compared to CKD mice. DTBN treatment showed no apparent damage to tissues in control mice, besides a decrease in weight gain and mild hypoalbuminemia without proteinuria. Thus, DTBN significantly improved renal failure and inflammation indices in CKD mice. Therefore, this and similar substances may be considered as an additional treatment in CKD patients.
Collapse
Affiliation(s)
- Daniel Landau
- Department of Nephrology, Schneider Children's Medical Center, Petah Tikva, Israel.
- School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Jannat Khalilia
- Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Eden Arazi
- Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | - Daniel Benharroch
- Department of Pathology, Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Avi Golan-Goldhirsh
- The Jacob Blaustein Institutes for Desert Research (BIDR), French Associates Institute for Agriculture and Biotechnology of Drylands, Ben-Gurion University of the Negev, Sede Boqer Campus, Beer Sheva, Israel
| | - Jacob Gopas
- Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Yael Segev
- Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
3
|
Weiss S, Waidha K, Rajendran S, Benharroch D, Khalilia J, Levy H, Bar-David E, Golan-Goldhirsh A, Gopas J, Ben-Shmuel A. In Vitro and In Vivo Therapeutic Potential of 6,6'-Dihydroxythiobinupharidine (DTBN) from Nuphar lutea on Cells and K18- hACE2 Mice Infected with SARS-CoV-2. Int J Mol Sci 2023; 24:ijms24098327. [PMID: 37176034 PMCID: PMC10179516 DOI: 10.3390/ijms24098327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
We have previously published research on the anti-viral properties of an alkaloid mixture extracted from Nuphar lutea, the major components of the partially purified mixture found by NMR analysis. These are mostly dimeric sesquiterpene thioalkaloids called thiobinupharidines and thiobinuphlutidines against the negative strand RNA measles virus (MV). We have previously reported that this extract inhibits the MV as well as its ability to downregulate several MV proteins in persistently MV-infected cells, especially the P (phospho)-protein. Based on our observation that the Nuphar extract is effective in vitro against the MV, and the immediate need that the coronavirus disease 2019 (COVID-19) pandemic created, we tested here the ability of 6,6'-dihydroxythiobinupharidine DTBN, an active small molecule, isolated from the Nuphar lutea extract, on COVID-19. As shown here, DTBN effectively inhibits SARS-CoV-2 production in Vero E6 cells at non-cytotoxic concentrations. The short-term daily administration of DTBN to infected mice delayed the occurrence of severe clinical outcomes, lowered virus levels in the lungs and improved survival with minimal changes in lung histology. The viral load on lungs was significantly reduced in the treated mice. DTBN is a pleiotropic small molecule with multiple targets. Its anti-inflammatory properties affect a variety of pathogens including SARS-CoV-2 as shown here. Its activity appears to target both pathogen specific (as suggested by docking analysis) as well as cellular proteins, such as NF-κB, PKCs, cathepsins and topoisomerase 2, that we have previously identified in our work. Thus, this combined double action of virus inhibition and anti-inflammatory activity may enhance the overall effectivity of DTBN. The promising results from this proof-of-concept in vitro and in vivo preclinical study should encourage future studies to optimize the use of DTBN and/or its molecular derivatives against this and other related viruses.
Collapse
Affiliation(s)
- Shay Weiss
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona 7410001, Israel
| | - Kamran Waidha
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Saravanakumar Rajendran
- Chemistry Division, SAS, Vellore Institute of Technology, Chennai Campus, Chennai 600127, India
| | - Daniel Benharroch
- Department of Pathology, Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Jannat Khalilia
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Haim Levy
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona 7410001, Israel
| | - Elad Bar-David
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona 7410001, Israel
| | - Avi Golan-Goldhirsh
- The Jacob Blaustein Institutes for Desert Research (BIDR), Ben-Gurion University of the Negev, Sede Boqer Campus, Sde Boker 8410501, Israel
| | - Jacob Gopas
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Amir Ben-Shmuel
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona 7410001, Israel
| |
Collapse
|
4
|
Cytotoxicity of Thioalkaloid-Enriched Nuphar lutea Extract and Purified 6,6′-Dihydroxythiobinupharidine in Acute Myeloid Leukemia Cells: The Role of Oxidative Stress and Intracellular Calcium. Pharmaceuticals (Basel) 2022; 15:ph15040410. [PMID: 35455407 PMCID: PMC9032197 DOI: 10.3390/ph15040410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological malignancy characterized by uncontrolled proliferation of immature myeloid progenitors. Here, we report the in vitro antileukemic effects of the sesquiterpene thioalkaloid-enriched fraction of the Nuphar lutea leaf extract (NUP) and a purified thioalkaloid 6,6′-dihydroxythiobinupharidine (DTBN). Treatment with 0.3–10 µg/mL NUP caused a dose- and time-dependent reduction in proliferation and viability of human AML cells (KG-1a, HL60 and U937). This was associated with apoptosis induction manifested by annexin-V/propidium iodide binding as well as cleavage of caspases 8, 9, and 3 as well as poly (ADP-ribose) polymerase. Caspase-dependence of the apoptotic effect was confirmed using the pan-caspase inhibitor Q-VD-OPH. NUP induced significant biphasic changes in the cytosolic levels of reactive oxygen species (ROS) compared to untreated cells—a decrease at early time points (2–4 h) and an increase after a longer incubation (24 h). ROS accumulation was accompanied by lowering the cellular glutathione (GSH) levels. In addition, NUP treatment resulted in elevation of the cytosolic Ca2+ (Ca2+cyt) levels. The thiol antioxidant and glutathione precursor N-acetyl cysteine prevented NUP-induced ROS accumulation and markedly inhibited apoptosis. A similar antiapoptotic effect was obtained by Ca2+cyt chelating using BAPTA. These data indicate that NUP-induced cell death is mediated, at least in part, by the induction of oxidative stress and Ca2+cyt accumulation. However, a substantial apoptotic activity of pure DTBN (0.05–0.25 µg/mL), was found to be independent of cytosolic ROS or Ca2+, suggesting that alternative mechanisms are involved in DTBN-induced cytotoxicity. Notably, neither NUP nor DTBN treatment significantly induced cell death of normal human peripheral blood mononuclear cells. Our results provide the basis for further investigation of the antileukemic potential of NUP and its active constituents.
Collapse
|
5
|
Design, Synthesis, and Cytotoxicity and Topoisomerase I/IIα Inhibition Activity of Pyrazolo[4,3-f]quinoline Derivatives. Pharmaceuticals (Basel) 2022; 15:ph15040399. [PMID: 35455396 PMCID: PMC9026320 DOI: 10.3390/ph15040399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 02/01/2023] Open
Abstract
With the several targets of cancer treatment, inhibition of DNA topoisomerase activity is one of the well-known focuses in cancer chemotherapy. Here, we describe the design and synthesis of a novel series of pyrazolo[4,3-f]quinolines with potential anticancer/topoisomerase inhibition activity. Forty newly designed pyrazolo[4,3-f]quinoline derivatives were synthesized via inverse imino Diels–Alder reaction. The antiproliferative activity of the synthesized derivatives was initially measured in the human NUGC-3 cancer cell line. Then, the selected compounds 1B, 1C, 1M, 2A, 2D, 2E, 2F, and 2R with higher activity among tested compounds were screened against six cancer cell lines, including ACHN, HCT-15, MM231, NCI-H23, NUGC-3, and PC-3. The results demonstrated that the compounds 1M, 2E, and 2P were most effective in all cancer cell lines exhibiting GI50 below 8 µM. Among them, 2E showed an equivalent inhibition pattern of topoisomerase IIα activity to that of etoposide, positive control at a 100 µM dose.
Collapse
|
6
|
Inhibition of Cysteine Proteases by 6,6'-Dihydroxythiobinupharidine (DTBN) from Nuphar lutea. Molecules 2021; 26:molecules26164743. [PMID: 34443335 PMCID: PMC8399019 DOI: 10.3390/molecules26164743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 11/21/2022] Open
Abstract
The specificity of inhibition by 6,6′-dihydroxythiobinupharidine (DTBN) on cysteine proteases was demonstrated in this work. There were differences in the extent of inhibition, reflecting active site structural-steric and biochemical differences. Cathepsin S (IC50 = 3.2 μM) was most sensitive to inhibition by DTBN compared to Cathepsin B, L and papain (IC50 = 1359.4, 13.2 and 70.4 μM respectively). DTBN is inactive for the inhibition of Mpro of SARS-CoV-2. Docking simulations suggested a mechanism of interaction that was further supported by the biochemical results. In the docking results, it was shown that the cysteine sulphur of Cathepsin S, L and B was in close proximity to the DTBN thiaspirane ring, potentially forming the necessary conditions for a nucleophilic attack to form a disulfide bond. Covalent docking and molecular dynamic simulations were performed to validate disulfide bond formation and to determine the stability of Cathepsins-DTBN complexes, respectively. The lack of reactivity of DTBN against SARS-CoV-2 Mpro was attributed to a mismatch of the binding conformation of DTBN to the catalytic binding site of Mpro. Thus, gradations in reactivity among the tested Cathepsins may be conducive for a mechanism-based search for derivatives of nupharidine against COVID-19. This could be an alternative strategy to the large-scale screening of electrophilic inhibitors.
Collapse
|
7
|
Vann KR, Oviatt AA, Osheroff N. Topoisomerase II Poisons: Converting Essential Enzymes into Molecular Scissors. Biochemistry 2021; 60:1630-1641. [PMID: 34008964 PMCID: PMC8209676 DOI: 10.1021/acs.biochem.1c00240] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The extensive length, compaction, and interwound nature of DNA, together with its controlled and restricted movement in eukaryotic cells, create a number of topological issues that profoundly affect all of the functions of the genetic material. Topoisomerases are essential enzymes that modulate the topological structure of the double helix, including the regulation of DNA under- and overwinding and the removal of tangles and knots from the genome. Type II topoisomerases alter DNA topology by generating a transient double-stranded break in one DNA segment and allowing another segment to pass through the DNA gate. These enzymes are involved in a number of critical nuclear processes in eukaryotic cells, such as DNA replication, transcription, and recombination, and are required for proper chromosome structure and segregation. However, because type II topoisomerases generate double-stranded breaks in the genetic material, they also are intrinsically dangerous enzymes that have the capacity to fragment the genome. As a result of this dualistic nature, type II topoisomerases are the targets for a number of widely prescribed anticancer drugs. This article will describe the structure and catalytic mechanism of eukaryotic type II topoisomerases and will go on to discuss the actions of topoisomerase II poisons, which are compounds that stabilize DNA breaks generated by the type II enzyme and convert these essential enzymes into "molecular scissors." Topoisomerase II poisons represent a broad range of structural classes and include anticancer drugs, dietary components, and environmental chemicals.
Collapse
Affiliation(s)
- Kendra R Vann
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Alexandria A Oviatt
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Neil Osheroff
- Departments of Biochemistry and Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- VA Tennessee Valley Healthcare System, Nashville, Tennessee 37212, United States
| |
Collapse
|
8
|
Waidha K, Anto NP, Jayaram DR, Golan-Goldhirsh A, Rajendran S, Livneh E, Gopas J. 6,6'-Dihydroxythiobinupharidine (DTBN) Purified from Nuphar lutea Leaves Is an Inhibitor of Protein Kinase C Catalytic Activity. Molecules 2021; 26:molecules26092785. [PMID: 34066895 PMCID: PMC8125885 DOI: 10.3390/molecules26092785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 12/28/2022] Open
Abstract
Water lily (Nuphar) bioactive extracts have been widely used in traditional medicine owing to their multiple applications against human ailments. Phyto-active Nuphar extracts and their purified and synthetic derivatives have attracted the attention of ethnobotanists and biochemists. Here, we report that 6,6'-dihydroxythiobinupharidine (DTBN), purified from extracts of Nuphar lutea (L.) Sm. leaves, is an effective inhibitor of the kinase activity of members of the protein kinase C (PKC) family using in vitro and in silico approaches. We demonstrate that members of the conventional subfamily of PKCs, PKCα and PKCγ, were more sensitive to DTBN inhibition as compared to novel or atypical PKCs. Molecular docking analysis demonstrated the interaction of DTBN, with the kinase domain of PKCs depicting the best affinity towards conventional PKCs, in accordance with our in vitro kinase activity data. The current study reveals novel targets for DTBN activity, functioning as an inhibitor for PKCs kinase activity. Thus, this and other data indicate that DTBN modulates key cellular signal transduction pathways relevant to disease biology, including cancer.
Collapse
Affiliation(s)
- Kamran Waidha
- Defence Institute of High Altitude Research (DIHAR), Defence Research and Development Organisation (DRDO) Leh, Ladakh UT-194101, India;
| | - Nikhil Ponnoor Anto
- The Shraga Segal Department of Microbiology, Immunology and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8400501, Israel; (N.P.A.); (D.R.J.)
| | - Divya Ram Jayaram
- The Shraga Segal Department of Microbiology, Immunology and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8400501, Israel; (N.P.A.); (D.R.J.)
| | - Avi Golan-Goldhirsh
- The Jacob Blaustein Institutes for Desert Research (BIDR), Sede Boqer Campus, French Associates Institute for Agriculture and Biotechnology of Drylands, Ben-Gurion University of the Negev, Beer Sheva 8499000, Israel
- Correspondence: (A.G.-G.); (S.R.); (E.L.); (J.G.)
| | - Saravanakumar Rajendran
- Chemistry Division, Vellore Institute of Technology Chennai Campus, School of Advanced Sciences, Chennai 600127, India
- Correspondence: (A.G.-G.); (S.R.); (E.L.); (J.G.)
| | - Etta Livneh
- The Shraga Segal Department of Microbiology, Immunology and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8400501, Israel; (N.P.A.); (D.R.J.)
- Correspondence: (A.G.-G.); (S.R.); (E.L.); (J.G.)
| | - Jacob Gopas
- The Shraga Segal Department of Microbiology, Immunology and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8400501, Israel; (N.P.A.); (D.R.J.)
- Department of Oncology, Soroka University Medical Center, Beer Sheva 8400501, Israel
- Correspondence: (A.G.-G.); (S.R.); (E.L.); (J.G.)
| |
Collapse
|
9
|
Abstract
1,2-Naphthoquinone, a secondary metabolite of naphthalene, is an environmental pollutant found in diesel exhaust particles that displays cytotoxic and genotoxic properties. Because many quinones have been shown to act as topoisomerase II poisons, the effects of this compound on DNA cleavage mediated by human topoisomerase IIα and IIβ were examined. The compound increased the levels of double-stranded DNA breaks generated by both enzyme isoforms and did so better than a series of naphthoquinone derivatives. Furthermore, 1,2-naphthoquinone was a more efficacious poison against topoisomerase IIα than IIβ. Topoisomerase II poisons can be classified as interfacial (which interact noncovalently at the enzyme-DNA interface and increase DNA cleavage by blocking ligation) or covalent (which adduct the protein and increase DNA cleavage by closing the N-terminal gate of the enzyme). Therefore, experiments were performed to determine the mechanistic basis for the actions of 1,2-naphthoquinone. In contrast to results with etoposide (an interfacial poison), the activity of 1,2-naphthoquinone against topoisomerase IIα was abrogated in the presence of sulfhydryl and reducing agents. Moreover, the compound inhibited cleavage activity when incubated with the enzyme prior to the addition of DNA and induced virtually no cleavage with the catalytic core of the enzyme. It also induced stable covalent topoisomerase IIα-DNA cleavage complexes and was a partial inhibitor of DNA ligation. Findings were also consistent with 1,2-naphthoquinone acting as a covalent poison of topoisomerase IIβ; however, mechanistic studies with this isoform were less conclusive. Whereas the activity of 1,2-naphthoquinone was blocked in the presence of a sulfhydryl reagent, it was much less sensitive to the presence of a reducing agent. Furthermore, the reduced form of 1,2-naphthoquinone, 1,2-dihydroxynaphthalene, displayed high activity against the β isoform. Taken together, results suggest that 1,2-naphthoquinone increases topoisomerase II-mediated double-stranded DNA scission (at least in part) by acting as a covalent poison of the human type II enzymes.
Collapse
Affiliation(s)
- Jessica A. Collins
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- VA Tennessee Valley Healthcare System, Nashville, Tennessee 37212, United States
| |
Collapse
|
10
|
Nuphar lutea Extracts Exhibit Anti-Viral Activity against the Measles Virus. Molecules 2020; 25:molecules25071657. [PMID: 32260270 PMCID: PMC7180909 DOI: 10.3390/molecules25071657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/22/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023] Open
Abstract
Different parts of Nuphar lutea L. (yellow water lily) have been used to treat several inflammatory and pathogen-related diseases. It has shown that Nuphar lutea extracts (NUP) are active against various pathogens including bacteria, fungi, and leishmanial parasites. In an effort to detect novel therapeutic agents against negative-stranded RNA (- RNA) viruses, we have tested the effect of a partially-purified alkaloid mixture of Nuphar lutea leaves on the measles virus (MV). The MV vaccine’s Edmonston strain was used to acutely or persistently infect cells. The levels of several MV proteins were detected by a Western blot and immunocytochemistry. Viral RNAs were quantitated by qRT-PCR. Virus infectivity was monitored by infecting African green monkey kidney VERO cells’ monolayers. We showed that NUP protected cells from acute infection. Decreases in the MV P-, N-, and V-proteins were observed in persistently infected cells and the amount of infective virus released was reduced as compared to untreated cells. By examining viral RNAs, we suggest that NUP acts at the post-transcriptional level. We conclude, as a proof of concept, that NUP has anti-viral therapeutic activity against the MV. Future studies will determine the mechanism of action and the effect of NUP on other related viruses.
Collapse
|
11
|
Abstract
This review highlights the progress on the isolation, bioactivity, biogenesis and total synthesis of dimeric sesquiterpenoids since 2010.
Collapse
Affiliation(s)
- Lie-Feng Ma
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Yi-Li Chen
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Wei-Guang Shan
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Zha-Jun Zhan
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| |
Collapse
|