1
|
Sadeghian S, Razmi R, Khabnadideh S, Khoshneviszadeh M, Mardaneh P, Talashan A, Pirouti A, Khebre F, Zahmatkesh Z, Rezaei Z. Synthesis, biological evaluation, molecular docking, and MD simulation of novel 2,4-disubstituted quinazoline derivatives as selective butyrylcholinesterase inhibitors and antioxidant agents. Sci Rep 2024; 14:15577. [PMID: 38971857 PMCID: PMC11227574 DOI: 10.1038/s41598-024-66424-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024] Open
Abstract
Alzheimer's disease is the most prevalent neurodegenerative disorder characterized by significant memory loss and cognitive impairments. Studies have shown that the expression level and activity of the butyrylcholinesterase enzyme increases significantly in the late stages of Alzheimer's disease, so butyrylcholinesterase can be considered as a promising therapeutic target for potential Alzheimer's treatments. In the present study, a novel series of 2,4-disubstituted quinazoline derivatives (6a-j) were synthesized and evaluated for their inhibitory activities against acetylcholinesterase (AChE) and butyrylcholinestrase (BuChE) enzymes, as well as for their antioxidant activities. The biological evaluation revealed that compounds 6f, 6h, and 6j showed potent inhibitory activities against eqBuChE, with IC50 values of 0.52, 6.74, and 3.65 µM, respectively. These potent compounds showed high selectivity for eqBuChE over eelAChE. The kinetic study demonstrated a mixed-type inhibition pattern for both enzymes, which revealed that the potent compounds might be able to bind to both the catalytic active site and peripheral anionic site of eelAChE and eqBuChE. In addition, molecular docking studies and molecular dynamic simulations indicated that potent compounds have favorable interactions with the active sites of BuChE. The antioxidant screening showed that compounds 6b, 6c, and 6j displayed superior scavenging capabilities compared to the other compounds. The obtained results suggest that compounds 6f, 6h, and 6j are promising lead compounds for the further development of new potent and selective BuChE inhibitors.
Collapse
Affiliation(s)
- Sara Sadeghian
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Raziyeh Razmi
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soghra Khabnadideh
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Khoshneviszadeh
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pegah Mardaneh
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arman Talashan
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arman Pirouti
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Khebre
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Zahmatkesh
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Rezaei
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Liu JY, Guo HY, Quan ZS, Shen QK, Cui H, Li X. Research progress of natural products and their derivatives against Alzheimer's disease. J Enzyme Inhib Med Chem 2023; 38:2171026. [PMID: 36803484 PMCID: PMC9946335 DOI: 10.1080/14756366.2023.2171026] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Alzheimer's disease (AD), a persistent neurological dysfunction, has an increasing prevalence with the aging of the world and seriously threatens the health of the elderly. Although there is currently no effective treatment for AD, researchers have not given up, and are committed to exploring the pathogenesis of AD and possible therapeutic drugs. Natural products have attracted considerable attention owing to their unique advantages. One molecule can interact with multiple AD-related targets, thus having the potential to be developed in a multi-target drug. In addition, they are amenable to structural modifications to increase interaction and decrease toxicity. Therefore, natural products and their derivatives that ameliorate pathological changes in AD should be intensively and extensively studied. This review mainly presents research on natural products and their derivatives for the treatment of AD.
Collapse
Affiliation(s)
- Jin-Ying Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Hong Cui
- Center of Medical Functional Experiment, Yanbian University College of Medicine, Yanji, China,Hong Cui Center of Medical Functional Experiment, Yanbian University College of Medicine, Yanji, China
| | - Xiaoting Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China,CONTACT Xiaoting Li Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| |
Collapse
|
3
|
Onder FC, Sahin K, Senturk M, Durdagi S, Ay M. Identifying highly effective coumarin-based novel cholinesterase inhibitors by in silico and in vitro studies. J Mol Graph Model 2022; 115:108210. [DOI: 10.1016/j.jmgm.2022.108210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/26/2022]
|
4
|
Husain A, Balushi K A, Akhtar MJ, Khan SA. Coumarin linked heterocyclic hybrids: A promising approach to develop multi target drugs for Alzheimer's disease. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Blaikie L, Kay G, Kong Thoo Lin P. Synthesis and in vitro evaluation of vanillin derivatives as multi-target therapeutics for the treatment of Alzheimer's disease. Bioorg Med Chem Lett 2020; 30:127505. [PMID: 32822761 DOI: 10.1016/j.bmcl.2020.127505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/17/2020] [Indexed: 01/16/2023]
Abstract
A number of novel naphthalimido and phthalimido vanillin derivatives were synthesised, and evaluated as antioxidants and cholinesterase inhibitors in vitro. Antioxidant activity was assessed using DPPH, FRAP, and ORAC assays. All compounds demonstrated enhanced activity compared to the parent compound, vanillin. They also exhibited BuChE selectivity in Ellman's assay. A lead compound, 2a (2-(3-(bis(4-hydroxy-3-methoxybenzyl)amino)propyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione), was identified and displayed strong antioxidant activity (IC50 of 16.67 µM in the DPPH assay, a 25-fold increase in activity compared to vanillin in the FRAP assay, and 9.43 TE in the ORAC assay). Furthermore, 2a exhibited potent BuChE selectivity, with an IC50 of 0.27 µM which was around 53-fold greater than the corresponding AChE inhibitory activity. Molecular modelling studies showed that molecules with bulkier groups, as in 2a, exhibited better BuChE selectivity. This work provides a promising basis for the development of multi-target hybrid compounds based on vanillin as potential AD therapeutics.
Collapse
Affiliation(s)
- Laura Blaikie
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, Scotland, United Kingdom
| | - Graeme Kay
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, Scotland, United Kingdom
| | - Paul Kong Thoo Lin
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, Scotland, United Kingdom.
| |
Collapse
|