1
|
Oduselu GO, Aderohunmu DV, Ajani OO, Elebiju OF, Ogunnupebi TA, Adebiyi E. Synthesis, in silico and in vitro antimicrobial efficacy of substituted arylidene-based quinazolin-4(3 H)-one motifs. Front Chem 2023; 11:1264824. [PMID: 37818483 PMCID: PMC10561392 DOI: 10.3389/fchem.2023.1264824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/04/2023] [Indexed: 10/12/2023] Open
Abstract
Introduction: Quinazolin-4(3H)-one derivatives have attracted considerable attention in the pharmacological profiling of therapeutic drug targets. The present article reveals the development of arylidene-based quinazolin-4(3H)-one motifs as potential antimicrobial drug candidates. Methods: The synthetic pathway was initiated through thermal cyclization of acetic anhydride on anthranilic acid to produce 2-methyl-4H-3,1-benzoxazan-4-one 1, which (upon condensation with hydrazine hydrate) gave 3-amino-2-methylquinazolin-4(3H)-one 2. The reaction of intermediate 2 at its amino side arm with various benzaldehyde derivatives furnished the final products, in the form of substituted benzylidene-based quinazolin-4(3H)-one motifs 3a-l, and with thiophene-2-carbaldehyde to afford 3 m. The purified targeted products 3a-m were effectively characterized for structural authentication using physicochemical parameters, microanalytical data, and spectroscopic methods, including IR, UV, and 1H- and 13C-NMR, as well as mass spectral data. The substituted arylidene-based quinazolin-4(3H)-one motifs 3a-m were screened for both in silico and in vitro antimicrobial properties against selected bacteria and fungi. The in silico studies carried out consisted of predicted ADMET screening, molecular docking, and molecular dynamics (MD) simulation studies. Furthermore, in vitro experimental validation was performed using the agar diffusion method, and the standard antibacterial and antifungal drugs used were gentamicin and ketoconazole, respectively. Results and discussion: Most of the compounds possessed good binding affinities according to the molecular docking studies, while MD simulation revealed their levels of structural stability in the protein-ligand complexes. 2-methyl-3-((thiophen-2-ylmethylene)amino) quinazolin-4(3H)-one 3 m emerged as both the most active antibacterial agent (with an minimum inhibitory concentration (MIC) value of 1.95 μg/mL) against Staphylococcus aureus and the most active antifungal agent (with an MIC value of 3.90 μg/mL) against Candida albicans, Aspergillus niger, and Rhizopus nigricans.
Collapse
Affiliation(s)
- Gbolahan O. Oduselu
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
| | - Damilola V. Aderohunmu
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
| | - Olayinka O. Ajani
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
- Department of Chemistry, Covenant University, Ota, Ogun State, Nigeria
| | - Oluwadunni F. Elebiju
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
- Department of Chemistry, Covenant University, Ota, Ogun State, Nigeria
| | - Temitope A. Ogunnupebi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
- Department of Chemistry, Covenant University, Ota, Ogun State, Nigeria
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
2
|
Sharma B, Agarwal A, Awasthi SK. Is structural hybridization invoking new dimensions for antimalarial drug discovery research? RSC Med Chem 2023; 14:1227-1253. [PMID: 37484560 PMCID: PMC10357931 DOI: 10.1039/d3md00083d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/01/2023] [Indexed: 07/25/2023] Open
Abstract
Despite effective prevention methods, malaria is a devastating, persistent infection caused by protozoal parasites that result in nearly half a million fatalities annually. Any progress made thus far in the eradication of the disease is jeopardized by the expansion of malaria parasites that have evolved to become resistant to a wide range of drugs, including first-line therapy. To surmount this significant obstacle, it is necessary to develop newly synthesized drugs with multiple modes of action that may have a novel target in various stages of Plasmodium parasite development and this is made possible by the hybridization concept. Hybridization is the combination of at least two diverse pharmacophore units with some linkers bringing about a single molecule with a diverse mode of action. It intensifies a drug's physiological and chemical characteristics, such as absorption, cellular target contact, metabolism, excretion, distribution, and toxicity. This review article outlines the currently published most potent hybrid drugs against the Plasmodium species.
Collapse
Affiliation(s)
- Bhawana Sharma
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| | - Alka Agarwal
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University Varanasi-221005 Uttar Pradesh India
| | - Satish Kumar Awasthi
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| |
Collapse
|
3
|
Huang Z, Li W, He G, Shen L, Chen X, Shuai S, Li F, Wang H, Liu R, Zhang S, Cheng C, Ouyang L, Yu X, Fu W. Adsorption Mechanism of Amidoxime Collector on the Flotation of Lepidolite: Experiment and DFT Calculation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15858-15865. [PMID: 36473165 DOI: 10.1021/acs.langmuir.2c02821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Lepidolite is an important mineral resource of lithium. With the increase in awareness of low-carbon and green travel, the demand for lithium has increased dramatically. Therefore, how to increase the output of lithium has to turn into high precedence. In this paper, amidoxime (DPA) was synthesized and used for the efficient collection of lepidolite. Dodecylamine (DA), a commonly used collector of lepidolite ore, was used for comparison. The collecting performances of DA and DPA for lepidolite were studied by the micro-flotation experiment, and the adsorption mechanism of DPA on lepidolite was verified by contact angle, zeta potential tests, FTIR spectra, and density functional theory (DFT) calculations. The results of flotation experiments showed that at the same collector dosage (3 × 10-4 mol/L), the recovery of lepidolite could reach 90%, while the recovery of lepidolite with DA was only 52.5%, and to achieve the maximum recovery of DA (77.5%), only half of the DPA was added. The contact angle test results showed that DPA could effectively improve the hydrophobicity of lepidolite than DA. FTIR spectra and zeta potential tests suggested that DPA molecules were adsorbed on the lepidolite surface by electrostatic attraction. DFT calculations revealed that DPA reacted with the nucleophilic reagent (lepidolite) by the reactive site of the -CH2NH(CH2)2C(NOH)N+H3 group and more easily absorbed on the surface of lepidolite than DA. Therefore, our new finding will provide an important prospect for the sustainable development and utilization of lithium resources.
Collapse
Affiliation(s)
- Zhiqiang Huang
- Jiangxi Province Key Laboratory of Mining Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 34100, China
| | - Wenyuan Li
- Jiangxi Province Key Laboratory of Mining Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 34100, China
| | - Guichun He
- Jiangxi Province Key Laboratory of Mining Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 34100, China
| | - Louyan Shen
- China Nerin Engineering Co. Ltd, Nanchang, Jiangxi 330031, China
| | - Xiaoai Chen
- China Nerin Engineering Co. Ltd, Nanchang, Jiangxi 330031, China
| | - Shuyi Shuai
- Jiangxi Province Key Laboratory of Mining Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 34100, China
| | - Fangxu Li
- Guangdong Institute of Resources Comprehensive Utilization, Guangzhou 510650, China
| | - Hongling Wang
- Guangdong Institute of Resources Comprehensive Utilization, Guangzhou 510650, China
| | - Rukuan Liu
- Hunan Academy of Forestry, Changsha, Hunan 410004, China
| | - Shiyong Zhang
- Jiangxi Province Key Laboratory of Mining Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 34100, China
| | - Chen Cheng
- Jiangxi Province Key Laboratory of Mining Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 34100, China
| | - Liaoyuan Ouyang
- Jiangxi Province Key Laboratory of Mining Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 34100, China
| | - Xinyang Yu
- Jiangxi Province Key Laboratory of Mining Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 34100, China
| | - Weng Fu
- School of Chemical Engineering, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
4
|
Maračić S, Grbčić P, Shammugam S, Radić Stojković M, Pavelić K, Sedić M, Kraljević Pavelić S, Raić-Malić S. Amidine- and Amidoxime-Substituted Heterocycles: Synthesis, Antiproliferative Evaluations and DNA Binding. Molecules 2021; 26:molecules26227060. [PMID: 34834151 PMCID: PMC8625065 DOI: 10.3390/molecules26227060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 11/29/2022] Open
Abstract
The novel 1,2,3-triazolyl-appended N- and O-heterocycles containing amidine 4–11 and amidoxime 12–22 moiety were prepared and evaluated for their antiproliferative activities in vitro. Among the series of amidine-substituted heterocycles, aromatic diamidine 5 and coumarine amidine 11 had the most potent growth-inhibitory effect on cervical carcinoma (HeLa), hepatocellular carcinoma (HepG2) and colorectal adenocarcinoma (SW620), with IC50 values in the nM range. Although compound 5 was toxic to non-tumor HFF cells, compound 11 showed certain selectivity. From the amidoxime series, quinoline amidoximes 18 and 20 showed antiproliferative effects on lung adenocarcinoma (A549), HeLa and SW620 cells emphasizing compound 20 that exhibited no cytostatic effect on normal HFF fibroblasts. Results of CD titrations and thermal melting experiments indicated that compounds 5 and 10 most likely bind inside the minor groove of AT-DNA and intercalate into AU-RNA. Compounds 6, 9 and 11 bind to AT-DNA with mixed binding mode, most probably minor groove binding accompanied with aggregate binding along the DNA backbone.
Collapse
Affiliation(s)
- Silvija Maračić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia;
| | - Petra Grbčić
- Department of Biotechnology, University of Rijeka, Ulica Radmile Matejčić 2, HR-51000 Rijeka, Croatia;
| | - Suresh Shammugam
- Division of Organic Chemistry and Biochemistry, Laboratory for Biomolecular Interactions and Spectroscopy, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia;
| | - Marijana Radić Stojković
- Division of Organic Chemistry and Biochemistry, Laboratory for Biomolecular Interactions and Spectroscopy, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia;
- Correspondence: (M.R.S.); (S.R.-M.); Tel.: +385-1-4571220 (M.R.S.); +385-1-4597213 (S.R.-M.)
| | - Krešimir Pavelić
- Faculty of Medicine, Juraj Dobrila University of Pula, HR-52100 Pula, Croatia;
| | - Mirela Sedić
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Ljudevita Gaja 32, HR-10000 Zagreb, Croatia;
| | - Sandra Kraljević Pavelić
- Faculty of Health Studies, University of Rijeka, Ulica Viktora Cara Emina 5, HR-51000 Rijeka, Croatia;
| | - Silvana Raić-Malić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia;
- Correspondence: (M.R.S.); (S.R.-M.); Tel.: +385-1-4571220 (M.R.S.); +385-1-4597213 (S.R.-M.)
| |
Collapse
|
5
|
Anamika J, Nikhar V, Laxmikant G, Priya S, Sonal V, Vyas SP. Nanobiotechnological modules as molecular target tracker for the treatment and prevention of malaria: options and opportunity. Drug Deliv Transl Res 2021; 10:1095-1110. [PMID: 32378173 PMCID: PMC7223109 DOI: 10.1007/s13346-020-00770-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Malaria is one of the major infectious diseases that remains a constant challenge to human being mainly due to the emergence of drug-resistant strains of parasite and also the availability of drugs, which are non-specific for their pharmacodynamic activity and known to be associated with multiple side effects. The disease has acquired endemic proportions in tropical countries where the hygienic conditions are not satisfactory while the environmental conditions favor the proliferation of parasite and its transmission, particularly through the female anopheles. It is obvious that to square up the problems, there is a need for designing and development of more effective drugs, which can combat the drug-resistant strains of the parasite. Molecular biology of the parasite and its homing into host cellular tropics provide multiple drug targets that could judiciously be considered for engineering and designing of new generation antimalarial drugs and also drug delivery systems. Though the recent reports document that against malaria parasite the vaccine could be developed, nevertheless, due to smart mutational change overs by the parasite, it is able to bypass the immune surveillance. The developed vaccine therefore failed to assure absolute protection against the malarial infection. In the conventional mode of treatment antimalarial drugs, the dose and dosage regimen that is followed at large crops up the contraindicative manifestations, and hence compromising the effective treatment. The emerging trends and new updates in contemporary biological sciences, material sciences, and drug delivery domain have enabled us with the availability of a multitude of mode and modules which could plunge upon the nanotechnology in particular to treat this challenging infection. The nanotechnology-based option may be tuned or customized as per the requirements to mark and target i.e. the infected RBCs, for targeted drug delivery. Graphical abstract ![]()
Collapse
Affiliation(s)
- Jain Anamika
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Vishwavidyalaya, Sagar, M.P., 470003, India
| | - Vishwakarma Nikhar
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Vishwavidyalaya, Sagar, M.P., 470003, India
| | - Gautam Laxmikant
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Vishwavidyalaya, Sagar, M.P., 470003, India
| | - Shrivastava Priya
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Vishwavidyalaya, Sagar, M.P., 470003, India
| | - Vyas Sonal
- Department of Pathology, Index Medical College, Hospital & Research Centre, Indore, M.P., India
| | - S P Vyas
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Vishwavidyalaya, Sagar, M.P., 470003, India.
| |
Collapse
|
6
|
Karaaslan C. Synthesis and Structure Elucidation of New Benzimidazole Amidoxime Derivatives. Turk J Pharm Sci 2020; 17:108-114. [PMID: 32454768 DOI: 10.4274/tjps.galenos.2019.44270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 12/16/2019] [Indexed: 12/01/2022]
Abstract
OBJECTIVES In our previous studies we synthesized some potent antiparasitic, anticancer and antimicrobial amidine derivatives. Despite all their potent activities, it is well known that due to their cationic charge, amidine derivatives pose a serious problem in terms of bioavailability. The main purpose of this study is to prepare amidoxime derivatives of previously synthesized potent amidine derivatives as prodrugs in order to increase their bioavailabilities. MATERIALS AND METHODS The targeted benzimidazole amidoximes were synthesized from their nitrile derivatives. The nitrile groups of these benzimidazole carbonitriles were converted to N-hydroxy benzamidine derivatives (amidoxime derivatives, 20-29) in the presence of NH2OH.HCI and KO-t-Bu in dimethyl sulfoxide. Structures of newly synthesized amidoxime derivatives were elucidated with 1H-NMR, 13C-NMR and some 2D NMR techniques like COSY, NOESY, HSQC and HMBC. RESULTS A new series of benzimidazole amidoximes were synthesized and their structural elucidations were done in this study. CONCLUSION In order to solve the potential bioavailability problem of potent amidine derivatives, we prepared the prodrugs of those potent amidine derivatives as their amidoxime derivatives. In vivo studies of both previous amidine derivatives and amidoxime prodrugs of those amidines which were synthesized in this study are planned to perform in our ongoing studies.
Collapse
Affiliation(s)
- Cigdem Karaaslan
- Ankara University Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Ankara, Turkey
| |
Collapse
|