1
|
Do N, Zuo D, Kim M, Kim M, Ha HJ, Blumberg PM, Ann J, Hwang SW, Lee J. Discovery of Dual TRPA1 and TRPV1 Antagonists as Novel Therapeutic Agents for Pain. Pharmaceuticals (Basel) 2024; 17:1209. [PMID: 39338371 PMCID: PMC11435370 DOI: 10.3390/ph17091209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/15/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Pain management remains a major challenge in medicine, highlighting the need for the development of new therapeutic agents. The transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) are ion channels that play key roles in pain perception. Targeting both TRPA1 and TRPV1 simultaneously with dual antagonists offers a promising approach to pain relief. In this study, we investigated a series of hybrid analogs of TRPA1 and TRPV1 antagonists to discover novel therapeutic agents for pain. Among these compounds synthesized by a condensation reaction forming 1,2,4-oxadiazole between the A- and C-regions, compound 50 exhibited substantial dual-acting antagonism to TRPA1 and TRPV1 with IC50 values of 1.42, 2.84, 2.13, and 5.02 μM for hTRPA1, mTRPA1, hTRPV1, and rTRPV1, respectively. In the formalin test, compound 50 demonstrated dose-dependent analgesic activity with an ED50 of 85.9 mg/kg in phase 1 and 21.6 mg/kg in phase 2, respectively, and was able to inhibit pain behavior completely at a dose of 100 mg/kg. This study presents the discovery and characterization of a novel dual TRPA1/TRPV1 antagonist, highlighting its potential as a therapeutic agent for pain management.
Collapse
Affiliation(s)
- Nayeon Do
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dongxu Zuo
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Miri Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Minseok Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hee-Jin Ha
- Medifron DBT, Seoul 08502, Republic of Korea
| | - Peter M Blumberg
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jihyae Ann
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sun Wook Hwang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Jeewoo Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Huang G, Jung A, Li LX, Do N, Jung S, Jeon Y, Zuo D, Thanh La M, Van Manh N, Blumberg PM, Yoon H, Lee Y, Ann J, Lee J. Discovery of N-(1,4-Benzoxazin-3-one) urea analogs as Mode-Selective TRPV1 antagonists. Bioorg Med Chem Lett 2024; 106:129735. [PMID: 38588785 DOI: 10.1016/j.bmcl.2024.129735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
A series of 1,4-benzoxazin-3-one analogs were investigated to discover mode-selective TRPV1 antagonists, since such antagonists are predicted to minimize target-based adverse effects. Using the high-affinity antagonist 2 as the lead structure, the structure activity relationship was studied by modifying the A-region through incorporation of a polar side chain on the benzoxazine and then by changing the C-region with a variety of substituted pyridine, pyrazole and thiazole moieties. The t-butyl pyrazole and thiazole C-region analogs provided high potency as well as mode-selectivity. Among them, antagonist 36 displayed potent and capsaicin-selective antagonism with IC50 = 2.31 nM for blocking capsaicin activation and only 47.5 % inhibition at 3 µM concentration toward proton activation, indicating that more than a 1000-fold higher concentration of 36 was required to inhibit proton activation than was required to inhibit capsaicin activation. The molecular modeling study of 36 with our homology model indicated that two π-π interactions with the Tyr511 and Phe591 residues by the A- and C-region and hydrogen bonding with the Thr550 residue by the B-region were critical for maintaining balanced and stable binding. Systemic optimization of antagonist 2, which has high-affinity but full antagonism for activators of all modes, led to the mode-selective antagonist 36 which represents a promising step in the development of clinical TRPV1 antagonists minimizing side effects such as hyperthermia and impaired heat sensation.
Collapse
Affiliation(s)
- Guocheng Huang
- Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Aeran Jung
- Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Li-Xuan Li
- Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Nayeon Do
- Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Sungwon Jung
- Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Yubum Jeon
- Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Dongxu Zuo
- Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Minh Thanh La
- Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Nguyen Van Manh
- Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Peter M Blumberg
- Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Hongryul Yoon
- College of Pharmacy, Chung-Ang University, Seoul 06974, South Korea
| | - Yoonji Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, South Korea
| | - Jihyae Ann
- Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University, Seoul 08826, South Korea.
| | - Jeewoo Lee
- Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|