1
|
Velma G, Krider IS, Alves ETM, Courey JM, Laham MS, Thatcher GRJ. Channeling Nicotinamide Phosphoribosyltransferase (NAMPT) to Address Life and Death. J Med Chem 2024; 67:5999-6026. [PMID: 38580317 PMCID: PMC11056997 DOI: 10.1021/acs.jmedchem.3c02112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the rate-limiting step in NAD+ biosynthesis via salvage of NAM formed from catabolism of NAD+ by proteins with NADase activity (e.g., PARPs, SIRTs, CD38). Depletion of NAD+ in aging, neurodegeneration, and metabolic disorders is addressed by NAD+ supplementation. Conversely, NAMPT inhibitors have been developed for cancer therapy: many discovered by phenotypic screening for cancer cell death have low nanomolar potency in cellular models. No NAMPT inhibitor is yet FDA-approved. The ability of inhibitors to act as NAMPT substrates may be associated with efficacy and toxicity. Some 3-pyridyl inhibitors become 4-pyridyl activators or "NAD+ boosters". NAMPT positive allosteric modulators (N-PAMs) and boosters may increase enzyme activity by relieving substrate/product inhibition. Binding to a "rear channel" extending from the NAMPT active site is key for inhibitors, boosters, and N-PAMs. A deeper understanding may fulfill the potential of NAMPT ligands to regulate cellular life and death.
Collapse
Affiliation(s)
- Ganga
Reddy Velma
- Department
of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Isabella S. Krider
- Department
of Chemistry & Biochemistry, University
of Arizona, Tucson, Arizona 85721, United States
| | - Erick T. M. Alves
- Department
of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Jenna M. Courey
- Department
of Chemistry & Biochemistry, University
of Arizona, Tucson, Arizona 85721, United States
| | - Megan S. Laham
- Department
of Chemistry & Biochemistry, University
of Arizona, Tucson, Arizona 85721, United States
| | - Gregory R. J. Thatcher
- Department
of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
- Department
of Chemistry & Biochemistry, University
of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
2
|
Li F, Wu C, Wang G. Targeting NAD Metabolism for the Therapy of Age-Related Neurodegenerative Diseases. Neurosci Bull 2024; 40:218-240. [PMID: 37253984 PMCID: PMC10838897 DOI: 10.1007/s12264-023-01072-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/10/2023] [Indexed: 06/01/2023] Open
Abstract
As the aging population continues to grow rapidly, age-related diseases are becoming an increasing burden on the healthcare system and a major concern for the well-being of elderly individuals. While aging is an inevitable process for all humans, it can be slowed down and age-related diseases can be treated or alleviated. Nicotinamide adenine dinucleotide (NAD) is a critical coenzyme or cofactor that plays a central role in metabolism and is involved in various cellular processes including the maintenance of metabolic homeostasis, post-translational protein modifications, DNA repair, and immune responses. As individuals age, their NAD levels decline, and this decrease has been suggested to be a contributing factor to the development of numerous age-related diseases, such as cancer, diabetes, cardiovascular diseases, and neurodegenerative diseases. In pursuit of healthy aging, researchers have investigated approaches to boost or maintain NAD levels. Here, we provide an overview of NAD metabolism and the role of NAD in age-related diseases and summarize recent progress in the development of strategies that target NAD metabolism for the treatment of age-related diseases, particularly neurodegenerative diseases.
Collapse
Affiliation(s)
- Feifei Li
- School of Pharmaceutical Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Chou Wu
- School of Pharmaceutical Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Gelin Wang
- School of Pharmaceutical Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
3
|
Wen F, Gui G, Wang X, Ye L, Qin A, Zhou C, Zha X. Drug discovery targeting nicotinamide phosphoribosyltransferase (NAMPT): Updated progress and perspectives. Bioorg Med Chem 2024; 99:117595. [PMID: 38244254 DOI: 10.1016/j.bmc.2024.117595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a key rate-limiting enzyme in the nicotinamide adenine dinucleotide (NAD+) salvage pathway, primarily catalyzing the synthesis of nicotinamide mononucleotide (NMN) from nicotinamide (NAM), phosphoribosyl pyrophosphate (PRPP), and adenosine triphosphate (ATP). Metabolic diseases, aging-related diseases, inflammation, and cancers can lead to abnormal expression levels of NAMPT due to the pivotal role of NAD+ in redox metabolism, aging, the immune system, and DNA repair. In addition, NAMPT can be secreted by cells as a cytokine that binds to cell membrane receptors to regulate intracellular signaling pathways. Furthermore, NAMPT is able to reduce therapeutic efficacy by enhancing acquired resistance to chemotherapeutic agents. Recently, a few novel activators and inhibitors of NAMPT for neuroprotection and anti-tumor have been reported, respectively. However, NAMPT activators are still in preclinical studies, and only five NAMPT inhibitors have entered the clinical stage, unfortunately, three of which were terminated or withdrawn due to safety concerns. Novel drug design strategies such as proteolytic targeting chimera (PROTAC), antibody-drug conjugate (ADC), and dual-targeted inhibitors also provide new directions for the development of NAMPT inhibitors. In this perspective, we mainly discuss the structure, biological function, and role of NAMPT in diseases and the currently discovered activators and inhibitors. It is our hope that this work will provide some guidance for the future design and optimization of NAMPT activators and inhibitors.
Collapse
Affiliation(s)
- Fei Wen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Gang Gui
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Xiaoyu Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Li Ye
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Anqi Qin
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Chen Zhou
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, USA
| | - Xiaoming Zha
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| |
Collapse
|
4
|
Shen Z, Ratia K, Krider I, Ackerman-Berrier M, Penton C, Musku SR, Gordon-Blake JM, Laham MS, Christie N, Ma N, Fu J, Xiong R, Courey JM, Velma GR, Thatcher GRJ. Synthesis, Optimization, and Structure-Activity Relationships of Nicotinamide Phosphoribosyltransferase (NAMPT) Positive Allosteric Modulators (N-PAMs). J Med Chem 2023; 66:16704-16727. [PMID: 38096366 PMCID: PMC10758216 DOI: 10.1021/acs.jmedchem.3c01406] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/12/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023]
Abstract
Depletion of nicotinamide adenine dinucleotide (NAD+) is associated with aging and disease, spurring the study of dietary supplements to replenish NAD+. The catabolism of NAD+ to nicotinamide (NAM) requires the salvage of NAM to replenish cellular NAD+, which relies on the rate-limiting enzyme nicotinamide phosphoribosyltransferase (NAMPT). Pharmacological activation of NAMPT provides an alternative to dietary supplements. Screening for activators of NAMPT identified small molecule NAMPT positive allosteric modulators (N-PAMs). N-PAMs bind to the rear channel of NAMPT increasing enzyme activity and alleviating feedback inhibition by NAM and NAD+. Synthesis of over 70 N-PAMs provided an excellent correlation between rear channel binding affinity and potency for enzyme activation, confirming the mechanism of allosteric activation via binding to the rear channel. The mechanism accounts for higher binding affinity leading to loss of efficacy. Enzyme activation translated directly to elevation of NAD+ measured in cells. Optimization led to an orally bioavailable N-PAM.
Collapse
Affiliation(s)
- Zhengnan Shen
- Department
of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Kiira Ratia
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Research
Resources Center, University of Illinois
at Chicago, Chicago, Illinois 60612, United States
| | - Isabella Krider
- Department
of Chemistry & Biochemistry, Colleges of Science and Medicine, University of Arizona, Tucson, Arizona 85721, United States
| | - Martha Ackerman-Berrier
- Department
of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Christopher Penton
- Department
of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Soumya Reddy Musku
- Department
of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Jesse M. Gordon-Blake
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Megan S. Laham
- Department
of Chemistry & Biochemistry, Colleges of Science and Medicine, University of Arizona, Tucson, Arizona 85721, United States
| | - Nicholas Christie
- Department
of Chemistry & Biochemistry, Colleges of Science and Medicine, University of Arizona, Tucson, Arizona 85721, United States
| | - Nina Ma
- Department
of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Jiqiang Fu
- Department
of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Rui Xiong
- Department
of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Jenna M. Courey
- Department
of Chemistry & Biochemistry, Colleges of Science and Medicine, University of Arizona, Tucson, Arizona 85721, United States
| | - Ganga Reddy Velma
- Department
of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Gregory R. J. Thatcher
- Department
of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
- Department
of Chemistry & Biochemistry, Colleges of Science and Medicine, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
5
|
Bhasin S, Seals D, Migaud M, Musi N, Baur JA. Nicotinamide Adenine Dinucleotide in Aging Biology: Potential Applications and Many Unknowns. Endocr Rev 2023; 44:1047-1073. [PMID: 37364580 DOI: 10.1210/endrev/bnad019] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/28/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
Recent research has unveiled an expansive role of NAD+ in cellular energy generation, redox reactions, and as a substrate or cosubstrate in signaling pathways that regulate health span and aging. This review provides a critical appraisal of the clinical pharmacology and the preclinical and clinical evidence for therapeutic effects of NAD+ precursors for age-related conditions, with a particular focus on cardiometabolic disorders, and discusses gaps in current knowledge. NAD+ levels decrease throughout life; age-related decline in NAD+ bioavailability has been postulated to be a contributor to many age-related diseases. Raising NAD+ levels in model organisms by administration of NAD+ precursors improves glucose and lipid metabolism; attenuates diet-induced weight gain, diabetes, diabetic kidney disease, and hepatic steatosis; reduces endothelial dysfunction; protects heart from ischemic injury; improves left ventricular function in models of heart failure; attenuates cerebrovascular and neurodegenerative disorders; and increases health span. Early human studies show that NAD+ levels can be raised safely in blood and some tissues by oral NAD+ precursors and suggest benefit in preventing nonmelanotic skin cancer, modestly reducing blood pressure and improving lipid profile in older adults with obesity or overweight; preventing kidney injury in at-risk patients; and suppressing inflammation in Parkinson disease and SARS-CoV-2 infection. Clinical pharmacology, metabolism, and therapeutic mechanisms of NAD+ precursors remain incompletely understood. We suggest that these early findings provide the rationale for adequately powered randomized trials to evaluate the efficacy of NAD+ augmentation as a therapeutic strategy to prevent and treat metabolic disorders and age-related conditions.
Collapse
Affiliation(s)
- Shalender Bhasin
- Department of Medicine, Harvard Medical School, Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Douglas Seals
- Department of Integrative Physiology and Medicine, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Marie Migaud
- Department of Pharmacology, Mitchell Cancer Institute, College of Medicine, University of Southern Alabama, Mobile, AL 36688, USA
| | - Nicolas Musi
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Joseph A Baur
- Department of Physiology, Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Tang S, Garzon Sanz M, Smith O, Krämer A, Egbase D, Caton PW, Knapp S, Butterworth S. Chemistry-led investigations into the mode of action of NAMPT activators, resulting in the discovery of non-pyridyl class NAMPT activators. Acta Pharm Sin B 2023; 13:709-721. [PMID: 36873168 PMCID: PMC9978853 DOI: 10.1016/j.apsb.2022.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/22/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
The cofactor nicotinamide adenine dinucleotide (NAD+) plays a key role in a wide range of physiological processes and maintaining or enhancing NAD+ levels is an established approach to enhancing healthy aging. Recently, several classes of nicotinamide phosphoribosyl transferase (NAMPT) activators have been shown to increase NAD+ levels in vitro and in vivo and to demonstrate beneficial effects in animal models. The best validated of these compounds are structurally related to known urea-type NAMPT inhibitors, however the basis for the switch from inhibitory activity to activation is not well understood. Here we report an evaluation of the structure activity relationships of NAMPT activators by designing, synthesising and testing compounds from other NAMPT ligand chemotypes and mimetics of putative phosphoribosylated adducts of known activators. The results of these studies led us to hypothesise that these activators act via a through-water interaction in the NAMPT active site, resulting in the design of the first known urea-class NAMPT activator that does not utilise a pyridine-like warhead, which shows similar or greater activity as a NAMPT activator in biochemical and cellular assays relative to known analogues.
Collapse
Affiliation(s)
- Siyuan Tang
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PL, UK
| | - Miguel Garzon Sanz
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PL, UK
| | - Oliver Smith
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PL, UK
| | - Andreas Krämer
- Structural Genomics Consortium (SGC), 60438 Frankfurt Am Main, Germany.,Buchmann Institute for Life Sciences (BMLS), 60438 Frankfurt Am Main, Germany.,Institut für Pharmazeutische Chemie, Goethe University, 60438 Frankfurt Am Main, Germany.,Frankfurt Cancer Institute (FCI), 60596 Frankfurt Am Main, Germany
| | - Daniel Egbase
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 1UL, UK
| | - Paul W Caton
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 1UL, UK
| | - Stefan Knapp
- Structural Genomics Consortium (SGC), 60438 Frankfurt Am Main, Germany.,Buchmann Institute for Life Sciences (BMLS), 60438 Frankfurt Am Main, Germany.,Institut für Pharmazeutische Chemie, Goethe University, 60438 Frankfurt Am Main, Germany.,Frankfurt Cancer Institute (FCI), 60596 Frankfurt Am Main, Germany
| | - Sam Butterworth
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
7
|
Zhu Y, Xu P, Huang X, Shuai W, Liu L, Zhang S, Zhao R, Hu X, Wang G. From Rate-Limiting Enzyme to Therapeutic Target: The Promise of NAMPT in Neurodegenerative Diseases. Front Pharmacol 2022; 13:920113. [PMID: 35903330 PMCID: PMC9322656 DOI: 10.3389/fphar.2022.920113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/08/2022] [Indexed: 11/15/2022] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in the nicotinamide adenine dinucleotide (NAD) salvage pathway in mammals. It is of great significance in the metabolic homeostasis and cell survival via synthesizing nicotinamide mononucleotide (NMN) through enzymatic activities, serving as a key protein involved in the host's defense mechanism. The NAMPT metabolic pathway connects NAD-dependent sirtuin (SIRT) signaling, constituting the NAMPT-NAD-SIRT cascade, which is validated as a strong intrinsic defense system. Neurodegenerative diseases belong to the central nervous system (CNS) disease that seriously endangers human health. The World Health Organization (WHO) proposed that neurodegenerative diseases will become the second leading cause of human death in the next two decades. However, effective drugs for neurodegenerative diseases are scant. NAMPT is specifically highly expressed in the hippocampus, which mediates cell self-renewal and proliferation and oligodendrocyte synthesis by inducing the biosynthesis of NAD in neural stem cells/progenitor cells. Owing to the active biological function of NAMPT in neurogenesis, targeting NAMPT may be a powerful therapeutic strategy for neurodegenerative diseases. This study aims to review the structure and biological functions, the correlation with neurodegenerative diseases, and treatment advance of NAMPT, aiming to provide a novel idea for targeted therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yumeng Zhu
- Innovation Center of Nursing Research, West China School of Nursing, Department of Gastrointestinal Surgery, National Clinical Research Center for Geriatrics, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Xu
- Emergency Department, Institute of Medical Big Data, Zigong Academy of Big Data for Science and Artificial Intelligence, Zigong Fourth People’s Hospital, Zigong, China
| | - Xuan Huang
- Innovation Center of Nursing Research, West China School of Nursing, Department of Gastrointestinal Surgery, National Clinical Research Center for Geriatrics, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Shuai
- Innovation Center of Nursing Research, West China School of Nursing, Department of Gastrointestinal Surgery, National Clinical Research Center for Geriatrics, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Li Liu
- Innovation Center of Nursing Research, West China School of Nursing, Department of Gastrointestinal Surgery, National Clinical Research Center for Geriatrics, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Shuai Zhang
- Innovation Center of Nursing Research, West China School of Nursing, Department of Gastrointestinal Surgery, National Clinical Research Center for Geriatrics, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Zhao
- Innovation Center of Nursing Research, West China School of Nursing, Department of Gastrointestinal Surgery, National Clinical Research Center for Geriatrics, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Xiuying Hu
- Innovation Center of Nursing Research, West China School of Nursing, Department of Gastrointestinal Surgery, National Clinical Research Center for Geriatrics, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Guan Wang
- Innovation Center of Nursing Research, West China School of Nursing, Department of Gastrointestinal Surgery, National Clinical Research Center for Geriatrics, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|