1
|
Urazaliyeva A, Kanabekova P, Beisenbayev A, Kulsharova G, Atabaev T, Kim S, Lim CK. All organic nanomedicine for PDT-PTT combination therapy of cancer cells in hypoxia. Sci Rep 2024; 14:17507. [PMID: 39080400 PMCID: PMC11289472 DOI: 10.1038/s41598-024-68077-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
Photodynamic and photothermal therapies are promising treatments for cancer, dermatological, and ophthalmological conditions. However, photodynamic therapy (PDT) is less effective in oxygen-deficient tumor environments. Combining PDT with photothermal therapy (PTT) can enhance oxygen supply and treatment efficacy. Inorganic PTT agents pose toxicity risks, limiting their clinical use despite their high performance. In this study, we developed a novel nanomedicine integrating an all-organic photothermal agent and an organic photosensitizer, creating a colocalized nanoplatform to enhance phototherapy efficacy in cancer treatment. PTT nanoparticles (NPs) were synthesized through a thermal phase transition of organic chromophores, demonstrating superior photothermal properties and photostability. Utilizing this nanoplatform, we devised 'Combi NPs' for combined PDT-PTT nanomedicine. Tests on A549 cancer cell lines have revealed that Combi NPs exhibit superior cytotoxicity and induce apoptosis in hypoxic conditions, outperforming PTT-only NPs. The all-organic Combi NPs show significant potential for clinical cancer phototherapy in hypoxic microenvironments, potentially mitigating long-term nanomedicine accumulation and associated toxicity.
Collapse
Affiliation(s)
- Anel Urazaliyeva
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Perizat Kanabekova
- Department of Electrical and Computer Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Almaz Beisenbayev
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Gulsim Kulsharova
- Department of Electrical and Computer Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Timur Atabaev
- Department of Chemistry, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Sehoon Kim
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Chang-Keun Lim
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Kazakhstan.
| |
Collapse
|
2
|
Lu Q. Bioresponsive and multifunctional cyclodextrin-based non-viral nanocomplexes in cancer therapy: Building foundations for gene and drug delivery, immunotherapy and bioimaging. ENVIRONMENTAL RESEARCH 2023; 234:116507. [PMID: 37364628 DOI: 10.1016/j.envres.2023.116507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
The interest towards application of nanomaterials in field of cancer therapy is that the drawbacks of conventional therapies including chemoresistance, radio-resistance and lack of specific targeting of tumor cells can be solved by nanotechnology. Cyclodextrins (CDs) are amphiphilic cyclic oligosaccharides that can be present in three forms of α-, β- and γ-CDs, and they can be synthesized from natural sources. The application of CDs in cancer shows an increasing trend due to benefits of these nanocomplexes in improving solubility and bioavailability of current bioactives and therapeutics for cancer. CDs are widely utilized in delivery of drugs and genes in cancer therapy, and by targeted delivery of these therapeutics into target site, they improve anti-proliferative and anti-cancer potential. The blood circulation time and tumor site accumulation of therapeutics can be improved using CD-based nanostructures. More importantly, the stimuli-responsive types of CDs including pH-, redox- and light-sensitive types can accelerate release of bioactive compound at tumor site. Interestingly, the CDs are able to mediate photothermal and photodynamic impact in impairing tumorigenesis in cancer, enhancing cell death and improving response to chemotherapy. In improving the targeting ability of CDs, their surface functionalization with ligands has been conducted. Moreover, CDs can be modified with green products such as chitosan and fucoidan, and they can be embedded in green-based nanostructures to suppress tumorigenesis. The internalization of CDs into tumor cells can occur through endocytosis and this can be clethrin-, caveolae- or receptor-mediated endocytosis. Furthermore, CDs are promising candidates in bioimaging, cancer cell and organelle imaging as well as isolating tumor cells. The main benefits of using CDs in cancer therapy including sustained and low release of drugs and genes, targeted delivery, bioresponsive release of cargo, ease of surface functionalization and complexation with other nanostructures. The application of CDs in overcoming drug resistance requires more investigation.
Collapse
Affiliation(s)
- Qi Lu
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
3
|
Elkihel A, Vernisse C, Ouk TS, Lucas-Roper R, Chaleix V, Sol V. Xylan-Porphyrin Hydrogels as Light-Triggered Gram-Positive Antibacterial Agents. Gels 2023; 9:gels9020124. [PMID: 36826294 PMCID: PMC9957218 DOI: 10.3390/gels9020124] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
In the present work, we report on the synthesis of light-triggered antibacterial hydrogels, based on xylan chains covalently bound to meso-tetra(4-carboxyphenyl)porphyrin (TCPP). Not only does TCPP act as a photosensitizer efficient against Gram-positive bacteria, but it also serves as a cross-linking gelator, enabling the simple and easy building of xylan conjugate hydrogels. The hydrogels were characterized by infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), along with swelling and rheological tests. The antimicrobial activity of the hydrogels was tested under visible light irradiation against two Gram-positive bacterial strains, Staphylococcus aureus and Bacillus cereus. The preliminary results showed an interesting activity on these bacteria, indicating that these hydrogels could be of great potential in the treatment of skin bacterial infections with this species by photodynamic antimicrobial chemotherapy (PACT).
Collapse
Affiliation(s)
| | | | - Tan-Sothéa Ouk
- University Limoges, LABCiS, UR 22722, 87000 Limoges, France
| | | | | | - Vincent Sol
- University Limoges, LABCiS, UR 22722, 87000 Limoges, France
- Correspondence:
| |
Collapse
|
4
|
Castillo O, Mancillas J, Hughes W, Brancaleon L. Characterization of the interaction of metal-protoporphyrins photosensitizers with β- lactoglobulin. Biophys Chem 2023; 292:106918. [PMID: 36399946 DOI: 10.1016/j.bpc.2022.106918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022]
Abstract
We investigated the interaction of a series of metal-protoporphyrins (PPIXs) with bovine β- lactoglobulin (BLG) using a combination of optical spectroscopy and computational simulations. Unlike other studies, the simulations were not merely used to rationalize the experimental data but were employed to refine the experimental data itself. The study was carried out at two pH values, 5 and 9, where BLG is known to have different conformation dictated by the so-called Tanford transition which occurs near pH 7.5. The transition is postulated to regulate access to the interior binding cavity of the protein, thus the pH variation was used as a parameter to investigate whether PPIXs access the central cavity of BLG. The results of our study show that indeed binding increases significantly at alkaline pH, however, the increased affinity is not due to the accessibility of the central cavity. Instead, binding appears to be determined by the tendency of PPIXs to form large inhomogeneous aggregates at acidic pH which hinders interactions with proteins. The binding site determined through a combination of experimental and computational methods is located at the interface between two BLG monomers where the long α-helix segment of the protein face each other. This region is rich in positively charged Lys residues that interact with the propionic acid chains of the protoporphyrins. Establishing the modality of binding between protoporphyrins and BLG would have important consequences for the use of BLG:PPIX complexes in applications such as artificial photoreceptors, artificial metallo-enzymes, delivery of photosensitizers for phototherapy and even solar energy conversion.
Collapse
Affiliation(s)
- Omar Castillo
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - James Mancillas
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - William Hughes
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Lorenzo Brancaleon
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
5
|
Composite Nanoarchitectonics of Cellulose with Porphyrin-Zn for Antibacterial Properties. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02496-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Du E, Tang Y, Zhang Q, Song Z, Tao Y, Zhang Y. Enhancing the Cellular Uptake of Macromolecules via Enzyme-Instructed Self-Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4364-4370. [PMID: 35360902 DOI: 10.1021/acs.langmuir.2c00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Poor solubility, low cellular uptake, and poor cell selectivity are the main obstacles hampering the therapeutic potential and clinic application of macromolecules. To overcome these limitations, here we propose a chemical modification strategy of macromolecules based on enzyme-instructed self-assembly (EISA). By using protoporphyrin IX (PpIX) and its metal complex Zn-PpIX as the modification objects, we demonstrated that the integration of enzymatic transformation and molecular self-assembly of macromolecules successfully improved the solubility of macromolecules, enhancing their intracellular uptake selectively against cancer cells. The proposed strategy is potentially applicable as a general tool for the development of macromolecule-based nanomedicine.
Collapse
Affiliation(s)
- Enming Du
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology, Okinawa 904-0495, Japan
| | - Yunlan Tang
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Qizheng Zhang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology, Okinawa 904-0495, Japan
| | - Zongming Song
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Ye Tao
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Ye Zhang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology, Okinawa 904-0495, Japan
| |
Collapse
|
7
|
Mali P, Sherje AP. Cellulose nanocrystals: Fundamentals and biomedical applications. Carbohydr Polym 2022; 275:118668. [PMID: 34742407 DOI: 10.1016/j.carbpol.2021.118668] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/29/2021] [Accepted: 09/12/2021] [Indexed: 12/19/2022]
Abstract
The present review explores the recent developments of cellulose nanocrystals, a class of captivating nanomaterials in variety of applications. CNCs are made by acid hydrolysing cellulosic materials like wood, cotton, tunicate, flax fibers by sonochemistry. It has many desirable properties, including a high tensile strength, wide surface area, stiffness, exceptional colloidal stability, and the ability to be modified. CNCs are colloidally stable, hydrophilic, and rigid rod-shaped bio-based nanomaterials in the form of rigid rods with high strength and surface area that has a diverse set of applications and properties. The intriguing features emerging from numerous fibers studies, such as renewable character and biodegradability, piqued the curiosity of many researchers who worked on lowering the size of these fibers. Physicochemical properties such as rheological, mechanical, thermal, lipid crystalline, swelling capacity, microstructural properties result in affecting surface-area to volume ratio and crystallinity of cellulose nanocrystals. The present article highlights the fundamentals of cellulose nanocrystals such as sources, isolation, fabrication, properties and surface modification with an emphasis on plethora of biomedical applications. Selected nanocellulose studies with significant findings on cellular labelling and bioimaging, tissue engineering, biosensors, gene delivery, anti-viral property, anti-bacterial property, ocular delivery, modified drug release, anti-cancer activity and enzyme immobilization are emphasized.
Collapse
Affiliation(s)
- Prajakta Mali
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India
| | - Atul P Sherje
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India.
| |
Collapse
|
8
|
Dandash F, Leger DY, Diab-Assaf M, Sol V, Liagre B. Porphyrin/Chlorin Derivatives as Promising Molecules for Therapy of Colorectal Cancer. Molecules 2021; 26:7268. [PMID: 34885849 PMCID: PMC8659284 DOI: 10.3390/molecules26237268] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/27/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related death. The demand for new therapeutic approaches has increased attention paid toward therapies with high targeting efficiency, improved selectivity and few side effects. Porphyrins are powerful molecules with exceptional properties and multifunctional uses, and their special affinity to cancer cells makes them the ligands par excellence for anticancer drugs. Porphyrin derivatives are used as the most important photosensitizers (PSs) for photodynamic therapy (PDT), which is a promising approach for anticancer treatment. Nevertheless, the lack of solubility and selectivity of the large majority of these macrocycles led to the development of different photosensitizer complexes. In addition, targeting agents or nanoparticles were used to increase the efficiency of these macrocycles for PDT applications. On the other hand, gold tetrapyrrolic macrocycles alone showed very interesting chemotherapeutic activity without PDT. In this review, we discuss the most important porphyrin derivatives, alone or associated with other drugs, which have been found effective against CRC, as we describe their modifications and developments through substitutions and delivery systems.
Collapse
Affiliation(s)
- Fatima Dandash
- Doctoral School of Sciences and Technology, Lebanese University, Hadath, Beirut 21219, Lebanon; (F.D.); (M.D.-A.)
| | - David Y. Leger
- Laboratoire PEIRENE EA 7500, Faculté de Pharmacie et Faculté des Sciences et Techniques, Université de Limoges, 2 Rue du Dr Marcland, CEDEX, 87025 Limoges, France; (D.Y.L.); (V.S.)
| | - Mona Diab-Assaf
- Doctoral School of Sciences and Technology, Lebanese University, Hadath, Beirut 21219, Lebanon; (F.D.); (M.D.-A.)
| | - Vincent Sol
- Laboratoire PEIRENE EA 7500, Faculté de Pharmacie et Faculté des Sciences et Techniques, Université de Limoges, 2 Rue du Dr Marcland, CEDEX, 87025 Limoges, France; (D.Y.L.); (V.S.)
| | - Bertrand Liagre
- Laboratoire PEIRENE EA 7500, Faculté de Pharmacie et Faculté des Sciences et Techniques, Université de Limoges, 2 Rue du Dr Marcland, CEDEX, 87025 Limoges, France; (D.Y.L.); (V.S.)
| |
Collapse
|