1
|
Sasaki M, Kato D, Murakami K, Yoshida H, Takase S, Otsubo T, Ogiwara H. Targeting dependency on a paralog pair of CBP/p300 against de-repression of KREMEN2 in SMARCB1-deficient cancers. Nat Commun 2024; 15:4770. [PMID: 38839769 PMCID: PMC11153594 DOI: 10.1038/s41467-024-49063-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
SMARCB1, a subunit of the SWI/SNF chromatin remodeling complex, is the causative gene of rhabdoid tumors and epithelioid sarcomas. Here, we identify a paralog pair of CBP and p300 as a synthetic lethal target in SMARCB1-deficient cancers by using a dual siRNA screening method based on the "simultaneous inhibition of a paralog pair" concept. Treatment with CBP/p300 dual inhibitors suppresses growth of cell lines and tumor xenografts derived from SMARCB1-deficient cells but not from SMARCB1-proficient cells. SMARCB1-containing SWI/SNF complexes localize with H3K27me3 and its methyltransferase EZH2 at the promotor region of the KREMEN2 locus, resulting in transcriptional downregulation of KREMEN2. By contrast, SMARCB1 deficiency leads to localization of H3K27ac, and recruitment of its acetyltransferases CBP and p300, at the KREMEN2 locus, resulting in transcriptional upregulation of KREMEN2, which cooperates with the SMARCA1 chromatin remodeling complex. Simultaneous inhibition of CBP/p300 leads to transcriptional downregulation of KREMEN2, followed by apoptosis induction via monomerization of KREMEN1 due to a failure to interact with KREMEN2, which suppresses anti-apoptotic signaling pathways. Taken together, our findings indicate that simultaneous inhibitors of CBP/p300 could be promising therapeutic agents for SMARCB1-deficient cancers.
Collapse
Affiliation(s)
- Mariko Sasaki
- Division of Cancer Therapeutics, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Daiki Kato
- Cancer Research Unit, Sumitomo Pharma Co., Ltd, 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-0022, Japan
| | - Karin Murakami
- Cancer Research Unit, Sumitomo Pharma Co., Ltd, 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-0022, Japan
| | - Hiroshi Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shohei Takase
- Division of Cancer Therapeutics, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tsuguteru Otsubo
- Cancer Research Unit, Sumitomo Pharma Co., Ltd, 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-0022, Japan
| | - Hideaki Ogiwara
- Division of Cancer Therapeutics, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
2
|
Hagemeister M, Hamilton L, Wandrey N, Hill M, Mounce E, Mosel N, Lytle K, Redinger M, Boley J, Fancher N, Haynes A, Fill I, Cole PA, Hill E, Moxley MA, Thomas AA. Evaluation of Rhodanine Indolinones as AANAT Inhibitors. ChemMedChem 2024; 19:e202300567. [PMID: 37984928 PMCID: PMC10843758 DOI: 10.1002/cmdc.202300567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/18/2023] [Accepted: 11/19/2023] [Indexed: 11/22/2023]
Abstract
Circadian rhythm (CR) dysregulation negatively impacts health and contributes to mental disorders. The role of melatonin, a hormone intricately linked to CR, is still a subject of active study. The enzyme arylalkylamine N-acetyltransferase (AANAT) is responsible for melatonin synthesis, and it is a potential target for disorders that involve abnormally high melatonin levels, such as seasonal affective disorder (SAD). Current AANAT inhibitors suffer from poor cell permeability, selectivity, and/or potency. To address the latter, we have employed an X-ray crystal-based model to guide the modification of a previously described AANAT inhibitor, containing a rhodanine-indolinone core. We made various structural modifications to the core structure, including testing the importance of a carboxylic acid group thought to bind in the CoA site, and we evaluated these changes using MD simulations in conjunction with enzymatic assay data. Additionally, we tested three AANAT inhibitors in a zebrafish locomotion model to determine their effects in vivo. Key discoveries were that potency could be modestly improved by replacing a 5-carbon alkyl chain with rings and that the central rhodanine ring could be replaced by other heterocycles and maintain potency.
Collapse
Affiliation(s)
- Mackenzie Hagemeister
- Department of Psychology, University of Nebraska at Kearney, Kearney, NE, 69949, USA
| | - Luke Hamilton
- Department of Biology, University of Nebraska at Kearney, Kearney, NE, 69949, USA
| | - Nicole Wandrey
- Department of Chemistry, University of Nebraska at Kearney, Kearney, NE, 69949, USA
| | - Mackinzi Hill
- Department of Chemistry, University of Nebraska at Kearney, Kearney, NE, 69949, USA
| | - Emery Mounce
- Department of Psychology, University of Nebraska at Kearney, Kearney, NE, 69949, USA
| | - Noah Mosel
- Department of Psychology, University of Nebraska at Kearney, Kearney, NE, 69949, USA
| | - Katie Lytle
- Department of Chemistry, University of Nebraska at Kearney, Kearney, NE, 69949, USA
| | - Makenna Redinger
- Department of Chemistry, University of Nebraska at Kearney, Kearney, NE, 69949, USA
| | - Jake Boley
- Department of Chemistry, University of Nebraska at Kearney, Kearney, NE, 69949, USA
| | - Nathan Fancher
- Department of Chemistry, University of Nebraska at Kearney, Kearney, NE, 69949, USA
| | - Alexis Haynes
- Department of Chemistry, University of Nebraska at Kearney, Kearney, NE, 69949, USA
| | - Ianna Fill
- Department of Psychology, University of Nebraska at Kearney, Kearney, NE, 69949, USA
| | - Philip A Cole
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Evan Hill
- Department of Psychology, University of Nebraska at Kearney, Kearney, NE, 69949, USA
| | - Michael A Moxley
- Department of Chemistry, University of Nebraska at Kearney, Kearney, NE, 69949, USA
| | - Allen A Thomas
- Department of Chemistry, University of Nebraska at Kearney, Kearney, NE, 69949, USA
| |
Collapse
|
3
|
Crawford MC, Tripu DR, Barritt SA, Jing Y, Gallimore D, Kales SC, Bhanu NV, Xiong Y, Fang Y, Butler KAT, LeClair CA, Coussens NP, Simeonov A, Garcia BA, Dibble CC, Meier JL. Comparative Analysis of Drug-like EP300/CREBBP Acetyltransferase Inhibitors. ACS Chem Biol 2023; 18:2249-2258. [PMID: 37737090 PMCID: PMC11059198 DOI: 10.1021/acschembio.3c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
The human acetyltransferase paralogues EP300 and CREBBP are master regulators of lysine acetylation whose activity has been implicated in various cancers. In the half-decade since the first drug-like inhibitors of these proteins were reported, three unique molecular scaffolds have taken precedent: an indane spiro-oxazolidinedione (A-485), a spiro-hydantoin (iP300w), and an aminopyridine (CPI-1612). Despite increasing use of these molecules to study lysine acetylation, the dearth of data regarding their relative biochemical and biological potencies makes their application as chemical probes a challenge. To address this gap, here we present a comparative study of drug-like EP300/CREBBP acetyltransferase inhibitors. First, we determine the biochemical and biological potencies of A-485, iP300w, and CPI-1612, highlighting the increased potencies of the latter two compounds at physiological acetyl-CoA concentrations. Cellular evaluation shows that inhibition of histone acetylation and cell growth closely aligns with the biochemical potencies of these molecules, consistent with an on-target mechanism. Finally, we demonstrate the utility of comparative pharmacology by using it to investigate the hypothesis that increased CoA synthesis caused by knockout of PANK4 can competitively antagonize the binding of EP300/CREBBP inhibitors and demonstrate proof-of-concept photorelease of a potent inhibitor molecule. Overall, our study demonstrates how knowledge of the relative inhibitor potency can guide the study of EP300/CREBBP-dependent mechanisms and suggests new approaches to target delivery, thus broadening the therapeutic window of these preclinical epigenetic drug candidates.
Collapse
Affiliation(s)
- McKenna C Crawford
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Deepika R Tripu
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Samuel A Barritt
- Department of Pathology, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Yihang Jing
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Diamond Gallimore
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Stephen C Kales
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Natarajan V Bhanu
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Ying Xiong
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Yuhong Fang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Kamaria A T Butler
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Christopher A LeClair
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Nathan P Coussens
- Molecular Pharmacology Laboratories, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Christian C Dibble
- Department of Pathology, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Jordan L Meier
- Department of Pathology, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| |
Collapse
|
4
|
Crawford MC, Tripu DR, Barritt SA, Jing Y, Gallimore D, Kales SC, Bhanu NV, Xiong Y, Fang Y, Butler KAT, LeClair CA, Coussens NP, Simeonov A, Garcia BA, Dibble CC, Meier JL. Comparative analysis of drug-like EP300/CREBBP acetyltransferase inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540887. [PMID: 37292747 PMCID: PMC10245587 DOI: 10.1101/2023.05.15.540887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The human acetyltransferase paralogs EP300 and CREBBP are master regulators of lysine acetylation whose activity has been implicated in various cancers. In the half-decade since the first drug-like inhibitors of these proteins were reported, three unique molecular scaffolds have taken precedent: an indane spiro-oxazolidinedione (A-485), a spiro-hydantoin (iP300w), and an aminopyridine (CPI-1612). Despite increasing use of these molecules to study lysine acetylation, the dearth of data regarding their relative biochemical and biological potencies makes their application as chemical probes a challenge. To address this gap, here we present a comparative study of drug-like EP300/CREBBP acetyltransferase inhibitors. First, we determine the biochemical and biological potencies of A-485, iP300w, and CPI-1612, highlighting the increased potency of the latter two compounds at physiological acetyl-CoA concentrations. Cellular evaluation shows that inhibition of histone acetylation and cell growth closely aligns with the biochemical potencies of these molecules, consistent with an on-target mechanism. Finally, we demonstrate the utility of comparative pharmacology by using it to investigate the hypothesis that increased CoA synthesis caused by knockout of PANK4 can competitively antagonize binding of EP300/CREBBP inhibitors and demonstrate proof-of-concept photorelease of a potent inhibitor molecule. Overall, our study demonstrates how knowledge of relative inhibitor potency can guide the study of EP300/CREBBP-dependent mechanisms and suggests new approaches to target delivery, thus broadening the therapeutic window of these preclinical epigenetic drug candidates.
Collapse
Affiliation(s)
- McKenna C Crawford
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Deepika R Tripu
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Samuel A Barritt
- Department of Pathology, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yihang Jing
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Diamond Gallimore
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Stephen C Kales
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Natarajan V Bhanu
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Ying Xiong
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Yuhong Fang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Kamaria A T Butler
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Christopher A LeClair
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Nathan P Coussens
- Molecular Pharmacology Laboratories, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Christian C Dibble
- Department of Pathology, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jordan L Meier
- Department of Pathology, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Potlitz F, Link A, Schulig L. Advances in the discovery of new chemotypes through ultra-large library docking. Expert Opin Drug Discov 2023; 18:303-313. [PMID: 36714919 DOI: 10.1080/17460441.2023.2171984] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
INTRODUCTION The size and complexity of virtual screening libraries in drug discovery have skyrocketed in recent years, reaching up to multiple billions of accessible compounds. However, virtual screening of such ultra-large libraries poses several challenges associated with preparing the libraries, sampling, and pre-selection of suitable compounds. The utilization of artificial intelligence (AI)-assisted screening approaches, such as deep learning, poses a promising countermeasure to deal with this rapidly expanding chemical space. For example, various AI-driven methods were recently successfully used to identify novel small molecule inhibitors of the SARS-CoV-2 main protease (Mpro). AREAS COVERED This review focuses on presenting various kinds of virtual screening methods suitable for dealing with ultra-large libraries. Challenges associated with these computational methodologies are discussed, and recent advances are highlighted in the example of the discovery of novel Mpro inhibitors targeting the SARS-CoV-2 virus. EXPERT OPINION With the rapid expansion of the virtual chemical space, the methodologies for docking and screening such quantities of molecules need to keep pace. Employment of AI-driven screening compounds has already been shown to be effective in a range from a few thousand to multiple billion compounds, furthered by de novo generation of drug-like molecules without human interference.
Collapse
Affiliation(s)
- Felix Potlitz
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Germany
| | - Andreas Link
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Germany
| | - Lukas Schulig
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Germany
| |
Collapse
|
6
|
Basha NJ, Basavarajaiah SM. An insight into therapeutic efficacy of heterocycles as histone modifying enzyme inhibitors that targets cancer epigenetic pathways. Chem Biol Drug Des 2022; 100:682-698. [PMID: 36059065 DOI: 10.1111/cbdd.14135] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 01/10/2023]
Abstract
Histone modifying enzymes are the key regulators involved in the post-translational modification of histone and non-histone. These enzymes are responsible for the epigenetic control of cellular functions. However, deregulation of the activity of these enzymes results in uncontrolled disorders such as cancer and inflammatory and neurological diseases. The study includes histone acetyltransferases, deacetylases, methyl transferases, demethylases, DNA methyl transferases, and their potent inhibitors which are in a clinical trial and used as medicinal drugs. The present review covers the heterocycles as target-specific inhibitors of histone-modifying enzyme, more specifically histone acetyltransferases. This review also confers more recent reports on heterocycles as potential HAT inhibitors covered from 2016-2022 and future perspectives of these heterocycles in epigenetic therapy.
Collapse
Affiliation(s)
- N Jeelan Basha
- Department of Chemistry, Indian Academy Degree College-Autonomous, Bengaluru, Karnataka, India
| | - S M Basavarajaiah
- P.G. Department of Chemistry, Vijaya College, Bengaluru, Karnataka, India
| |
Collapse
|
7
|
Hogg SJ, Motorna O, Kearney CJ, Derrick EB, House IG, Todorovski I, Kelly MJ, Zethoven M, Bromberg KD, Lai A, Beavis PA, Shortt J, Johnstone RW, Vervoort SJ. Distinct modulation of IFNγ-induced transcription by BET bromodomain and catalytic P300/CBP inhibition in breast cancer. Clin Epigenetics 2022; 14:96. [PMID: 35902886 PMCID: PMC9336046 DOI: 10.1186/s13148-022-01316-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/14/2022] [Indexed: 12/04/2022] Open
Abstract
Background Interferon gamma (IFNγ) is a pro-inflammatory cytokine that directly activates the JAK/STAT pathway. However, the temporal dynamics of chromatin remodeling and transcriptional activation initiated by IFNγ have not been systematically profiled in an unbiased manner. Herein, we integrated transcriptomic and epigenomic profiling to characterize the acute epigenetic changes induced by IFNγ stimulation in a murine breast cancer model. Results We identified de novo activation of cis-regulatory elements bound by Irf1 that were characterized by increased chromatin accessibility, differential usage of pro-inflammatory enhancers, and downstream recruitment of BET proteins and RNA polymerase II. To functionally validate this hierarchical model of IFNγ-driven transcription, we applied selective antagonists of histone acetyltransferases P300/CBP or acetyl-lysine readers of the BET family. This highlighted that histone acetylation is an antecedent event in IFNγ-driven transcription, whereby targeting of P300/CBP acetyltransferase activity but not BET inhibition could curtail the epigenetic remodeling induced by IFNγ through suppression of Irf1 transactivation. Conclusions These data highlight the ability for epigenetic therapies to reprogram pro-inflammatory gene expression, which may have therapeutic implications for anti-tumor immunity and inflammatory diseases. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01316-5.
Collapse
Affiliation(s)
- Simon J Hogg
- Gene Regulation Laboratory, Peter MacCallum Cancer Center, 305 Grattan Street, Melbourne, VIC, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia.,Oncology Discovery, AbbVie, South San Francisco, CA, USA
| | - Olga Motorna
- Gene Regulation Laboratory, Peter MacCallum Cancer Center, 305 Grattan Street, Melbourne, VIC, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia.,Monash Haematology, Monash Health, Clayton, Australia
| | - Conor J Kearney
- Gene Regulation Laboratory, Peter MacCallum Cancer Center, 305 Grattan Street, Melbourne, VIC, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Emily B Derrick
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia.,Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Australia
| | - Imran G House
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia.,Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Australia
| | - Izabela Todorovski
- Gene Regulation Laboratory, Peter MacCallum Cancer Center, 305 Grattan Street, Melbourne, VIC, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Madison J Kelly
- Gene Regulation Laboratory, Peter MacCallum Cancer Center, 305 Grattan Street, Melbourne, VIC, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Magnus Zethoven
- Gene Regulation Laboratory, Peter MacCallum Cancer Center, 305 Grattan Street, Melbourne, VIC, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | | | - Albert Lai
- Oncology Discovery, AbbVie, North Chicago, IL, USA
| | - Paul A Beavis
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia.,Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Australia
| | - Jake Shortt
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia.,Monash Haematology, Monash Health, Clayton, Australia.,School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
| | - Ricky W Johnstone
- Gene Regulation Laboratory, Peter MacCallum Cancer Center, 305 Grattan Street, Melbourne, VIC, 3000, Australia. .,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia.
| | - Stephin J Vervoort
- Gene Regulation Laboratory, Peter MacCallum Cancer Center, 305 Grattan Street, Melbourne, VIC, 3000, Australia. .,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia. .,The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.
| |
Collapse
|
8
|
Conery AR, Rocnik JL, Trojer P. Small molecule targeting of chromatin writers in cancer. Nat Chem Biol 2021; 18:124-133. [PMID: 34952934 DOI: 10.1038/s41589-021-00920-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 10/13/2021] [Indexed: 01/10/2023]
Abstract
More than a decade after the launch of DNA methyltransferase and histone deacetylase inhibitors for the treatment of cancer, 2020 heralded the approval of the first histone methyltransferase inhibitor, revitalizing the concept that targeted manipulation of the chromatin regulatory landscape can have profound therapeutic impact. Three chromatin regulatory pathways-DNA methylation, histone acetylation and methylation-are frequently implicated in human cancer but hundreds of potentially druggable mechanisms complicate identification of key targets for therapeutic intervention. In addition to human genetics and functional screening, chemical biology approaches have proven critical for the discovery of key nodes in these pathways and in an ever-increasing complexity of molecularly defined human cancer contexts. This review introduces small molecule targeting approaches, showcases chemical probes and drug candidates for epigenetic writer enzymes, illustrates molecular features that may represent epigenetic dependencies and suggests translational strategies to maximize their impact in cancer therapy.
Collapse
|
9
|
Waddell AR, Huang H, Liao D. CBP/p300: Critical Co-Activators for Nuclear Steroid Hormone Receptors and Emerging Therapeutic Targets in Prostate and Breast Cancers. Cancers (Basel) 2021; 13:2872. [PMID: 34201346 PMCID: PMC8229436 DOI: 10.3390/cancers13122872] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 01/10/2023] Open
Abstract
The CREB-binding protein (CBP) and p300 are two paralogous lysine acetyltransferases (KATs) that were discovered in the 1980s-1990s. Since their discovery, CBP/p300 have emerged as important regulatory proteins due to their ability to acetylate histone and non-histone proteins to modulate transcription. Work in the last 20 years has firmly established CBP/p300 as critical regulators for nuclear hormone signaling pathways, which drive tumor growth in several cancer types. Indeed, CBP/p300 are critical co-activators for the androgen receptor (AR) and estrogen receptor (ER) signaling in prostate and breast cancer, respectively. The AR and ER are stimulated by sex hormones and function as transcription factors to regulate genes involved in cell cycle progression, metabolism, and other cellular functions that contribute to oncogenesis. Recent structural studies of the AR/p300 and ER/p300 complexes have provided critical insights into the mechanism by which p300 interacts with and activates AR- and ER-mediated transcription. Breast and prostate cancer rank the first and forth respectively in cancer diagnoses worldwide and effective treatments are urgently needed. Recent efforts have identified specific and potent CBP/p300 inhibitors that target the acetyltransferase activity and the acetytllysine-binding bromodomain (BD) of CBP/p300. These compounds inhibit AR signaling and tumor growth in prostate cancer. CBP/p300 inhibitors may also be applicable for treating breast and other hormone-dependent cancers. Here we provide an in-depth account of the critical roles of CBP/p300 in regulating the AR and ER signaling pathways and discuss the potential of CBP/p300 inhibitors for treating prostate and breast cancer.
Collapse
Affiliation(s)
- Aaron R. Waddell
- UF Health Cancer Center, Department of Anatomy and Cell Biology, University Florida College of Medicine, 2033 Mowry Road, Gainesville, FL 32610, USA;
| | - Haojie Huang
- Departments of Biochemistry and Molecular Biology and Urology, Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA;
| | - Daiqing Liao
- UF Health Cancer Center, Department of Anatomy and Cell Biology, University Florida College of Medicine, 2033 Mowry Road, Gainesville, FL 32610, USA;
| |
Collapse
|
10
|
Hogg SJ, Motorna O, Cluse LA, Johanson TM, Coughlan HD, Raviram R, Myers RM, Costacurta M, Todorovski I, Pijpers L, Bjelosevic S, Williams T, Huskins SN, Kearney CJ, Devlin JR, Fan Z, Jabbari JS, Martin BP, Fareh M, Kelly MJ, Dupéré-Richer D, Sandow JJ, Feran B, Knight D, Khong T, Spencer A, Harrison SJ, Gregory G, Wickramasinghe VO, Webb AI, Taberlay PC, Bromberg KD, Lai A, Papenfuss AT, Smyth GK, Allan RS, Licht JD, Landau DA, Abdel-Wahab O, Shortt J, Vervoort SJ, Johnstone RW. Targeting histone acetylation dynamics and oncogenic transcription by catalytic P300/CBP inhibition. Mol Cell 2021; 81:2183-2200.e13. [PMID: 34019788 PMCID: PMC8183601 DOI: 10.1016/j.molcel.2021.04.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 01/19/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
To separate causal effects of histone acetylation on chromatin accessibility and transcriptional output, we used integrated epigenomic and transcriptomic analyses following acute inhibition of major cellular lysine acetyltransferases P300 and CBP in hematological malignancies. We found that catalytic P300/CBP inhibition dynamically perturbs steady-state acetylation kinetics and suppresses oncogenic transcriptional networks in the absence of changes to chromatin accessibility. CRISPR-Cas9 screening identified NCOR1 and HDAC3 transcriptional co-repressors as the principal antagonists of P300/CBP by counteracting acetylation turnover kinetics. Finally, deacetylation of H3K27 provides nucleation sites for reciprocal methylation switching, a feature that can be exploited therapeutically by concomitant KDM6A and P300/CBP inhibition. Overall, this study indicates that the steady-state histone acetylation-methylation equilibrium functions as a molecular rheostat governing cellular transcription that is amenable to therapeutic exploitation as an anti-cancer regimen.
Collapse
Affiliation(s)
- Simon J Hogg
- Translational Hematology Program, Gene Regulation Laboratory, Peter MacCallum Cancer Center, Melbourne, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3000, Australia; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Olga Motorna
- Translational Hematology Program, Gene Regulation Laboratory, Peter MacCallum Cancer Center, Melbourne, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3000, Australia; Monash Haematology, Monash Health, Clayton, 3168, Australia; School of Clinical Sciences at Monash Health, Monash University, Clayton, 3800, Australia
| | - Leonie A Cluse
- Translational Hematology Program, Gene Regulation Laboratory, Peter MacCallum Cancer Center, Melbourne, 3000, Australia
| | - Timothy M Johanson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Hannah D Coughlan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | | | - Robert M Myers
- Tri-Institutional MD-PhD Program, Weill Cornell Medicine, Rockefeller University, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Matteo Costacurta
- Translational Hematology Program, Gene Regulation Laboratory, Peter MacCallum Cancer Center, Melbourne, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3000, Australia
| | - Izabela Todorovski
- Translational Hematology Program, Gene Regulation Laboratory, Peter MacCallum Cancer Center, Melbourne, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3000, Australia
| | - Lizzy Pijpers
- Translational Hematology Program, Gene Regulation Laboratory, Peter MacCallum Cancer Center, Melbourne, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3000, Australia
| | - Stefan Bjelosevic
- Translational Hematology Program, Gene Regulation Laboratory, Peter MacCallum Cancer Center, Melbourne, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3000, Australia
| | - Tobias Williams
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3000, Australia; RNA Biology and Cancer Laboratory, Peter MacCallum Cancer Centre, Melbourne, 3000, Australia
| | - Shannon N Huskins
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, 7000, Australia
| | - Conor J Kearney
- Translational Hematology Program, Gene Regulation Laboratory, Peter MacCallum Cancer Center, Melbourne, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3000, Australia
| | - Jennifer R Devlin
- Translational Hematology Program, Gene Regulation Laboratory, Peter MacCallum Cancer Center, Melbourne, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3000, Australia
| | - Zheng Fan
- Translational Hematology Program, Gene Regulation Laboratory, Peter MacCallum Cancer Center, Melbourne, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3000, Australia
| | - Jafar S Jabbari
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, 3000, Australia
| | - Ben P Martin
- Translational Hematology Program, Gene Regulation Laboratory, Peter MacCallum Cancer Center, Melbourne, 3000, Australia
| | - Mohamed Fareh
- Translational Hematology Program, Gene Regulation Laboratory, Peter MacCallum Cancer Center, Melbourne, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3000, Australia
| | - Madison J Kelly
- Translational Hematology Program, Gene Regulation Laboratory, Peter MacCallum Cancer Center, Melbourne, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3000, Australia
| | - Daphné Dupéré-Richer
- Division of Hematology/Oncology, The University of Florida Health Cancer Center, Gainesville, FL 32608, USA
| | - Jarrod J Sandow
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Breon Feran
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Deborah Knight
- Translational Hematology Program, Gene Regulation Laboratory, Peter MacCallum Cancer Center, Melbourne, 3000, Australia
| | - Tiffany Khong
- Australian Center for Blood Diseases, Monash University, Melbourne, 3004, Australia
| | - Andrew Spencer
- Australian Center for Blood Diseases, Monash University, Melbourne, 3004, Australia
| | - Simon J Harrison
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3000, Australia; Clinical Hematology, Peter MacCallum Cancer Center, Melbourne, 3000, Australia; Royal Melbourne Hospital, Melbourne, 3000, Australia
| | - Gareth Gregory
- Monash Haematology, Monash Health, Clayton, 3168, Australia; School of Clinical Sciences at Monash Health, Monash University, Clayton, 3800, Australia
| | - Vihandha O Wickramasinghe
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3000, Australia; RNA Biology and Cancer Laboratory, Peter MacCallum Cancer Centre, Melbourne, 3000, Australia
| | - Andrew I Webb
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Phillippa C Taberlay
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, 7000, Australia
| | - Kenneth D Bromberg
- Discovery, Global Pharmaceutical Research and Development, AbbVie, North Chicago, IL 60064, USA
| | - Albert Lai
- Discovery, Global Pharmaceutical Research and Development, AbbVie, North Chicago, IL 60064, USA
| | - Anthony T Papenfuss
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3000, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Gordon K Smyth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; School of Mathematics and Statistics, The University of Melbourne, Parkville, 3010, Australia
| | - Rhys S Allan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Jonathan D Licht
- Division of Hematology/Oncology, The University of Florida Health Cancer Center, Gainesville, FL 32608, USA
| | - Dan A Landau
- New York Genome Center, New York, NY 10013, USA; Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jake Shortt
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3000, Australia; Monash Haematology, Monash Health, Clayton, 3168, Australia; School of Clinical Sciences at Monash Health, Monash University, Clayton, 3800, Australia
| | - Stephin J Vervoort
- Translational Hematology Program, Gene Regulation Laboratory, Peter MacCallum Cancer Center, Melbourne, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3000, Australia.
| | - Ricky W Johnstone
- Translational Hematology Program, Gene Regulation Laboratory, Peter MacCallum Cancer Center, Melbourne, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3000, Australia.
| |
Collapse
|