1
|
Qi J, Wu J, Kang S, Gao J, Hirokazu K, Liu H, Liu C. The chemical structures, biosynthesis, and biological activities of secondary metabolites from the culinary-medicinal mushrooms of the genus Hericium: a review. Chin J Nat Med 2024; 22:676-698. [PMID: 39197960 DOI: 10.1016/s1875-5364(24)60590-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Indexed: 09/01/2024]
Abstract
Fungal phytochemicals derived from higher fungi, particularly those from the culinary-medicinal genus Hericium, have gained significant attention in drug discovery and healthcare. This review aims to provide a comprehensive analysis of the chemical structures, biosynthetic pathways, biological activities, and pharmacological properties of monomeric compounds isolated from Hericium species. Over the past 34 years, 253 metabolites have been identified from various Hericium species, including cyathane diterpenes, alkaloids, benzofurans, chromenes, phenols, pyrones, steroids, and other miscellaneous compounds. Detailed investigations into the biosynthesis of erinacines, a type of cyathane diterpene, have led to the discovery of novel cyathane diterpenes. Extensive research has highlighted the biological activities and pharmacological properties of Hericium-derived compounds, with particular emphasis on their neuroprotective and neurotrophic effects, immunomodulatory capabilities, anti-cancer activity, antioxidant properties, and antimicrobial actions. Erinacine A, in particular, has been extensively studied. Genomic, transcriptomic, and proteomic analyses of Hericium species have facilitated the discovery of new compounds and provided insights into enzymatic reactions through genome mining. The diverse chemical structures and biological activities of Hericium compounds underpin their potential applications in medicine and as dietary supplements. This review not only advances our understanding of Hericium compounds but also encourages further research into Hericium species within the realms of medicine, health, functional foods, and agricultural microbiology. The broad spectrum of compound types and their diverse biological activities present promising opportunities for the development of new pharmaceuticals and edible products.
Collapse
Affiliation(s)
- Jianzhao Qi
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China; Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Jing Wu
- Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan
| | - Shijie Kang
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China; Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Jingming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | | | - Hongwei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Chengwei Liu
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
2
|
Kostanda E, Musa S, Pereman I. Unveiling the Chemical Composition and Biofunctionality of Hericium spp. Fungi: A Comprehensive Overview. Int J Mol Sci 2024; 25:5949. [PMID: 38892137 PMCID: PMC11172836 DOI: 10.3390/ijms25115949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
In recent years, research on mushrooms belonging to the Hericium genus has attracted considerable attention due to their unique appearance and well-known medicinal properties. These mushrooms are abundant in bioactive chemicals like polysaccharides, hericenones, erinacines, hericerins, resorcinols, steroids, mono- and diterpenes, and corallocins, alongside essential nutrients. These compounds demonstrate beneficial bioactivities which are related to various physiological systems of the body, including the digestive, immune, and nervous systems. Extensive research has been conducted on the isolation and identification of numerous bioactive chemicals, and both in vitro and in vivo studies have confirmed their antimicrobial, antioxidant, immunomodulatory, antidiabetic, anticholesterolemic, anticancer, and neuroprotective properties. Therefore, this review aims to provide a comprehensive summary of the latest scientific literature on the chemical composition and secondary metabolites profile of Hericium spp. through an introduction to their chemical characteristics, speculated biosynthesis pathways for key chemical families, potential toxicological aspects, and a detailed description of the recent updates regarding the bioactivity of these metabolites.
Collapse
Affiliation(s)
- Elizabeth Kostanda
- Molecular Biology and Analytics of Medicinal Mushrooms Laboratory, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
- Department of Biotechnology, Tel-Hai Academic College, Kiryat Shmona 11060, Israel;
| | - Sanaa Musa
- Department of Biotechnology, Tel-Hai Academic College, Kiryat Shmona 11060, Israel;
- Natural Compounds and Organic Synthesis Laboratory, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
| | - Idan Pereman
- Molecular Biology and Analytics of Medicinal Mushrooms Laboratory, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
- Department of Biotechnology, Tel-Hai Academic College, Kiryat Shmona 11060, Israel;
| |
Collapse
|
3
|
Muhanna M, Lund I, Bromberg M, Wicks P, Benatar M, Barnes B, Pierce K, Ratner D, Brown A, Bertorini T, Barkhaus P, Carter G, Mascias Cadavid J, McDermott C, Glass JD, Pattee G, Armon C, Bedlack R, Li X. ALSUntangled #73: Lion's Mane. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:420-423. [PMID: 38141002 DOI: 10.1080/21678421.2023.2296557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Lion's Mane (Hericium erinaceus) has historically been used as traditional medicine in Asia and Europe for its potential benefits in fighting infection and cancer. It has gained interest in the neurodegenerative disease field because of its mechanisms of action; these include anti-inflammation, neuroprotection, and promoting neurite growth demonstrated in various cell and animal models. A very small, double-blind, placebo-controlled trial in patients with mild cognitive impairment showed a temporary improvement in cognitive function; this finding has yet to be replicated. However, there have been no studies in ALS cell or animal models or in humans with ALS. Lion's Mane appears safe and inexpensive when consumed in powder or capsule, but one anaphylactic case was reported after a patient consumed fresh Lion's Mane mushroom. Currently, we do not have enough information to support the use of Lion's Mane for treating ALS. We support further research in ALS disease models and clinical trials to study its efficacy.
Collapse
Affiliation(s)
- Maya Muhanna
- Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Issac Lund
- Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Mark Bromberg
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | | | - Michael Benatar
- Department of Neurology, University of Miami, Miami, FL, USA
| | - Benjamin Barnes
- Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Kaitlyn Pierce
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | | | - Andrew Brown
- Department of Neurology, University of Miami, Miami, FL, USA
| | - Tulio Bertorini
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Paul Barkhaus
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Greg Carter
- Department of Rehabilitation, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | | | - Christopher McDermott
- Sheffield Institute of Translational Neuroscience, University of Sheffield, Sheffield, UK
| | | | - Gary Pattee
- Department of Neurology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Carmel Armon
- Department of Neurology, Shamir Medical Center, Tzrifin, Israel, and
| | | | - Xiaoyan Li
- Department of Neurology, Duke University, Durham, NC, USA
| |
Collapse
|
4
|
Tan YF, Mo JS, Wang YK, Zhang W, Jiang YP, Xu KP, Tan GS, Liu S, Li J, Wang WX. The ethnopharmacology, phytochemistry and pharmacology of the genus Hericium. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117353. [PMID: 37907145 DOI: 10.1016/j.jep.2023.117353] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/26/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mushrooms in the genus Hericium are used as functional food and traditional medicines for a long history in East Asian countries such as China, India, Japan, and Korea. Some species of Hericium are called as monkey head mushroom (Houtougu) in China and Yamabushitake in Japan, which are traditionally considered as rare and precious health promoting food and medicinal materials for the treatment of dyspepsia, insomnia, chronic gastritis, and digestive tract tumors. THE AIM OF THE REVIEW This review aims to summarize the ethnopharmacology and structural diversity of secondary metabolites from Hericium species, as well as the pharmacological activities of the crude extracts and pure compounds from Hericium species in recent years. MATERIALS AND METHODS All the information was gathered by searching Scifinder, PubMed, Web of Science, ScienceDirect, Springer, Wiley, ACS, CNKI, Baidu Scholar, Google Scholar databases and other published materials (books and Ph.D. and M. Sc. Dissertations) using the keywords "Hericium", "Traditional uses", "Chemical composition", "Quality control" and "Pharmacological activity" (1971-May 2023). The species name was checked with https://www.mycobank.org/. RESULTS The traditional uses of Hericium species were summarized, and 230 secondary metabolites from Hericium species were summarized and classified into six classes, mainly focusing on their chemical diversity, biosynthesis, biological activities. The modern pharmacological experiments in vivo or in vitro on their crude and fractionated extracts showed that the chemical components from Hericium species have a broad range of bioactivities, including neuroprotective, antimicrobial, anticancer, α-glucosidase inhibitory, antioxidant, and anti-inflammatory activities. CONCLUSIONS The secondary metabolites discovered from Hericium species are highly structurally diverse, and they have the potential to be rich resources of bioactive fungal natural products. Moreover, the unveiled bioactivities of their crude extracts and pure compounds are closely related to critical human health concerns, and in-depth studies on the potential lead compounds, mechanism of pharmacological effects and pharmaceutical properties are clearly warranted.
Collapse
Affiliation(s)
- Yu-Fen Tan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Ji-Song Mo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, Hunan, 410013, PR China
| | - Yi-Kun Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, Hunan, 410013, PR China
| | - Wei Zhang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Yue-Ping Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Kang-Ping Xu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, Hunan, 410013, PR China
| | - Gui-Shan Tan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Jing Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| | - Wen-Xuan Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, PR China.
| |
Collapse
|
5
|
Lone SA, Wani AH, Bhat MY, Iqbal PF. Diversity and Ethno-Mycopharmacological Insights of Medicinal Mushrooms of the Bangus Valley of Jammu and Kashmir, India. Int J Med Mushrooms 2024; 26:51-63. [PMID: 39093401 DOI: 10.1615/intjmedmushrooms.2024054174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The present study was carried out in various regions of Jammu and Kashmir, India, for the diversity and pharmacology of wild mushrooms. The valley is bestowed with alpine meadows and dense coniferous forest. Because of its isolation, security concerns, and line of control, most of these locations either have been little investigated or are entirely undiscovered. During the intensive survey of various locations, 20 mushroom species were collected from the surveyed areas. The ethno-mycological information was gathered from tribal communities and local herbalists (hakims). It was observed that 16 species were used against cold, constipation, liver and skin disorders, digestion problems, wound healing, and the like. However, these medicinal mushrooms are losing their relevance, so there is an urgent need to explore and preserve this knowledge for future use as medicine.
Collapse
Affiliation(s)
- Shoaib Ahmad Lone
- Department of Botany, Section of Mycology, Plant Pathology and Microbiology, University of Kashmir, Srinagar (190006), India
| | - Abdul Hamid Wani
- Section of Mycology and Plant Pathology, Department of Botany, University of Kashmir, Hazratbal Srinagar, India
| | | | - Prince Firdoos Iqbal
- Department of Chemistry, Government Degree College, Hyderpora Srinagar, Kashmir 190014, India
| |
Collapse
|
6
|
Szućko-Kociuba I, Trzeciak-Ryczek A, Kupnicka P, Chlubek D. Neurotrophic and Neuroprotective Effects of Hericium erinaceus. Int J Mol Sci 2023; 24:15960. [PMID: 37958943 PMCID: PMC10650066 DOI: 10.3390/ijms242115960] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Hericium erinaceus is a valuable mushroom known for its strong bioactive properties. It shows promising potential as an excellent neuroprotective agent, capable of stimulating nerve growth factor release, regulating inflammatory processes, reducing oxidative stress, and safeguarding nerve cells from apoptosis. The active compounds in the mushroom, such as erinacines and hericenones, have been the subject of research, providing evidence of their neuroprotective effects. Further research and standardization processes for dietary supplements focused on H. erinaceus are essential to ensuring effectiveness and safety in protecting the nervous system. Advancements in isolation and characterization techniques, along with improved access to pure analytical standards, will play a critical role in achieving standardized, high-quality dietary supplements based on H. erinaceus. The aim of this study is to analyze the protective and nourishing effects of H. erinaceus on the nervous system and present the most up-to-date research findings related to this topic.
Collapse
Affiliation(s)
- Izabela Szućko-Kociuba
- Institute of Biology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland;
- The Centre for Molecular Biology and Biotechnology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland
| | - Alicja Trzeciak-Ryczek
- Institute of Biology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland;
- The Centre for Molecular Biology and Biotechnology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (P.K.); (D.C.)
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (P.K.); (D.C.)
| |
Collapse
|
7
|
Ki DW, Kim CW, Choi DC, Oh GW, Doan TP, Kim JY, Oh WK, Lee IK, Yun BS. Chemical constituents of the culture broth of Dentipellis fragilis and their anti-inflammatory activities. PHYTOCHEMISTRY 2023; 214:113828. [PMID: 37595773 DOI: 10.1016/j.phytochem.2023.113828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Seven undescribed compounds, dentipellinones A‒D (1, 2, 5, and 6), dentipellinol (3), methoxyerinaceolactone B (4), and erinaceolactomer A (7), were isolated from the culture broth of Dentipellis fragilis. Chemical structures of these isolated compounds were determined by analyses of 1D and 2D-NMR and MS data in comparison with data reported in the literature. Absolute configurations of 1‒7 were also determined by Electronic Circular Dichroism calculations. The isolated compounds were evaluated for their anti-inflammatory effects on NO production and pro-inflammatory cytokines levels in LPS-stimulated RAW264.7 cells. Compounds 5 and 7 were evaluated for their anti-inflammatory effects on NO production and pro-inflammatory cytokine levels in LPS-stimulated RAW264.7 cells. They exhibited inhibitory effects on LPS-induced NO production in a dose-dependent manner, and significantly reduced the levels of inflammatory-related cytokines such as IL-1β and IL-6. TNF-α was not involved in the anti-inflammatory effects of these compounds. Finally, compounds 5 and 7 showed significant anti-inflammatory effects.
Collapse
Affiliation(s)
- Dae-Won Ki
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Gobong-ro 79, Iksan, 54596, South Korea.
| | - Chae-Won Kim
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Gobong-ro 79, Iksan, 54596, South Korea
| | - Dae-Cheol Choi
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Gobong-ro 79, Iksan, 54596, South Korea
| | - Gun-Woo Oh
- National Marine Biodiversity Institute of Korea, Seocheon, Republic of Korea
| | - Thi-Phuong Doan
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ji-Yul Kim
- National Marine Biodiversity Institute of Korea, Seocheon, Republic of Korea
| | - Won-Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - In-Kyoung Lee
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Gobong-ro 79, Iksan, 54596, South Korea
| | - Bong-Sik Yun
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Gobong-ro 79, Iksan, 54596, South Korea.
| |
Collapse
|
8
|
Hersant H, He S, Maliha P, Grossberg G. Over the Counter Supplements for Memory: A Review of Available Evidence. CNS Drugs 2023; 37:797-817. [PMID: 37603263 DOI: 10.1007/s40263-023-01031-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 08/22/2023]
Abstract
In 2021, the Global Brain Health Supplement Industry Market size was valued at US$7.6 billion. It is predicted to increase to US$15.59 billion by 2030. Memory and its enhancement are a segment of the market that comprised the highest global revenue share in 2021. In the USA alone, dietary supplement sales reached US$18 billion in 2018. The US Food and Drug Administration (FDA) does not have the authority to approve dietary supplements' safety, effectiveness, or labeling before products go on the market. The FDA often does not even review supplements before they go to market. Supplement manufacturers are thus responsible for ensuring their products are safe and that their claims are truthful. An extensive review of current supplements on the market was performed by surveying memory products for sale at local and national pharmacies and grocery stores. A list of 103 supplements was compiled and the ingredients in these memory supplements were reviewed. The 18 most common ingredients in these supplements were identified. Each of the supplements included at least one of the 18 most common ingredients. Scientific data relative to these ingredients and their effect on memory was searched using PubMed and Cochrane library databases. Currently, there is no compelling evidence for use of apoaequorin, coenzyme Q10, coffee extracts, L-theanine, omega-3 fatty acids, vitamin B6, vitamin B9, or vitamin B12 supplementation for memory. On the other hand, there is some current evidence for memory benefit from supplementation with ashwagandha, choline, curcumin, ginger, Lion's Mane, polyphenols, phosphatidylserine, and turmeric. There are current studies with mixed results regarding the benefit of carnitine, gingko biloba, Huperzine A, vitamin D, and vitamin E supplementation for memory. Dietary supplements geared toward improving cognition are a billion-dollar industry that continues to grow despite lacking a solid scientific foundation for their marketing claims. More rigorous studies are needed relative to the long-term use of these supplements in homogenous populations with standardized measurements of cognition. Health care providers need to be aware of any and all supplements their older adult patients may be consuming and be educated about their side effects and interactions with prescription medications. Lastly, the FDA needs to take an active position relative to monitoring marketed supplements regarding safety, purity and claims of efficacy.
Collapse
Affiliation(s)
- Haley Hersant
- Department of Psychiatry & Behavioral Neuroscience, Saint Louis University School of Medicine, 1438 South Grand Boulevard, Saint Louis, MO, 63104, USA.
| | - Sean He
- Department of Psychiatry & Behavioral Neuroscience, Saint Louis University School of Medicine, 1438 South Grand Boulevard, Saint Louis, MO, 63104, USA
| | - Peter Maliha
- Department of Psychiatry & Behavioral Neuroscience, Saint Louis University School of Medicine, 1438 South Grand Boulevard, Saint Louis, MO, 63104, USA
| | - George Grossberg
- Department of Psychiatry & Behavioral Neuroscience, Saint Louis University School of Medicine, 1438 South Grand Boulevard, Saint Louis, MO, 63104, USA
| |
Collapse
|
9
|
Uffelman CN, Doenges KA, Armstrong ML, Quinn K, Reisdorph RM, Tang M, Krebs NF, Reisdorph NA, Campbell WW. Metabolomics Profiling of White Button, Crimini, Portabella, Lion's Mane, Maitake, Oyster, and Shiitake Mushrooms Using Untargeted Metabolomics and Targeted Amino Acid Analysis. Foods 2023; 12:2985. [PMID: 37627983 PMCID: PMC10453450 DOI: 10.3390/foods12162985] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Mushrooms contain multiple essential nutrients and health-promoting bioactive compounds, including the amino acid L-ergothioneine. Knowledge of the chemical composition of different mushroom varieties will aid research on their health-promoting properties. We compared the metabolomes of fresh raw white button, crimini, portabella, lion's mane, maitake, oyster, and shiitake mushrooms using untargeted liquid chromatography mass spectrometry (LC/MS)-based metabolomics. We also quantified amino acid concentrations, including L-ergothioneine, a potential antioxidant which is not synthesized by plants or animals. Among the seven mushroom varieties, more than 10,000 compounds were detected. Principal Component Analysis indicated mushrooms of the same species, Agaricus Bisporus (white button, portabella, crimini), group similarly. The other varieties formed individual, distinct clusters. A total of 1344 (520 annotated) compounds were detected in all seven mushroom varieties. Each variety had tens-to-hundreds of unique-to-mushroom-variety compounds. These ranged from 29 for crimini to 854 for lion's mane. All three Agaricus bisporus varieties had similar amino acid profiles (including detection of all nine essential amino acids), while other varieties had less methionine and tryptophan. Lion's mane and oyster mushrooms had the highest concentrations of L-ergothioneine. The detection of hundreds of unique-to-mushroom-variety compounds emphasizes the differences in chemical composition of these varieties of edible fungi.
Collapse
Affiliation(s)
- Cassi N. Uffelman
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA;
| | - Katrina A. Doenges
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.A.D.); (M.L.A.); (K.Q.); (R.M.R.); (N.A.R.)
| | - Michael L. Armstrong
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.A.D.); (M.L.A.); (K.Q.); (R.M.R.); (N.A.R.)
| | - Kevin Quinn
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.A.D.); (M.L.A.); (K.Q.); (R.M.R.); (N.A.R.)
| | - Richard M. Reisdorph
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.A.D.); (M.L.A.); (K.Q.); (R.M.R.); (N.A.R.)
| | - Minghua Tang
- School of Medicine, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.T.); (N.F.K.)
| | - Nancy F. Krebs
- School of Medicine, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.T.); (N.F.K.)
| | - Nichole A. Reisdorph
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.A.D.); (M.L.A.); (K.Q.); (R.M.R.); (N.A.R.)
| | - Wayne W. Campbell
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA;
| |
Collapse
|
10
|
Li N, Li H, Liu Z, Feng G, Shi C, Wu Y. Unveiling the Therapeutic Potentials of Mushroom Bioactive Compounds in Alzheimer's Disease. Foods 2023; 12:2972. [PMID: 37569241 PMCID: PMC10419195 DOI: 10.3390/foods12152972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023] Open
Abstract
Alzheimer's disease (AD) stands as a prevailing neurodegenerative condition (NDs), leading to the gradual deterioration of brain cells and subsequent declines in memory, thinking, behavior, and emotion. Despite the intensive research efforts and advances, an effective curative treatment for the disease has not yet been found. Mushrooms, esteemed globally for their exquisite flavors and abundant nutritional benefits, also hold a wealth of health-promoting compounds that contribute to improving AD health. These compounds encompass polysaccharides, proteins, lipids, terpenoids, phenols, and various other bioactive substances. Particularly noteworthy are the potent neuroprotective small molecules found in mushrooms, such as ergothioneine, erinacine, flavonoids, alkaloids, ergosterol, and melanin, which warrant dedicated scrutiny for their therapeutic potential in combating AD. This review summarizes such positive effects of mushroom bioactive compounds on AD, with a hope to contribute to the development of functional foods as an early dietary intervention for this neurodegenerative disease.
Collapse
Affiliation(s)
- Na Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China;
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (H.L.); (Z.L.); (G.F.); (C.S.)
| | - Hongbo Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (H.L.); (Z.L.); (G.F.); (C.S.)
| | - Zhenbin Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (H.L.); (Z.L.); (G.F.); (C.S.)
| | - Gao Feng
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (H.L.); (Z.L.); (G.F.); (C.S.)
| | - Chunyang Shi
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (H.L.); (Z.L.); (G.F.); (C.S.)
| | - Yue Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China;
| |
Collapse
|
11
|
Sum WC, Ebada SS, Kirchenwitz M, Kellner H, Ibrahim MAA, Stradal TEB, Matasyoh JC, Stadler M. Hericioic Acids A-G and Hericiofuranoic Acid; Neurotrophic Agents from Cultures of the European Mushroom Hericium flagellum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37440475 PMCID: PMC10375585 DOI: 10.1021/acs.jafc.3c02897] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Neurodegenerative diseases are currently posing huge social, economic, and healthcare burdens among the aged populations worldwide with few and only palliative treatment alternatives available. Natural products continue to be a source of a vast array of potent neurotrophic molecules that could be considered as drug design starting points. The present study reports eight new isoindolinone and benzofuranone derivatives, for which we propose the trivial names, hericioic acids A-G (1-7) and hericiofuranoic acid (8), which were isolated from a solid culture (using rice as substrate) of the rare European edible mushroom Hericium flagellum. The chemical structures of these compounds were determined based on extensive 1D and 2D NMR spectroscopy along with HRESIMS analyses. The isolated compounds were assessed for their neurotrophic activity in rat pheochromocytoma cells (PC-12) to promote neurite outgrowth on 5 ng NGF supplementation; all the compounds increased neurite outgrowths, with compounds 3, 4, and 8 exhibiting the strongest effects.
Collapse
Affiliation(s)
- Winnie Chemutai Sum
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Sherif S Ebada
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Marco Kirchenwitz
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Harald Kellner
- Department of Bio- and Environmental Sciences, Technische Universität Dresden-International Institute Zittau, Markt 23, 02763 Zittau, Germany
| | - Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, 61519 Minia, Egypt
- School of Health Sciences, University of KwaZulu-Natal, Westville, 4000 Durban, South Africa
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | | | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| |
Collapse
|
12
|
Tong Z, Chu G, Wan C, Wang Q, Yang J, Meng Z, Du L, Yang J, Ma H. Multiple Metabolites Derived from Mushrooms and Their Beneficial Effect on Alzheimer's Diseases. Nutrients 2023; 15:2758. [PMID: 37375662 DOI: 10.3390/nu15122758] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Mushrooms with edible and medicinal potential have received widespread attention because of their diverse biological functions, nutritional value, and delicious taste, which are closely related to their rich active components. To date, many bioactive substances have been identified and purified from mushrooms, including proteins, carbohydrates, phenols, and vitamins. More importantly, molecules derived from mushrooms show great potential to alleviate the pathological manifestations of Alzheimer's disease (AD), which seriously affects the health of elderly people. Compared with current therapeutic strategies aimed at symptomatic improvement, it is particularly important to identify natural products from resource-rich mushrooms that can modify the progression of AD. This review summarizes recent investigations of multiple constituents (carbohydrates, peptides, phenols, etc.) isolated from mushrooms to combat AD. In addition, the underlying molecular mechanisms of mushroom metabolites against AD are discussed. The various mechanisms involved in the antiAD activities of mushroom metabolites include antioxidant and anti-neuroinflammatory effects, apoptosis inhibition, and stimulation of neurite outgrowth, etc. This information will facilitate the application of mushroom-derived products in the treatment of AD. However, isolation of new metabolites from multiple types of mushrooms and further in vivo exploration of the molecular mechanisms underlying their antiAD effect are still required.
Collapse
Affiliation(s)
- Zijian Tong
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Guodong Chu
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Chenmeng Wan
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Qiaoyu Wang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Jialing Yang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Zhaoli Meng
- Laboratory of Tumor Immunolgy, The First Hospital of Jilin University, Changchun 130061, China
| | - Linna Du
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Jing Yang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Hongxia Ma
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
13
|
Su Y, Li H, Hu Z, Zhang Y, Guo L, Shao M, Man C, Jiang Y. Research on degradation of polysaccharides during Hericium erinaceus fermentation. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Vishwanath M, Chaudhary CL, Park Y, Viji M, Jung C, Lee K, Sim J, Hong SM, Yoon DH, Lee DH, Lee JK, Lee H, Lee MK, Kim SY, Jung JK. Total Synthesis of Isohericerinol A and Its Analogues to Access Their Potential Neurotrophic Effects. J Org Chem 2022; 87:10836-10847. [PMID: 35946352 DOI: 10.1021/acs.joc.2c01096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The secondary metabolites from Hericium erinaceus are well-known to have neurotrophic and neuroprotective effects. Isohericerinol A (1), isolated by our colleagues from its fruiting parts has a strong ability to increase the nerve growth factor secretion in C6 glioma cells. The current work describes the total synthesis of 1 and its regioisomer 5 in a few steps. We present two different approaches to 1 and a regiodivergent approach for both 1 and 5 by utilizing easily accessible feedstocks. Interestingly, the natural product 1, regioisomer 5, and their intermediates exhibited potent neurotrophic activity in in vitro experimental systems. Thus, these synthetic strategies provide access to a systematic structure-activity relationship study of natural product 1.
Collapse
Affiliation(s)
- Manjunatha Vishwanath
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea
| | - Chhabi Lal Chaudhary
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea
| | - Yunjeong Park
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea
| | - Mayavan Viji
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea
| | - Chanhyun Jung
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea
| | - Kwanghee Lee
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea
| | - Jaeuk Sim
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea
| | - Seong Min Hong
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Korea
| | - Da Hye Yoon
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Korea
| | | | | | - Heesoon Lee
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea
| | - Mi Kyeong Lee
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea
| | - Sun Yeou Kim
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Korea
| | - Jae-Kyung Jung
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea
| |
Collapse
|
15
|
Hong SM, Yoon DH, Lee MK, Lee JK, Kim SY. A Mixture of Ginkgo biloba L. Leaf and Hericium erinaceus (Bull.) Pers. Fruit Extract Attenuates Scopolamine-Induced Memory Impairments in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9973678. [PMID: 35126824 PMCID: PMC8813274 DOI: 10.1155/2022/9973678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 12/21/2021] [Accepted: 12/31/2021] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that is characterized by loss of memory and cognitive impairment via dysfunction of the cholinergic nervous system. In cholinergic dysfunction, it is well known that impaired cAMP response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF) signaling are major pathological markers and are some of the strategies for the development of AD therapy. Therefore, this study is aimed at evaluating whether a mixture comprising Ginkgo biloba L. leaf (GL) and Hericium erinaceus (Bull.) Pers. (HE) fruit extract (GH mixture) alleviated cognitive impairment induced in a scopolamine-induced model. It was discovered that GH reduced neuronal apoptosis and promoted neuronal survival by activating BDNF signaling in an in vitro assay. In addition, the GH (p.o. 240 mg/kg) oral administration group significantly restored the cognitive deficits of the scopolamine-induced mouse group (i.p. 1.2 mg/kg) in the behavior tests such as Y-maze and novel object recognition task (NORT) tests. This mixture also considerably enhanced cholinergic system function in the mouse brain. Furthermore, GH markedly upregulated the expressed levels of extracellular signal-regulated kinase (ERK), CREB, and BDNF protein levels. These results demonstrated that GH strongly exerted a neuroprotective effect on the scopolamine-induced mouse model, suggesting that an optimized mixture of GL and HE could be used as a good material for developing functional foods to aid in the prevention of neurodegenerative diseases, including AD.
Collapse
Affiliation(s)
- Seong Min Hong
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, 191, Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Da Hye Yoon
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, 191, Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Mi Kyeong Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | | | - Sun Yeou Kim
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, 191, Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| |
Collapse
|
16
|
Ju IG, Hong SM, Yun SW, Huh E, Kim DH, Kim SY, Oh MS. CCL01, a novel formulation composed of Cuscuta seeds and Lactobacillus paracasei NK112, enhances memory function via nerve growth factor-mediated neurogenesis. Food Funct 2021; 12:10690-10699. [PMID: 34605514 DOI: 10.1039/d1fo01403j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Memory decline occurs due to various factors, including stress, depression, and aging, and lowers the quality of life. Several nutritional supplements and probiotics have been used to enhance memory function, and efforts have been made to develop mixed supplements with maximized efficacy. In this study, we aimed to examine whether a novel formulation composed of Cuscuta seeds and Lactobacillus paracasei NK112, CCL01, enhances memory function and induces neurogenesis via nerve growth factor (NGF) induction. Firstly, we orally administered CCL01 to normal mice and assessed their memory function 4 weeks after the first administration by performing a step-through passive avoidance test. We found that CCL01 at 100 mg kg-1 treatment enhanced the fear-based memory function. By analyzing the expression of Ki-67 and doublecortin, which are the markers of proliferating cells and immature neurons, respectively, we observed that CCL01 induced neuronal proliferation and differentiation in the hippocampus of the mice. Additionally, we found that the expression of synaptic markers increased in the hippocampus of CCL01-treated mice. We measured the NGF expression in the supernatant of C6 cells after CCL01 treatment and found that CCL01 increased NGF release. Furthermore, treatment of CCL01-conditioned glial media on N2a cells increased neuronal differentiation via the TrkA/ERK/CREB signaling pathway and neurotrophic factor expression. Moreover, when CCL01 was administered and scopolamine was injected, CCL01 ameliorated memory decline. These results suggest that CCL01 is an effective enhancer of memory function and can be applied to various age groups requiring memory improvement.
Collapse
Affiliation(s)
- In Gyoung Ju
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Seong Min Hong
- Department of Pharmacy, College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 21936, Republic of Korea.
| | - Soo-Won Yun
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eugene Huh
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Sun Yeou Kim
- Department of Pharmacy, College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 21936, Republic of Korea.
| | - Myung Sook Oh
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea. .,Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.,Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Seoul 02447, Republic of Korea.,Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
17
|
Singh DD, Yadav DK. TNBC: Potential Targeting of Multiple Receptors for a Therapeutic Breakthrough, Nanomedicine, and Immunotherapy. Biomedicines 2021; 9:biomedicines9080876. [PMID: 34440080 PMCID: PMC8389539 DOI: 10.3390/biomedicines9080876] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/08/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous, recurring cancer associated with a high rate of metastasis, poor prognosis, and lack of therapeutic targets. Although target-based therapeutic options are approved for other cancers, only limited therapeutic options are available for TNBC. Cell signaling and receptor-specific targets are reportedly effective in patients with TNBC under specific clinical conditions. However, most of these cancers are unresponsive, and there is a requirement for more effective treatment modalities. Further, there is a lack of effective biomarkers that can distinguish TNBC from other BC subtypes. ER, PR, and HER2 help identify TNBC and are widely used to identify patients who are most likely to respond to diverse therapeutic strategies. In this review, we discuss the possible treatment options for TNBC based on its inherent subtype receptors and pathways, such as p53 signaling, AKT signaling, cell cycle regulation, DNA damage, and programmed cell death, which play essential roles at multiple stages of TNBC development. We focus on poly-ADP ribose polymerase 1, androgen receptor, vascular endothelial growth factor receptor, and epidermal growth factor receptor as well as the application of nanomedicine and immunotherapy in TNBC and discuss their potential applications in drug development for TNBC.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India;
| | - Dharmendra Kumar Yadav
- Department of Pharmacy and Gachon Institute of Pharmaceutical Science, College of Pharmacy, Gachon University, Hambakmoeiro 191, Yeonsu-gu, Incheon 21924, Korea
- Correspondence: ; Tel.: +82-32-820-4948
| |
Collapse
|
18
|
Potential of N-trans feruloyl tyramine from Lycium barbarum fruit extract on neurogenesis and neurotrophins; targeting TrkA/ERK/CREB signaling pathway. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
19
|
Yu LS, Liang J, Zhang Y, Kuang HX, Xia YG. Enzymatic-fingerprinting workflow of polysaccharides in Hericium erinaceus fruiting bodies: From HILIC-ESI --MS screening to targeted MIM profiling. Int J Biol Macromol 2021; 173:491-503. [PMID: 33476617 DOI: 10.1016/j.ijbiomac.2021.01.093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/14/2023]
Abstract
In this study, an uncommon enzymatic-fingerprinting workflow, was proposed for characterization and discrimination of mushroom polysaccharides (MPs) by hydrophilic interaction liquid chromatography-negative electrospray mass spectrometry (HILIC-ESI--MS). Firstly, the HILIC-ESI--MS was used to screen and identify the enzymatic digestion products of MPs using HILIC-Orbitrap based on full scan and MS/MS modes. Secondly, a targeted structural-fingerprinting of polysaccharides (SFP) was built in a multiple-ion monitoring (MIM) mode using the same HILIC separation with a triple quadrupole MS. Thirdly, a case study of polysaccharides in Hericium erinaceus fruiting bodies (HEP) was performed to obtain the expected SFP based on dextranase digestion that allows for visual discrimination of polysaccharides from other five edible mushrooms attributed to Agrocybe cylindracea, Arimillaria mellea, Flammulina velutipes, Pleurotus eryngii, and Lentinula edodes. Furthermore, a major structural backbone of HEP was unveiled by occurrence of → 6(Hex)1 → along with multiple possible substitutions including of terminal GalA, Fuc, acetyl, → 4Hex1 →, and → 3Hex1 →. Finally, the similarity analysis, hierarchical cluster analysis (HCA), and partial least squares discriminant analysis (PLS-DA) were performed to visualize various MPs. As a result, the enzymatic-fingerprinting workflow presents an effective example for quality evaluation of fungi polysaccharides using a SFP strategy.
Collapse
Affiliation(s)
- Li-Shi Yu
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Jun Liang
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Ying Zhang
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Hai-Xue Kuang
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China.
| | - Yong-Gang Xia
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China.
| |
Collapse
|