1
|
Gaujac N, Sariali E, Grimal Q. Does the bone mineral density measured on a preoperative CT scan before total hip arthroplasty reflect the bone's mechanical properties? Orthop Traumatol Surg Res 2023; 109:103348. [PMID: 35688378 DOI: 10.1016/j.otsr.2022.103348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/07/2023]
Abstract
INTRODUCTION No method exists to quantify the bone quality and factors that will ensure osteointegration of total hip arthroplasty (THA) implants. A preoperative CT scan can be used to evaluate the bone mineral density (BMD) when planning a THA procedure. The aim of this study was to validate BMD measurement as a marker of bone quality based on a preoperative CT scan. HYPOTHESIS BMD reflects the bone's mechanical properties for the purposes of preoperative THA planning. METHODS Patients who underwent primary THA for hip osteoarthritis or dysplasia with cementless implants and 3D preoperative plan were enrolled prospectively. The cortical BMD was calculated on CT scans used in the preoperative planning process. During the surgical procedure, the femoral head and neck were collected. These bone samples were subsequently scanned with a calibrated micro-CT scanner. The BMD was derived from the micro-CT scan and used as input for a finite element model to determine the bone's mechanical properties. Correlations between BMD, apparent moduli of elasticity and porosity were calculated. RESULTS The values of cortical BMD measured on the micro-CT and CT scan were significantly correlated (cc=0.52). The mean angular cortical BMD measured with the micro-CT scan was 1472.33mg/cm3 (SD: 357.53mg/cm3, 980.64-2830.6mg/cm3). There was no significant correlation between cortical BMD and the various apparent moduli of elasticity, except for Eyy and Gzy. Cortical BMD and porosity were inversely correlated with a Spearman coefficient of -0.41 (CI95: [-0.71; -0.02], p=0.03). There was also an inverse correlation between the apparent moduli of elasticity (independent of their orientation) and porosity (p<0.01). DISCUSSION BMD provides information about porosity, which is a major factor when evaluating the bone's mechanical properties before THA. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- Nicolas Gaujac
- Department of Orthopaedic Surgery, Hôpital La Pitié Salpétrière, 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - Elhadi Sariali
- Department of Orthopaedic Surgery, Hôpital La Pitié Salpétrière, 47-83, boulevard de l'Hôpital, 75013 Paris, France.
| | - Quentin Grimal
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, LIB, 15, rue de l'Ecole de Médecine, 75006 Paris, France
| |
Collapse
|
2
|
von Kroge S, Stürznickel J, Bechler U, Stockhausen KE, Eissele J, Hubert J, Amling M, Beil FT, Busse B, Rolvien T. Impaired bone quality in the superolateral femoral neck occurs independent of hip geometry and bone mineral density. Acta Biomater 2022; 141:233-243. [PMID: 34999261 DOI: 10.1016/j.actbio.2022.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 11/01/2022]
Abstract
Skeletal adaptation is substantially influenced by mechanical loads. Osteocytes and their lacuno-canalicular network have been identified as a key player in load sensation and bone quality regulation. In the femoral neck, one of the most common fracture sites, a complex loading pattern with lower habitual loading in the superolateral neck and higher compressive stresses in the inferomedial neck is present. Variations in the femoral neck-shaft angle (NSA), i.e., coxa vara or coxa valga, provide the opportunity to examine the influence of loading patterns on bone quality. We obtained femoral neck specimens of 28 osteoarthritic human subjects with coxa vara, coxa norma and coxa valga during total hip arthroplasty. Bone mineral density (BMD) was assessed preoperatively by dual energy X-ray absorptiometry (DXA). Cortical and trabecular microstructure and three-dimensional osteocyte lacunar characteristics were assessed in the superolateral and inferomedial neck using ex vivo high resolution micro-computed tomography. Additionally, BMD distribution and osteocyte lacunar characteristics were analyzed by quantitative backscattered electron imaging (qBEI). All groups presented thicker inferomedial than superolateral cortices. Furthermore, the superolateral site exhibited a lower osteocyte lacunar density along with lower lacunar sphericity than the inferomedial site, independent of NSA. Importantly, BMD and corresponding T-scores correlated with microstructural parameters at the inferomedial but not superolateral neck. In conclusion, we provide micromorphological evidence for fracture vulnerability of the superolateral neck, which is independent of NSA and BMD. The presented bone qualitative data provide an explanation why DXA may be insufficient to predict a substantial proportion of femoral neck fractures. STATEMENT OF SIGNIFICANCE: The femoral neck, one of the most common fracture sites, is subject to a complex loading pattern. Site-specific differences (i.e., superolateral vs. inferomedial) in bone quality influence fracture risk, but it is unclear how this relates to hip geometry and bone mineral density (BMD) measurements in vivo. Here, we examine femoral neck specimens using a variety of high-resolution imaging techniques and demonstrate impaired bone quality in the superolateral compared to the inferomedial neck. Specifically, we found impaired cortical and trabecular microarchitecture, mineralization, and osteocyte properties, regardless of neck-shaft angle. Since BMD correlated with bone quality of the inferomedial but not the superolateral neck, our results illustrate why bone densitometry may not predict a substantial proportion of femoral neck fractures.
Collapse
|
3
|
Long EB, Barak MM, Frost VJ. The effect of Staphylococcus aureus exposure on white-tailed deer trabecular bone stiffness and yield. J Mech Behav Biomed Mater 2021; 126:105000. [PMID: 34894499 DOI: 10.1016/j.jmbbm.2021.105000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 11/08/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
With a growing number of osteomyelitis diagnoses, many of which are linked to Staphylococcus aureus (S. aureus), it is imperative to understand the pathology of S. aureus in relation to bone to provide better diagnostics and patient care. While the cellular mechanisms of S. aureus and osteomyelitis have been studied, little information exists on the biomechanical effects of such infections. The aim of this study was to determine the effect of S. aureus exposure on the stiffness and yield of trabecular bone tissue. S. aureus-ATCC-12600, a confirmed biofilm producer, along with one hundred and three trabecular cubes (5 × 5 × 5 mm) from the proximal tibiae of Odocoileus virginianus (white-tailed deer) were used in this experiment. Bone cubes were disinfected and then swabbed to confirm no residual living microbes or endospore contamination before inoculation with S. aureus (test group) or sterile nutrient broth (control group) for 72 h. All cubes were then tested in compression until yield using an Instron 5942 Single-Column machine. Structural stiffness (N/mm) and yield (MPa) were calculated and compared between the two groups. Our results revealed that acute exposure to S. aureus, within the context of our deer tibia model, does not significantly decrease trabecular bone stiffness or yield. The results of this study may be of value clinically when assessing fracture risks for osteomyelitis or other patients whose cultures test positive for S. aureus.
Collapse
Affiliation(s)
- Emily Brooke Long
- Department of Biology, Winthrop University, Rock Hill, SC, 29733, USA.
| | - Meir Max Barak
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, 11548, USA
| | | |
Collapse
|
4
|
Frank M, Reisinger AG, Pahr DH, Thurner PJ. Effects of Osteoporosis on Bone Morphometry and Material Properties of Individual Human Trabeculae in the Femoral Head. JBMR Plus 2021; 5:e10503. [PMID: 34189388 PMCID: PMC8216141 DOI: 10.1002/jbm4.10503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/30/2021] [Accepted: 04/10/2021] [Indexed: 12/02/2022] Open
Abstract
Osteoporosis is the most common bone disease and is conventionally classified as a decrease of total bone mass. Current diagnosis of osteoporosis is based on clinical risk factors and dual energy X‐ray absorptiometry (DEXA) scans, but changes in bone quantity (bone mass) and quality (trabecular structure, material properties, and tissue composition) are not distinguished. Yet, osteoporosis is known to cause a deterioration of the trabecular network, which might be related to changes at the tissue scale—the material properties. The goal of the current study was to use a previously established test method to perform a thorough characterization of the material properties of individual human trabeculae from femoral heads in cyclic tensile tests in a close to physiologic, wet environment. A previously developed rheological model was used to extract elastic, viscous, and plastic aspects of material behavior. Bone morphometry and tissue mineralization were determined with a density calibrated micro‐computed tomography (μCT) set‐up. Osteoporotic trabeculae neither showed a significantly changed material or mechanical behavior nor changes in tissue mineralization, compared with age‐matched healthy controls. However, donors with osteopenia indicated significantly reduced apparent yield strain and elastic work with respect to osteoporosis, suggesting possible initial differences at disease onset. Bone morphometry indicated a lower bone volume to total volume for osteoporotic donors, caused by a smaller trabecular number and a larger trabecular separation. A correlation of age with tissue properties and bone morphometry revealed a similar behavior as in osteoporotic bone. In the range studied, age does affect morphometry but not material properties, except for moderately increased tissue strength in healthy donors and moderately increased hardening exponent in osteoporotic donors. Taken together, the distinct changes of trabecular bone quality in the femoral head caused by osteoporosis and aging could not be linked to suspected relevant changes in material properties or tissue mineralization. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Martin Frank
- Institute of Lightweight Design and Structural Biomechanics TU Wien Gumpendorfer Straße 7 Vienna 1060 Austria
| | - Andreas G Reisinger
- Department of Anatomy and Biomechanics, Division Biomechanics Karl Landsteiner University of Health Sciences Dr. Karl-Dorrek-Straße 30 Krems 3500 Austria
| | - Dieter H Pahr
- Institute of Lightweight Design and Structural Biomechanics TU Wien Gumpendorfer Straße 7 Vienna 1060 Austria.,Department of Anatomy and Biomechanics, Division Biomechanics Karl Landsteiner University of Health Sciences Dr. Karl-Dorrek-Straße 30 Krems 3500 Austria
| | - Philipp J Thurner
- Institute of Lightweight Design and Structural Biomechanics TU Wien Gumpendorfer Straße 7 Vienna 1060 Austria
| |
Collapse
|
5
|
Weiner S, Raguin E, Shahar R. High resolution 3D structures of mineralized tissues in health and disease. Nat Rev Endocrinol 2021; 17:307-316. [PMID: 33758360 DOI: 10.1038/s41574-021-00479-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/11/2021] [Indexed: 02/06/2023]
Abstract
A thorough knowledge of the structures of healthy mineralized tissues, such as bone or cartilage, is key to understanding the pathological changes occurring during disease. Such knowledge enables the underlying mechanisms that are responsible for pathology to be pinpointed. One high-resolution 3D method in particular - focused ion beam-scanning electron microscopy (FIB-SEM) - has fundamentally changed our understanding of healthy vertebrate mineralized tissues. FIB-SEM can be used to study demineralized matrix, the hydrated components of tissue (including cells) using cryo-fixation and even untreated mineralized tissue. The latter requires minimal sample preparation, making it possible to study enough samples to carry out studies capable of detecting statistically significant differences - a pre-requisite for the study of pathological tissues. Here, we present an imaging and characterization strategy for tissue structures at different length scales, describe new insights obtained on healthy mineralized tissues using FIB-SEM, and suggest future research directions for both healthy and diseased mineralized tissues.
Collapse
Affiliation(s)
- Steve Weiner
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Emeline Raguin
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Shahar
- Koret School of Veterinary Medicine, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
6
|
Gauthier R, Follet H, Langer M, Gineyts E, Rongiéras F, Peyrin F, Mitton D. Relationships between human cortical bone toughness and collagen cross-links on paired anatomical locations. Bone 2018; 112:202-211. [PMID: 29730278 DOI: 10.1016/j.bone.2018.04.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 01/22/2023]
Abstract
Human cortical bone fracture processes depend on the internal porosity network down to the lacunar length scale. Recent results show that at the collagen scale, the maturation of collagen cross-links may have a negative influence on bone mechanical behavior. While the effect of pentosidine on human cortical bone toughness has been studied, the influence of mature and immature enzymatic cross-links has only been studied in relation to strength and work of fracture. Moreover, these relationships have not been studied on different paired anatomical locations. Thus, the aim of the current study was to assess the relationships between both enzymatic and non-enzymatic collagen cross-links and human cortical bone toughness, on four human paired anatomical locations. Single Edge Notched Bending toughness tests were performed for two loading conditions: a quasi-static standard condition, and a condition representative of a fall. These tests were done with 32 paired femoral diaphyses, femoral necks and radial diaphyses (18 women, age 81 ± 12 y.o.; 14 men, age 79 ± 8 y.o.). Collagen enzymatic and non-enzymatic crosslinks were measured on the same bones. Maturation of collagen was defined as the ratio between immature and mature cross-links (CX). The results show that there was a significant correlation between collagen cross-link maturation and bone toughness when gathering femoral and radial diaphyses, but not when considering each anatomical location individually. These results show that the influence of collagen enzymatic and non-enzymatic cross-links is minor when considering human cortical bone crack propagation mechanisms.
Collapse
Affiliation(s)
- Rémy Gauthier
- Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR_T9406, F69622 Lyon, France; Univ Lyon, CNRS UMR 5220, Inserm U1206, INSA Lyon, Université Claude Bernard Lyon 1, Creatis, F69621 Villeurbanne Cedex, France
| | - Hélène Follet
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM, LYOS UMR1033, F69008 Lyon, France
| | - Max Langer
- Univ Lyon, CNRS UMR 5220, Inserm U1206, INSA Lyon, Université Claude Bernard Lyon 1, Creatis, F69621 Villeurbanne Cedex, France
| | - Evelyne Gineyts
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM, LYOS UMR1033, F69008 Lyon, France
| | - Frédéric Rongiéras
- Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR_T9406, F69622 Lyon, France; Service Chirurgie Orthopédique et Traumatologie, Hôpital Desgenettes, 69003 Lyon, France
| | - Françoise Peyrin
- Univ Lyon, CNRS UMR 5220, Inserm U1206, INSA Lyon, Université Claude Bernard Lyon 1, Creatis, F69621 Villeurbanne Cedex, France
| | - David Mitton
- Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR_T9406, F69622 Lyon, France.
| |
Collapse
|
7
|
Sharma D, Larriera AI, Palacio-Mancheno PE, Gatti V, Fritton JC, Bromage TG, Cardoso L, Doty SB, Fritton SP. The effects of estrogen deficiency on cortical bone microporosity and mineralization. Bone 2018; 110:1-10. [PMID: 29357314 PMCID: PMC6377161 DOI: 10.1016/j.bone.2018.01.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 01/09/2018] [Accepted: 01/15/2018] [Indexed: 12/22/2022]
Abstract
Recent studies have demonstrated matrix-mineral alterations in bone tissue surrounding osteocytes in estrogen-deficient animals. While cortical bone porosity has been shown to be a contributor to the mechanical properties of bone tissue, little analysis has been done to investigate the effects of estrogen deficiency on bone's microporosities, including the vascular and osteocyte lacunar porosities. In this study we examined alterations in cortical bone microporosity, mineralization, and cancellous bone architecture due to estrogen deficiency in the ovariectomized rat model of postmenopausal osteoporosis. Twenty-week-old female Sprague-Dawley rats were subjected to either ovariectomy or sham surgery. Six weeks post-surgery tibiae were analyzed using high-resolution micro-CT, backscattered electron imaging, nanoindentation, and dynamic histomorphometry. Estrogen deficiency caused an increase in cortical bone vascular porosity, with enlarged vascular pores and little change in tissue mineral density in the proximal tibial metaphysis. Measurements of cancellous architecture corresponded to previous studies reporting a decrease in bone volume fraction, an increase in trabecular separation, and a decrease in trabecular number in the proximal tibia due to estrogen deficiency. Nanoindentation results showed no differences in matrix stiffness in osteocyte-rich areas of the proximal tibia of estrogen-deficient rats, and bone labeling and backscattered electron imaging showed no significant changes in mineralization around the vascular pores. The findings demonstrate local surface alterations of vascular pores due to estrogen deficiency. An increase in cortical vascular porosity may diminish bone strength as well as alter bone mechanotransduction via interstitial fluid flow, both of which could contribute to bone fragility during postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Divya Sharma
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031, United States
| | - Adriana I Larriera
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031, United States
| | - Paolo E Palacio-Mancheno
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031, United States
| | - Vittorio Gatti
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031, United States
| | - J Christopher Fritton
- Department of Orthopaedics, New Jersey Medical School, Rutgers University, Newark, NJ 07103, United States
| | - Timothy G Bromage
- Department of Biomaterials, New York University College of Dentistry, New York, NY 10010, United States
| | - Luis Cardoso
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031, United States
| | - Stephen B Doty
- Research Division, Hospital for Special Surgery, New York, NY 10021, United States
| | - Susannah P Fritton
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031, United States.
| |
Collapse
|
8
|
Pellikaan P, Giarmatzis G, Vander Sloten J, Verschueren S, Jonkers I. Ranking of osteogenic potential of physical exercises in postmenopausal women based on femoral neck strains. PLoS One 2018; 13:e0195463. [PMID: 29617448 PMCID: PMC5884624 DOI: 10.1371/journal.pone.0195463] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/22/2018] [Indexed: 01/03/2023] Open
Abstract
The current study aimed to assess the potential of different exercises triggering an osteogenic response at the femoral neck in a group of postmenopausal women. The osteogenic potential was determined by ranking the peak hip contact forces (HCFs) and consequent peak tensile and compressive strains at the superior and inferior part of the femoral neck during activities such as (fast) walking, running and resistance training exercises. Results indicate that fast walking (5-6 km/h) running and hopping induced significantly higher strains at the femoral neck than walking at 4 km/h which is considered a baseline exercise for bone preservation. Exercises with a high fracture risk such as hopping, need to be considered carefully especially in a frail elderly population and may therefore not be suitable as a training exercise. Since superior femoral neck frailness is related to elevated hip fracture risk, exercises such as fast walking (above 5 km/h) and running can be highly recommended to stimulate this particular area. Our results suggest that a training program including fast walking (above 5 km/h) and running exercises may increase or preserve the bone mineral density (BMD) at the femoral neck.
Collapse
Affiliation(s)
- Pim Pellikaan
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
- * E-mail:
| | - Georgios Giarmatzis
- Research Group for Musculoskeletal Rehabilitation, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Jos Vander Sloten
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Sabine Verschueren
- Research Group for Musculoskeletal Rehabilitation, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Ilse Jonkers
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Wu Y, Zhou L, Bergot C, Peyrin F, Bousson V. Cortical Bone Mineralization in the Human Femoral Neck in Cases and Controls from Synchrotron Radiation Study. Cell Biochem Biophys 2017; 73:51-7. [PMID: 25663507 DOI: 10.1007/s12013-015-0572-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To compare the degree and distribution of mineralization in femoral neck cortex from 23 women with hip fractures (age 65-96 years) and 17 female controls (age 72-103 years), we obtained 3D data by synchrotron radiation microtomography (SRμCT). Variables were degree of mineralization of bone (DMB) in total cortex (cDMBSRMEAN), osteons (oDMBSRMEAN), and pure interstitial tissue (intDMBSRMEAN). The cortex on SRμCT images was divided into nine to twelve 50-μm zones from the periosteum to the endosteum; cDMBSRMEAN, oDMBSRMEAN, and intDMBSRMEAN were measured in each zone. We used descriptive statistics and t tests, general linear model analyses to compare DMBSR values across zones and individuals, one-way analysis of variance for within-group comparisons of zones. In patients, the variance of mineral content value was not different than in controls, but mean values of degree of mineralization varied across zones. These cross-sectional data suggest that bone fragility may be related to a greater heterogeneity of the distribution of mineralization in femoral neck cortex.
Collapse
Affiliation(s)
- Yan Wu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jian She Road, Zhengzhou, 450052, Henan, China. .,Laboratoire de Radiologie Expérimentale, Faculté de Médecine Lariboisière-Saint Louis, Université Paris VII, CNRS UMR 7052, 10 avenue de Verdun, 75010, Paris, France.
| | - Liangqiang Zhou
- Laboratoire de Radiologie Expérimentale, Faculté de Médecine Lariboisière-Saint Louis, Université Paris VII, CNRS UMR 7052, 10 avenue de Verdun, 75010, Paris, France.,Department of Medical Engineering, Inner Mongolia People's Hospital, Hohhot, 010017, China
| | - Catherine Bergot
- Laboratoire de Radiologie Expérimentale, Faculté de Médecine Lariboisière-Saint Louis, Université Paris VII, CNRS UMR 7052, 10 avenue de Verdun, 75010, Paris, France
| | | | - Valérie Bousson
- Laboratoire de Radiologie Expérimentale, Faculté de Médecine Lariboisière-Saint Louis, Université Paris VII, CNRS UMR 7052, 10 avenue de Verdun, 75010, Paris, France
| |
Collapse
|
10
|
Role of cortical bone in hip fracture. BONEKEY REPORTS 2017; 6:867. [PMID: 28277562 DOI: 10.1038/bonekey.2016.82] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/03/2016] [Indexed: 12/23/2022]
Abstract
In this review, I consider the varied mechanisms in cortical bone that help preserve its integrity and how they deteriorate with aging. Aging affects cortical bone in two ways: extrinsically through its effects on the individual that modify its mechanical loading experience and 'milieu interieur'; and intrinsically through the prolonged cycle of remodelling and renewal extending to an estimated 20 years in the proximal femur. Healthy femoral cortex incorporates multiple mechanisms that help prevent fracture. These have been described at multiple length scales from the individual bone mineral crystal to the scale of the femur itself and appear to operate hierarchically. Each cortical bone fracture begins as a sub-microscopic crack that enlarges under mechanical load, for example, that imposed by a fall. In these conditions, a crack will enlarge explosively unless the cortical bone is intrinsically tough (the opposite of brittle). Toughness leads to microscopic crack deflection and bridging and may be increased by adequate regulation of both mineral crystal size and the heterogeneity of mineral and matrix phases. The role of osteocytes in optimising toughness is beginning to be worked out; but many osteocytes die in situ without triggering bone renewal over a 20-year cycle, with potential for increasing brittleness. Furthermore, the superolateral cortex of the proximal femur thins progressively during life, so increasing the risk of buckling during a fall. Besides preserving or increasing hip BMD, pharmaceutical treatments have class-specific effects on the toughness of cortical bone, although dietary and exercise-based interventions show early promise.
Collapse
|
11
|
Abstract
Tissue-level mechanical properties characterize mechanical behavior independently of microscopic porosity. Specifically, quasi-static nanoindentation provides measurements of modulus (stiffness) and hardness (resistance to yielding) of tissue at the length scale of the lamella, while dynamic nanoindentation assesses time-dependent behavior in the form of storage modulus (stiffness), loss modulus (dampening), and loss factor (ratio of the two). While these properties are useful in establishing how a gene, signaling pathway, or disease of interest affects bone tissue, they generally do not vary with aging after skeletal maturation or with osteoporosis. Heterogeneity in tissue-level mechanical properties or in compositional properties may contribute to fracture risk, but a consensus on whether the contribution is negative or positive has not emerged. In vivo indentation of bone tissue is now possible, and the mechanical resistance to microindentation has the potential for improving fracture risk assessment, though determinants are currently unknown.
Collapse
Affiliation(s)
- Jeffry S Nyman
- Department of Orthopaedic Surgery and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. S., South Tower, Suite 4200, Nashville, TN, 37232, USA.
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA.
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA.
| | - Mathilde Granke
- Department of Orthopaedic Surgery and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. S., South Tower, Suite 4200, Nashville, TN, 37232, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Robert C Singleton
- Materials Science and Engineering Department, University of Tennessee, Knoxville, TN, 37996, USA
| | - George M Pharr
- Materials Science and Engineering Department, University of Tennessee, Knoxville, TN, 37996, USA
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
12
|
Nauleau P, Minonzio JG, Chekroun M, Cassereau D, Laugier P, Prada C, Grimal Q. A method for the measurement of dispersion curves of circumferential guided waves radiating from curved shells: experimental validation and application to a femoral neck mimicking phantom. Phys Med Biol 2016; 61:4746-62. [PMID: 27272197 DOI: 10.1088/0031-9155/61/13/4746] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Our long-term goal is to develop an ultrasonic method to characterize the thickness, stiffness and porosity of the cortical shell of the femoral neck, which could enhance hip fracture risk prediction. To this purpose, we proposed to adapt a technique based on the measurement of guided waves. We previously evidenced the feasibility of measuring circumferential guided waves in a bone-mimicking phantom of a circular cross-section of even thickness. The goal of this study is to investigate the impact of the complex geometry of the femoral neck on the measurement of guided waves. Two phantoms of an elliptical cross-section and one phantom of a realistic cross-section were investigated. A 128-element array was used to record the inter-element response matrix of these waveguides. This experiment was simulated using a custom-made hybrid code. The response matrices were analyzed using a technique based on the physics of wave propagation. This method yields portions of dispersion curves of the waveguides which were compared to reference dispersion curves. For the elliptical phantoms, three portions of dispersion curves were determined with a good agreement between experiment, simulation and theory. The method was thus validated. The characteristic dimensions of the shell were found to influence the identification of the circumferential wave signals. The method was then applied to the signals backscattered by the superior half of constant thickness of the realistic phantom. A cut-off frequency and some portions of modes were measured, with a good agreement with the theoretical curves of a plate waveguide. We also observed that the method cannot be applied directly to the signals backscattered by the lower half of varying thicknesses of the phantom. The proposed approach could then be considered to evaluate the properties of the superior part of the femoral neck, which is known to be a clinically relevant site.
Collapse
Affiliation(s)
- Pierre Nauleau
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7371, INSERM UMR_S 1146, Laboratoire d'imagerie biomédicale, 15 rue de l'école de médecine, F-75006, Paris, France
| | | | | | | | | | | | | |
Collapse
|
13
|
Osterhoff G, Morgan EF, Shefelbine SJ, Karim L, McNamara LM, Augat P. Bone mechanical properties and changes with osteoporosis. Injury 2016; 47 Suppl 2:S11-20. [PMID: 27338221 PMCID: PMC4955555 DOI: 10.1016/s0020-1383(16)47003-8] [Citation(s) in RCA: 306] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This review will define the role of collagen and within-bone heterogeneity and elaborate the importance of trabecular and cortical architecture with regard to their effect on the mechanical strength of bone. For each of these factors, the changes seen with osteoporosis and ageing will be described and how they can compromise strength and eventually lead to bone fragility.
Collapse
Affiliation(s)
- Georg Osterhoff
- Division of Orthopaedic Trauma, Department of Orthopaedic Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Elise F. Morgan
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
| | - Sandra J. Shefelbine
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - Lamya Karim
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Department of Orthopedic Surgery, Harvard Medical School, Boston, MA 02215, USA
| | - Laoise M. McNamara
- Centre for Biomechanics Research (BMEC), Department of Biomedical Engineering, NUI Galway, Galway, Republic of Ireland,National Centre for Biomedical Engineering Science (NCBES), NUI Galway, Galway, Republic of Ireland
| | - Peter Augat
- Institute of Biomechanics, Trauma Center Murnau, Murnau, Germany and Paracelsus Medical University Salzburg, Salzburg, Austria,Corresponding author at: Institute of Biomechanics, Berufsgenossenschaftliche Unfallklinik, Murnau Prof.-Kuentscher-Str. 8, D-82418 Murnau am Staffelsee, Germany. Tel.: +49 8841 484563; fax: +49 8841 484573. (P. Augat)
| |
Collapse
|
14
|
Koletsi D, Eliades T, Zinelis S, Bourauel C, Eliades G. Disease and functional loading effect on the structural conformation and mechanical properties of the mandibular condyle in a transgenic rheumatoid arthritis murine model: an experimental study. Eur J Orthod 2016; 38:615-620. [PMID: 26888831 DOI: 10.1093/ejo/cjw010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
AIM The aim of the present study was to investigate the effect of rheumatoid arthritis (RA) and functional loading through diet modification on the structural conformation and the mechanical properties of the mandibular condyle in a transgenic mouse model and compare to healthy littermates. MATERIALS AND METHODS Four-week-old hybrid male mice from mixed background CBAxC57BL/6 were used. Four groups of animals were formed consisting of five animals each, either presenting RA (transgenic line hTNF 197), or wild-type (control), half receiving ordinary (hard) diet and half receiving soft diet within each category. Following sacrifice, resin-embedded and metallographically polished condylar specimens were evaluated employing scanning electron microscopy/ Energy dispersive x-ray spectroscopy and also tested for mechanical properties, through Vickers microhardness (HV100) measurements. RESULTS The multivariable analysis revealed significantly lower HV100 values for the RA groups after adjusting for diet (β = -10; 95% confidence interval: -16, -4; P = 0.001), while functional loading through diet modification did not appear as a significant predictor of the outcome. CONCLUSIONS There was evidence of compromised mechanical properties of the mandibular condylar bone for the diseased animals, whereas no association between functional loading and mechanical properties of the condyle could be established.
Collapse
Affiliation(s)
- Despina Koletsi
- Department of Oral Technology, School of Dentistry, University of Bonn, Germany, Departments of.,Orthodontics and.,Dental Biomaterials, School of Dentistry, University of Athens, Greece, and
| | - Theodore Eliades
- Clinic of Orthodontics and Paediatric Dentistry, Center of Dental Medicine, University of Zurich, Switzerland
| | - Spiros Zinelis
- Dental Biomaterials, School of Dentistry, University of Athens, Greece, and
| | - Christoph Bourauel
- Department of Oral Technology, School of Dentistry, University of Bonn, Germany, Departments of
| | - George Eliades
- Dental Biomaterials, School of Dentistry, University of Athens, Greece, and
| |
Collapse
|
15
|
Wang J, Kazakia GJ, Zhou B, Shi XT, Guo XE. Distinct Tissue Mineral Density in Plate- and Rod-like Trabeculae of Human Trabecular Bone. J Bone Miner Res 2015; 30:1641-50. [PMID: 25736715 PMCID: PMC4540699 DOI: 10.1002/jbmr.2498] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 02/27/2015] [Accepted: 02/28/2015] [Indexed: 11/09/2022]
Abstract
Trabecular bone quality includes both microstructural and intrinsic tissue mineralization properties. However, the tissue mineralization in individual trabeculae of different trabecular types and orientations has not yet been investigated. The aim of this study was to develop an individual trabecula mineralization (ITM) analysis technique to determine tissue mineral density (TMD) distributions in plate- and rod-like trabeculae, respectively, and to compare the TMD of trabeculae along various orientations in micro-computed tomography (μCT) images of trabecular bone samples from the femoral neck, greater trochanter, and proximal tibia. ITM analyses indicated that trabecular plates, on average, had significantly higher TMD than trabecular rods. In addition, the distribution of TMD in trabecular plates depended on trabecular orientation with the lowest TMD in longitudinal plates and the highest TMD in transverse plates. Conversely, there was a relatively uniform distribution of TMD among trabecular rods, with respect to trabecular orientation. Further analyses of TMD distribution revealed that trabecular plates had higher mean and peak TMD, whereas trabecular rods had a wider TMD distribution and a larger portion of low mineralized trabeculae. Comparison of apparent Young's moduli derived from micro-finite element models with and without heterogeneous TMD demonstrated that heterogeneous TMD in trabecular plates had a significant influence on the elastic mechanical property of trabecular bone. In conclusion, this study revealed differences in TMD between plate- and rod-like trabeculae and among various trabecular orientations. The observation of less mineralized longitudinal trabecular plates suggests interesting implications of these load-bearing plates in bone remodeling. The newly developed ITM analysis can be a valuable technique to assess the influence of metabolic bone diseases and their pharmaceutical treatments on not only microstructure of trabecular bone but also the microarchitectural heterogeneity of tissue mineralization.
Collapse
Affiliation(s)
- Ji Wang
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York, U.S.A
| | - Galateia J. Kazakia
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Bin Zhou
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York, U.S.A
| | - X. Tony Shi
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York, U.S.A
| | - X. Edward Guo
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York, U.S.A
| |
Collapse
|
16
|
Buckley K, Kerns JG, Vinton J, Gikas PD, Smith C, Parker AW, Matousek P, Goodship AE. Towards the in vivo prediction of fragility fractures with Raman spectroscopy. JOURNAL OF RAMAN SPECTROSCOPY : JRS 2015; 46:610-618. [PMID: 27546955 PMCID: PMC4976623 DOI: 10.1002/jrs.4706] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/20/2015] [Accepted: 03/24/2015] [Indexed: 05/05/2023]
Abstract
Fragility fractures, those fractures which result from low level trauma, have a large and growing socio-economic cost in countries with aging populations. Bone-density-based assessment techniques are vital for identifying populations that are at higher risk of fracture, but do not have high sensitivity when it comes to identifying individuals who will go on to have their first fragility fracture. We are developing Spatially Offset Raman Spectroscopy (SORS) as a tool for retrieving chemical information from bone non-invasively in vivo. Unlike X-ray-based techniques SORS can retrieve chemical information from both the mineral and protein phases of the bone. This may enable better discrimination between those who will or will not go on to have a fragility fracture because both phases contribute to bone's mechanical properties. In this study we analyse excised bone with Raman spectroscopy and multivariate analysis, and then attempt to look for similar Raman signals in vivo using SORS. We show in the excised work that on average, bone fragments from the necks of fractured femora are more mineralised (by 5-10%) than (cadaveric) non-fractured controls, but the mineralisation distributions of the two cohorts are largely overlapped. In our in vivo measurements, we observe similar, but as yet statistically underpowered, differences. After the SORS data (the first SORS measurements reported of healthy and diseased human cohorts), we identify methodological developments which will be used to improve the statistical significance of future experiments and may eventually lead to more sensitive prediction of fragility fractures. © 2015 The Authors. Journal of Raman Spectroscopy Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kevin Buckley
- Central Laser Facility, Research Complex at HarwellSTFC Rutherford Appleton LaboratoryHarwell OxfordOX11 0FAUK
- UCL Institute of Orthopaedics and Musculoskeletal ScienceLondonHA7 4LPUK
- Royal National Orthopaedic HospitalStanmoreHA7 4LPUK
| | - Jemma G. Kerns
- UCL Institute of Orthopaedics and Musculoskeletal ScienceLondonHA7 4LPUK
- Royal National Orthopaedic HospitalStanmoreHA7 4LPUK
| | | | - Panagiotis D. Gikas
- UCL Institute of Orthopaedics and Musculoskeletal ScienceLondonHA7 4LPUK
- Royal National Orthopaedic HospitalStanmoreHA7 4LPUK
| | - Christian Smith
- UCL Institute of Orthopaedics and Musculoskeletal ScienceLondonHA7 4LPUK
| | - Anthony W. Parker
- Central Laser Facility, Research Complex at HarwellSTFC Rutherford Appleton LaboratoryHarwell OxfordOX11 0FAUK
- UCL Institute of Orthopaedics and Musculoskeletal ScienceLondonHA7 4LPUK
- Royal National Orthopaedic HospitalStanmoreHA7 4LPUK
| | - Pavel Matousek
- Central Laser Facility, Research Complex at HarwellSTFC Rutherford Appleton LaboratoryHarwell OxfordOX11 0FAUK
- UCL Institute of Orthopaedics and Musculoskeletal ScienceLondonHA7 4LPUK
- Royal National Orthopaedic HospitalStanmoreHA7 4LPUK
| | - Allen E. Goodship
- UCL Institute of Orthopaedics and Musculoskeletal ScienceLondonHA7 4LPUK
| |
Collapse
|
17
|
PEELUKHANA SV, GOENKA S, KIM B, KIM J, BHATTACHARYA A, STRINGER KF, BANERJEE RK. Effect of higher frequency components and duration of vibration on bone tissue alterations in the rat-tail model. INDUSTRIAL HEALTH 2015; 53:245-259. [PMID: 25843564 PMCID: PMC4466877 DOI: 10.2486/indhealth.2014-0117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 01/29/2015] [Indexed: 06/04/2023]
Abstract
To formulate more accurate guidelines for musculoskeletal disorders (MSD) linked to Hand-Arm Vibration Syndrome (HAVS), delineation of the response of bone tissue under different frequencies and duration of vibration needs elucidation. Rat-tails were vibrated at 125 Hz (9 rats) and 250 Hz (9 rats), at 49 m/s(2), for 1D (6 rats), 5D (6 rats) and 20D (6 rats); D=days (4 h/d). Rats in the control group (6 rats for the vibration groups; 2 each for 1D, 5D, and 20D) were left in their cages, without being subjected to any vibration. Structural and biochemical damages were quantified using empty lacunae count and nitrotyrosine signal-intensity, respectively. One-way repeated-measure mixed-model ANOVA at p<0.05 level of significance was used for analysis. In the cortical bone, structural damage quantified through empty lacunae count was significant (p<0.05) at 250 Hz (10.82 ± 0.66) in comparison to the control group (7.41 ± 0.76). The biochemical damage was significant (p<0.05) at both the 125 Hz and 250 Hz vibration frequencies. The structural damage was significant (p<0.05) at 5D for cortical bone while the trabecular bone showed significant (p<0.05) damage at 20D time point. Further, the biochemical damage increased with increase in the duration of vibration with a significant (p<0.05) damage observed at 20D time point and a near significant change (p=0.08) observed at 5D time point. Structural and biochemical changes in bone tissue are dependent upon higher vibration frequencies of 125 Hz, 250 Hz and the duration of vibration (5D, 20D).
Collapse
Affiliation(s)
| | - Shilpi GOENKA
- Department of Mechanical and Materials Engineering,
University of Cincinnati, USA
| | - Brian KIM
- Department of Mechanical and Materials Engineering,
University of Cincinnati, USA
| | - Jay KIM
- Department of Mechanical and Materials Engineering,
University of Cincinnati, USA
| | | | - Keith F. STRINGER
- Department of Pathology, Cincinnati Children’s Hospital
Medical Centre, USA
| | - Rupak K. BANERJEE
- Department of Mechanical and Materials Engineering,
University of Cincinnati, USA
| |
Collapse
|
18
|
Tong XY, Malo M, Tamminen IS, Isaksson H, Jurvelin JS, Kröger H. Development of new criteria for cortical bone histomorphometry in femoral neck: intra- and inter-observer reproducibility. J Bone Miner Metab 2015; 33:109-18. [PMID: 24570270 DOI: 10.1007/s00774-014-0562-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 12/24/2013] [Indexed: 10/25/2022]
Abstract
Histomorphometry is commonly applied to study bone remodeling. Histological definitions of cortical bone boundaries have not been consistent. In this study, new criteria for specific definition of the transitional zone between the cortical and cancellous bone in the femoral neck were developed. The intra- and inter-observer reproducibility of this method was determined by quantitative histomorphometry and areal overlapping analysis. The undecalcified histological sections of femoral neck specimens (n = 6; from men aged 17-59 years) were processed and scanned to acquire histological images of complete bone sections. Specific criteria were applied to define histological boundaries. "Absolute cortex area" consisted of pure cortical bone tissue only, and was defined mainly based on the size of composite canals and their distance to an additional "guide" boundary (so-called "preliminary cortex boundary," the clear demarcation line of density between compact cortex and sparse trabeculae). Endocortical bone area was defined by recognizing characteristic endocortical structures adjacent to the preliminary cortical boundary. The present results suggested moderate to high reproducibility for low-magnification parameters (e.g., cortical bone area). The coefficient of variation (CV %) ranged from 0.02 to 5.61 in the intra-observer study and from 0.09 to 16.41 in the inter-observer study. However, the intra-observer reproducibility of some high-magnification parameters (e.g., osteoid perimeter/endocortical perimeter) was lower (CV %, 0.33-87.9). The overlapping of three histological areas in repeated analyses revealed highest intra- and inter-observer reproducibility for the absolute cortex area. This study provides specific criteria for the definition of histological boundaries for femoral neck bone specimens, which may aid more precise cortical bone histomorphometry.
Collapse
Affiliation(s)
- Xiao-Yu Tong
- Bone and Cartilage Research Unit (BCRU), Institute of Clinical Medicine, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland,
| | | | | | | | | | | |
Collapse
|
19
|
Misof BM, Dempster DW, Zhou H, Roschger P, Fratzl-Zelman N, Fratzl P, Silverberg SJ, Shane E, Cohen A, Stein E, Nickolas TL, Recker RR, Lappe J, Bilezikian JP, Klaushofer K. Relationship of bone mineralization density distribution (BMDD) in cortical and cancellous bone within the iliac crest of healthy premenopausal women. Calcif Tissue Int 2014; 95:332-9. [PMID: 25134800 PMCID: PMC4464772 DOI: 10.1007/s00223-014-9901-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 07/18/2014] [Indexed: 02/04/2023]
Abstract
Bone mineralization density distribution (BMDD) is an important determinant of bone mechanical properties. The most available skeletal site for access to the BMDD is the iliac crest. Compared to cancellous bone much less information on BMDD is available for cortical bone. Hence, we analyzed complete transiliac crest bone biopsy samples from premenopausal women (n = 73) aged 25-48 years, clinically classified as healthy, by quantitative backscattered electron imaging for cortical (Ct.) and cancellous (Cn.) BMDD. The Ct.BMDD was characterized by the arithmetic mean of the BMDD of the cortical plates. We found correlations between Ct. and Cn. BMDD variables with correlation coefficients r between 0.42 and 0.73 (all p < 0.001). Additionally to this synchronous behavior of cortical and cancellous compartments, we found that the heterogeneity of mineralization densities (Ct.Ca(Width)), as well as the cortical porosity (Ct.Po) was larger for a lower average degree of mineralization (Ct.Ca(Mean)). Moreover, Ct.Po correlated negatively with the percentage of highly mineralized bone areas (Ct.Ca(High)) and positively with the percentage of lowly mineralized bone areas (Ct.Ca(Low)). In conclusion, the correlation of cortical with cancellous BMDD in the iliac crest of the study cohort suggests coordinated regulation of bone turnover between both bone compartments. Only in a few cases, there was a difference in the degree of mineralization of >1wt % between both cortices suggesting a possible modeling situation. This normative dataset of healthy premenopausal women will provide a reference standard by which disease- and treatment-specific effects can be assessed at the level of cortical bone BMDD.
Collapse
Affiliation(s)
- B. M. Misof
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, First Medical Department, Hanusch Hospital, Heinrich Collin-Str. 30, 1140 Vienna, Austria
| | - D. W. Dempster
- Regional Bone Center, Helen Hayes Hospital, West Haverstraw, New York, NY, USA
- College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Hua Zhou
- Regional Bone Center, Helen Hayes Hospital, West Haverstraw, New York, NY, USA
| | - P. Roschger
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, First Medical Department, Hanusch Hospital, Heinrich Collin-Str. 30, 1140 Vienna, Austria
| | - N. Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, First Medical Department, Hanusch Hospital, Heinrich Collin-Str. 30, 1140 Vienna, Austria
| | - P. Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - S. J. Silverberg
- Department of Medicine and Pathology, Columbia University, New York, NY, USA
| | - E. Shane
- Department of Medicine and Pathology, Columbia University, New York, NY, USA
| | - A. Cohen
- Department of Medicine and Pathology, Columbia University, New York, NY, USA
| | - E. Stein
- Department of Medicine and Pathology, Columbia University, New York, NY, USA
| | - T. L. Nickolas
- Department of Medicine and Pathology, Columbia University, New York, NY, USA
| | - R. R. Recker
- Creighton University Osteoporosis Research Center, Omaha, NE, USA
| | - J. Lappe
- Creighton University Osteoporosis Research Center, Omaha, NE, USA
| | - J. P. Bilezikian
- Department of Medicine and Pathology, Columbia University, New York, NY, USA
| | - K. Klaushofer
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, First Medical Department, Hanusch Hospital, Heinrich Collin-Str. 30, 1140 Vienna, Austria
| |
Collapse
|
20
|
Abstract
Bone fragility is a major health concern, as the increased risk of bone fractures has devastating outcomes in terms of mortality, decreased autonomy, and healthcare costs. Efforts made to address this problem have considerably increased our knowledge about the mechanisms that regulate bone formation and resorption. In particular, we now have a much better understanding of the cellular events that are triggered when bones are mechanically stimulated and how these events can lead to improvements in bone mass. Despite these findings at the molecular level, most exercise intervention studies reveal either no effects or only minor benefits of exercise programs in improving bone mineral density (BMD) in osteoporotic patients. Nevertheless, and despite that BMD is the gold standard for diagnosing osteoporosis, this measure is only able to provide insights regarding the quantity of bone tissue. In this article, we review the complex structure of bone tissue and highlight the concept that its mechanical strength stems from the interaction of several different features. We revisited the available data showing that bone mineralization degree, hydroxyapatite crystal size and heterogeneity, collagen properties, osteocyte density, trabecular and cortical microarchitecture, as well as whole bone geometry, are determinants of bone strength and that each one of these properties may independently contribute to the increased or decreased risk of fracture, even without meaningful changes in aBMD. Based on these findings, we emphasize that while osteoporosis (almost) always causes bone fragility, bone fragility is not always caused just by osteoporosis, as other important variables also play a major role in this etiology. Furthermore, the results of several studies showing compelling data that physical exercise has the potential to improve bone quality and to decrease fracture risk by influencing each one of these determinants are also reviewed. These findings have meaningful clinical repercussions as they emphasize the fact that, even without leading to improvements in BMD, exercise interventions in patients with osteoporosis may be beneficial by improving other determinants of bone strength.
Collapse
|
21
|
Reeve J, Loveridge N. The fragile elderly hip: mechanisms associated with age-related loss of strength and toughness. Bone 2014; 61:138-48. [PMID: 24412288 PMCID: PMC3991856 DOI: 10.1016/j.bone.2013.12.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/24/2013] [Accepted: 12/31/2013] [Indexed: 01/23/2023]
Abstract
Every hip fracture begins with a microscopic crack, which enlarges explosively over microseconds. Most hip fractures in the elderly occur on falling from standing height, usually sideways or backwards. The typically moderate level of trauma very rarely causes fracture in younger people. Here, this paradox is traced to the decline of multiple protective mechanisms at many length scales from nanometres to that of the whole femur. With normal ageing, the femoral neck asymmetrically and progressively loses bone tissue precisely where the cortex is already thinnest and is also compressed in a sideways fall. At the microscopic scale of the basic remodelling unit (BMU) that renews bone tissue, increased numbers of actively remodelling BMUs associated with the reduced mechanical loading in a typically inactive old age augments the numbers of mechanical flaws in the structure potentially capable of initiating cracking. Menopause and over-deep osteoclastic resorption are associated with incomplete BMU refilling leading to excessive porosity, cortical thinning and disconnection of trabeculae. In the femoral cortex, replacement of damaged bone or bone containing dead osteocytes is inefficient, impeding the homeostatic mechanisms that match strength to habitual mechanical usage. In consequence the participation of healthy osteocytes in crack-impeding mechanisms is impaired. Observational studies demonstrate that protective crack deflection in the elderly is reduced. At the most microscopic levels attention now centres on the role of tissue ageing, which may alter the relationship between mineral and matrix that optimises the inhibition of crack progression and on the role of osteocyte ageing and death that impedes tissue maintenance and repair. This review examines recent developments in the understanding of why the elderly hip becomes fragile. This growing understanding is suggesting novel testable approaches for reducing risk of hip fracture that might translate into control of the growing worldwide impact of hip fractures on our ageing populations.
Collapse
Affiliation(s)
- Jonathan Reeve
- NIHR Musculoskeletal Biomedical Research Unit, Institute of Musculoskeletal Science, Nuffield Orthopaedic Centre, Oxford OX3 7HE, UK.
| | - Nigel Loveridge
- Orthopaedic Research Unit, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK; MRC Human Nutrition Research, Cambridge, UK.
| |
Collapse
|
22
|
Havaldar R, Pilli SC, Putti BB. Insights into the effects of tensile and compressive loadings on human femur bone. Adv Biomed Res 2014; 3:101. [PMID: 24800190 PMCID: PMC4007336 DOI: 10.4103/2277-9175.129375] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 01/14/2013] [Indexed: 12/03/2022] Open
Abstract
Background: Fragile fractures are most likely manifestations of fatigue damage that develop under repetitive loading conditions. Numerous microcracks disperse throughout the bone with the tensile and compressive loads. In this study, tensile and compressive load tests are performed on specimens of both the genders within 19 to 83 years of age and the failure strength is estimated. Materials and Methods: Fifty five human femur cortical samples are tested. They are divided into various age groups ranging from 19-83 years. Mechanical tests are performed on an Instron 3366 universal testing machine, according to American Society for Testing and Materials International (ASTM) standards. Results: The results show that stress induced in the bone tissue depends on age and gender. It is observed that both tensile and compression strengths reduces as age advances. Compressive strength is more than tensile strength in both the genders. Conclusion: The compression and tensile strength of human femur cortical bone is estimated for both male and female subjecting in the age group of 19-83 years. The fracture toughness increases till 35 years in male and 30 years in female and reduces there after. Mechanical properties of bone are age and gender dependent.
Collapse
Affiliation(s)
- Raviraj Havaldar
- Department of Biomedical Engineering, Karnataka Lingayat Education Society's College of Engineering and Technology, Belgaum, India
| | - S C Pilli
- Department of Mechanical Engineering, Karnataka Lingayat Education Society's College of Engineering and Technology, Belgaum, India
| | - B B Putti
- Department of Orthopaedics, Jawaharlal Nehru Medical College, Karnataka Lingayat Education University, Belgaum, India
| |
Collapse
|
23
|
Milovanovic P, Rakocevic Z, Djonic D, Zivkovic V, Hahn M, Nikolic S, Amling M, Busse B, Djuric M. Nano-structural, compositional and micro-architectural signs of cortical bone fragility at the superolateral femoral neck in elderly hip fracture patients vs. healthy aged controls. Exp Gerontol 2014; 55:19-28. [PMID: 24614625 DOI: 10.1016/j.exger.2014.03.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 02/18/2014] [Accepted: 03/02/2014] [Indexed: 12/13/2022]
Abstract
To unravel the origins of decreased bone strength in the superolateral femoral neck, we assessed bone structural features across multiple length scales at this cortical fracture initiating region in postmenopausal women with hip fracture and in aged-matched controls. Our combined methodological approach encompassed atomic force microscopy (AFM) characterization of cortical bone nano-structure, assessment of mineral content/distribution via quantitative backscattered electron imaging (qBEI), measurement of bone material properties by reference point indentation, as well as evaluation of cortical micro-architecture and osteocyte lacunar density. Our findings revealed a wide range of differences between the fracture group and the controls, suggesting a number of detrimental changes at various levels of cortical bone hierarchical organization that may render bone fragile. Namely, mineral crystals at external cortical bone surfaces of the fracture group were larger (65.22nm±41.21nm vs. 36.75nm±18.49nm, p<0.001), and a shift to a higher mineral content and more homogenous mineralization profile as revealed via qBEI were found in the bone matrix of the fracture group. Fracture cases showed nearly 35% higher cortical porosity and showed significantly reduced osteocyte lacunar density compared to controls (226±27 vs. 247±32#/mm(2), p=0.05). Along with increased crystal size, a shift towards higher mineralization and a tendency to increased cortical porosity and reduced osteocyte lacunar number delineate that cortical bone of the superolateral femoral neck bears distinct signs of fragility at various levels of its structural organization. These results contribute to the understanding of hierarchical bone structure changes in age-related fragility.
Collapse
Affiliation(s)
- Petar Milovanovic
- Laboratory for Anthropology, Institute of Anatomy, School of Medicine, University of Belgrade, 4/2 Dr Subotica, 11000 Belgrade, Serbia; Department of Osteology & Biomechanics, University Medical Center Hamburg-Eppendorf, 59 Lottestr., D-22529 Hamburg, Germany.
| | - Zlatko Rakocevic
- Laboratory for Atomic Physics, Institute of Nuclear Sciences Vinca, University of Belgrade, 11001 Belgrade, Serbia.
| | - Danijela Djonic
- Laboratory for Anthropology, Institute of Anatomy, School of Medicine, University of Belgrade, 4/2 Dr Subotica, 11000 Belgrade, Serbia.
| | - Vladimir Zivkovic
- Institute of Forensic Medicine, School of Medicine, University of Belgrade, 31a Deligradska, 11000 Belgrade, Serbia.
| | - Michael Hahn
- Department of Osteology & Biomechanics, University Medical Center Hamburg-Eppendorf, 59 Lottestr., D-22529 Hamburg, Germany.
| | - Slobodan Nikolic
- Institute of Forensic Medicine, School of Medicine, University of Belgrade, 31a Deligradska, 11000 Belgrade, Serbia.
| | - Michael Amling
- Department of Osteology & Biomechanics, University Medical Center Hamburg-Eppendorf, 59 Lottestr., D-22529 Hamburg, Germany.
| | - Bjoern Busse
- Department of Osteology & Biomechanics, University Medical Center Hamburg-Eppendorf, 59 Lottestr., D-22529 Hamburg, Germany.
| | - Marija Djuric
- Laboratory for Anthropology, Institute of Anatomy, School of Medicine, University of Belgrade, 4/2 Dr Subotica, 11000 Belgrade, Serbia.
| |
Collapse
|
24
|
Pemmer B, Roschger A, Wastl A, Hofstaetter J, Wobrauschek P, Simon R, Thaler H, Roschger P, Klaushofer K, Streli C. Spatial distribution of the trace elements zinc, strontium and lead in human bone tissue. Bone 2013; 57:184-93. [PMID: 23932972 PMCID: PMC3807669 DOI: 10.1016/j.bone.2013.07.038] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/25/2013] [Accepted: 07/30/2013] [Indexed: 11/15/2022]
Abstract
Trace elements are chemical elements in minute quantities, which are known to accumulate in the bone. Cortical and trabecular bones consist of bone structural units (BSUs) such as osteons and bone packets of different mineral content and are separated by cement lines. Previous studies investigating trace elements in bone lacked resolution and therefore very little is known about the local concentration of zinc (Zn), strontium (Sr) and lead (Pb) in BSUs of human bone. We used synchrotron radiation induced micro X-ray fluorescence analysis (SR μ-XRF) in combination with quantitative backscattered electron imaging (qBEI) to determine the distribution and accumulation of Zn, Sr, and Pb in human bone tissue. Fourteen human bone samples (10 femoral necks and 4 femoral heads) from individuals with osteoporotic femoral neck fractures as well as from healthy individuals were analyzed. Fluorescence intensity maps were matched with BE images and correlated with calcium (Ca) content. We found that Zn and Pb had significantly increased levels in the cement lines of all samples compared to the surrounding mineralized bone matrix. Pb and Sr levels were found to be correlated with the degree of mineralization. Interestingly, Zn intensities had no correlation with Ca levels. We have shown for the first time that there is a differential accumulation of the trace elements Zn, Pb and Sr in BSUs of human bone indicating different mechanisms of accumulation.
Collapse
Affiliation(s)
- B. Pemmer
- Atominstitut, Technische Universitaet Wien, Stadionallee 2, 1020 Vienna, Austria
- Corresponding author at: TU Wien, Atominstitut, Radiation physics, Stadionallee 2, 1020 Vienna, Austria. Fax: + 43 1 58801 14199.
| | - A. Roschger
- Atominstitut, Technische Universitaet Wien, Stadionallee 2, 1020 Vienna, Austria
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - A. Wastl
- Atominstitut, Technische Universitaet Wien, Stadionallee 2, 1020 Vienna, Austria
| | - J.G. Hofstaetter
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
- 2nd Department, Orthopaedic Hospital Vienna-Speising, Austria
| | - P. Wobrauschek
- Atominstitut, Technische Universitaet Wien, Stadionallee 2, 1020 Vienna, Austria
| | - R. Simon
- Karlsruhe Institute of Technology, Institute for Synchrotron Radiation, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | | | - P. Roschger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - K. Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - C. Streli
- Atominstitut, Technische Universitaet Wien, Stadionallee 2, 1020 Vienna, Austria
| |
Collapse
|
25
|
Traini T, Murmura G, Piattelli M, Scarano A, Pettinicchio M, Sinjari B, Caputi S. Effect of Nanoscale Topography of Titanium Implants on Bone Vessel Network, Osteocytes, and Mineral Densities. J Periodontol 2013; 84:e40-7. [DOI: 10.1902/jop.2013.120627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Johannesdottir F, Aspelund T, Reeve J, Poole KE, Sigurdsson S, Harris TB, Gudnason VG, Sigurdsson G. Similarities and differences between sexes in regional loss of cortical and trabecular bone in the mid-femoral neck: the AGES-Reykjavik longitudinal study. J Bone Miner Res 2013; 28:2165-76. [PMID: 23609070 PMCID: PMC3779495 DOI: 10.1002/jbmr.1960] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 03/08/2013] [Accepted: 04/08/2013] [Indexed: 11/08/2022]
Abstract
The risk of hip fracture rises rapidly with age, and is notably higher in women. After falls and prior fragility fractures, the main clinically recognized risk factor for hip fracture is reduced bone density. To better understand the extent to which femoral neck density and structure change with age in each sex, we carried out a longitudinal study in subjects not treated with agents known to influence bone mineral density (BMD), to investigate changes in regional cortical thickness, as well as cortical and trabecular BMD at the mid-femoral neck. Segmental quantitative computed tomography (QCT) analysis was used to assess bone measurements in two anatomic subregions, the superolateral (superior) and inferomedial (inferior). A total of 400 older individuals (100 men and 300 women, aged 66-90 years) who were participants in the Age Gene/Environment Susceptibility-Reykjavik Study (AGES-Reykjavik), were studied. Participants had two QCT scans of the hip over a median follow-up of 5.1 years (mean baseline age 74 years). Changes in bone values during follow-up were estimated from mixed effects regression models. At baseline women had lower bone values in the superior region than men. At follow-up all bone values were lower in women, except cortical volumetric bone mineral density (vBMD) inferiorly. The relative losses in all bone values estimated in the superior region were substantially (about threefold) and significantly greater compared to those estimated in the inferior region in both sexes. Women lost cortical thickness and cortical vBMD more rapidly than men in both regions; and this was only weakly reflected in total femoral neck dual-energy X-ray absorptiometry (DXA)-like results. The higher rate of bone loss in women at critical locations may contribute materially to the greater femoral neck fracture incidence among women than men.
Collapse
Affiliation(s)
- Fjola Johannesdottir
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, Reykjavik, Iceland
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Brennan MA, Gleeson JP, O'Brien FJ, McNamara LM. Effects of ageing, prolonged estrogen deficiency and zoledronate on bone tissue mineral distribution. J Mech Behav Biomed Mater 2013; 29:161-70. [PMID: 24090875 DOI: 10.1016/j.jmbbm.2013.08.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 08/27/2013] [Accepted: 08/31/2013] [Indexed: 02/03/2023]
Abstract
The quantity and distribution of bone tissue mineral are key determinants of bone strength. Recent research revealed altered mineral distribution within sheep femora following estrogen deficiency. Rapid increases in bone remodeling occur at the onset of estrogen deficiency and abate over time. Therefore, altered tissue mineralization might be a transient characteristic of osteoporosis. Bisphosphonates reduce fracture incidence by 40-60% but increases in bone mineral density are insufficient to explain such changes. In this study the hypotheses that bone tissue mineralization is altered over prolonged estrogen depletion and bisphosphonate treatment were tested. Quantitative backscattered imaging (qBEI) was used to quantify bone mineral density distribution (BMDD) parameters (mean, FWHM) in trabeculae from the proximal femora of an ovariectomized sheep model that underwent estrogen deficiency for 31 months, an ovariectomized group administered with Zoledronic acid and age-matched controls. To assess the effects of normal ageing and prolonged estrogen deficiency, data were compared to BMDD data from sheep that were estrogen deficient for 12 months and age-matched controls. This study reports that normal ageing increases mean mineralization and mineral heterogeneity at a trabecular level. In contrast, prolonged estrogen deficiency leads to significantly decreased mean mineralization and further exacerbates increases in mineral heterogeneity. Interestingly, ZOL treatment of OVX sheep significantly reduced tissue mineral variability, both at a trabecular level and between femoral regions. Together, these findings indicate that ZOL treatment acts to reverse the increased mineral heterogeneity occurring during estrogen deficiency, which may contribute to its capacity to reduce osteoporotic fractures.
Collapse
Affiliation(s)
- M A Brennan
- Biomechanics Research Centre (BMEC), Department of Mechanical and Biomedical Engineering, National University of Ireland, Galway, Ireland; Bioengineering Sciences Research Group, Faculty of Engineering and the Environment, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | | | | | | |
Collapse
|
28
|
Bala Y, Farlay D, Boivin G. Bone mineralization: from tissue to crystal in normal and pathological contexts. Osteoporos Int 2013; 24:2153-66. [PMID: 23229470 DOI: 10.1007/s00198-012-2228-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 11/12/2012] [Indexed: 10/27/2022]
Abstract
Bone is a complex and structured material; its mechanical behavior results from an interaction between the properties of each level of its structural hierarchy. The degree of mineralization of bone (bone density measured at tissue level) and the characteristics of the mineral deposited (apatite crystals) are major determinants of bone strength. Bone remodeling activity acts as a regulator of the degree of mineralization and of the distribution of mineral at the tissue level, directly impacting bone mechanical properties. Recent findings have highlighted the need to understand the underlying process occurring at the nanostructure level that may be independent of bone remodeling itself. A more global comprehension of bone qualities will need further works designed to characterize what are the consequences on whole bone strength of changes at nano- or microstructure levels relative to each other.
Collapse
Affiliation(s)
- Y Bala
- Endocrine Center, Austin Health, University of Melbourne, Melbourne, Australia.
| | | | | |
Collapse
|
29
|
Sinclair KD, Farnsworth RW, Pham TX, Knight AN, Bloebaum RD, Skedros JG. The artiodactyl calcaneus as a potential ‘control bone’ cautions against simple interpretations of trabecular bone adaptation in the anthropoid femoral neck. J Hum Evol 2013; 64:366-79. [DOI: 10.1016/j.jhevol.2013.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 12/08/2012] [Accepted: 01/09/2013] [Indexed: 10/27/2022]
|
30
|
Seitz S, Koehne T, Ries C, De Novo Oliveira A, Barvencik F, Busse B, Eulenburg C, Schinke T, Püschel K, Rueger JM, Amling M, Pogoda P. Impaired bone mineralization accompanied by low vitamin D and secondary hyperparathyroidism in patients with femoral neck fracture. Osteoporos Int 2013; 24:641-9. [PMID: 22581296 DOI: 10.1007/s00198-012-2011-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 04/26/2012] [Indexed: 10/28/2022]
Abstract
SUMMARY Although it is well established that a decrease in bone mass increases the risk of osteoporotic fractures, the proportion of fractures attributable to areal bone mineral density (BMD) is rather low. Here, we have identified bone mineralization defects together with low serum 25-hydroxyvitamin D (25-(OH) D) levels as additional factors associated with femoral neck fractures. INTRODUCTION Osteoporotic fractures of the femoral neck are associated with increased morbidity and mortality. Although it is well established that a decrease in bone mass increases the risk of osteoporotic fractures, the proportion of fractures attributable to areal BMD is rather low. To identify possible additional factors influencing femur neck fragility, we analyzed patients with femoral neck fracture. METHODS We performed a detailed clinical and histomorphometrical evaluation on 103 patients with femoral neck fracture including dual-energy X-ray absorptiometry, laboratory parameters, and histomorphometric and bone mineral density distribution (BMDD) analyses of undecalcified processed biopsies of the femoral head and set them in direct comparison to skeletal healthy control individuals. RESULTS Patients with femoral neck fracture displayed significantly lower serum 25-(OH) D levels and increased serum parathyroid hormone (PTH) compared to controls. Histomorphometric analysis revealed not only a decreased bone volume and trabecular thickness in the biopsies of the patients, but also a significant increase of osteoid indices. BMDD analysis showed increased heterogeneity of mineralization in patients with femoral neck fracture. Moreover, patients with femoral neck fracture and serum 25-(OH) D levels below 12 μg/l displayed significantly thinner trabecular bone. CONCLUSION Taken together, our data suggest that impaired bone mineralization accompanied by low serum 25-(OH) D levels is of major importance in the etiology of femoral neck fractures. Therefore, balancing serum 25-(OH) D levels and thereby normalizing PTH serum levels may counteract pronounced mineralization defects and might decrease the incidence of femoral neck fractures.
Collapse
Affiliation(s)
- S Seitz
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Grimal Q, Grondin J, Guérard S, Barkmann R, Engelke K, Glüer CC, Laugier P. Quantitative ultrasound of cortical bone in the femoral neck predicts femur strength: results of a pilot study. J Bone Miner Res 2013; 28:302-12. [PMID: 22915370 DOI: 10.1002/jbmr.1742] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/24/2012] [Accepted: 08/13/2012] [Indexed: 11/10/2022]
Abstract
A significant risk of femoral neck (FN) fracture exists for men and women with an areal bone mineral density (aBMD) higher than the osteoporotic range, as measured with dual-energy X-ray absorptiometry (DXA). Separately measuring the cortical and trabecular FN compartments and combining the results would likely be a critical aspect of enhancing the diagnostic capabilities of a new technique. Because the cortical shell determines a large part of FN strength a novel quantitative ultrasound (QUS) technique that probes the FN cortical compartment was implemented. The sensitivity of the method to variations of FN cortical properties and FN strength was tested. Nine femurs (women, mean age 83 years) were subjected to QUS to measure the through transmission time-of-flight (TOF) at the FN and mechanical tests to assess strength. Quantitative computed tomography (QCT) scans were performed to enable analysis of the dependence of TOF on bone parameters. DXA was also performed for reference. An ultrasound wave propagating circumferentially in the cortical shell was measured in all specimens. Its TOF was not influenced by the properties of the trabecular compartment. Averaged TOF for nine FN measurement positions/orientations was significantly correlated to strength (R2 = 0.79) and FN cortical QCT variables: total BMD (R(2) = 0.54); regional BMD in the inferoanterior (R2 = 0.90) and superoanterior (R2 = 0.57) quadrants; and moment of inertia (R2 = 0.71). The results of this study demonstrate that QUS can perform a targeted measurement of the FN cortical compartment. Because the method involves mechanical guided waves, the QUS variable is related to the geometric and material properties of the cortical shell (cortical thickness, tissue elasticity, and porosity). This work opens the way to a multimodal QUS assessment of the proximal femur, combining our approach targeting the cortical shell with the existing modality sensitive to the trabecular compartment. In vivo feasibility of our approach has to be confirmed with experimental data in patients.
Collapse
Affiliation(s)
- Quentin Grimal
- UPMC University Paris 06, UMR 7623, Laboratoire d'Imagerie Paramétrique, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
32
|
Gourion-Arsiquaud S, Lukashova L, Power J, Loveridge N, Reeve J, Boskey AL. Fourier transform infrared imaging of femoral neck bone: reduced heterogeneity of mineral-to-matrix and carbonate-to-phosphate and more variable crystallinity in treatment-naive fracture cases compared with fracture-free controls. J Bone Miner Res 2013; 28:150-61. [PMID: 22865771 PMCID: PMC3515703 DOI: 10.1002/jbmr.1724] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/13/2012] [Accepted: 07/16/2012] [Indexed: 12/23/2022]
Abstract
After the age of 60 years, hip fracture risk strongly increases, but only a fifth of this increase is attributable to reduced bone mineral density (BMD, measured clinically). Changes in bone quality, specifically bone composition as measured by Fourier transform infrared spectroscopic imaging (FTIRI), also contribute to fracture risk. Here, FTIRI was applied to study the femoral neck and provide spatially derived information on its mineral and matrix properties in age-matched fractured and nonfractured bones. Whole femoral neck cross sections, divided into quadrants along the neck's axis, from 10 women with hip fracture and 10 cadaveric controls were studied using FTIRI and micro-computed tomography. Although 3-dimensional micro-CT bone mineral densities were similar, the mineral-to-matrix ratio was reduced in the cases of hip fracture, confirming previous reports. New findings were that the FTIRI microscopic variation (heterogeneity) of the mineral-to-matrix ratio was substantially reduced in the fracture group as was the heterogeneity of the carbonate-to-phosphate ratio. Conversely, the heterogeneity of crystallinity was increased. Increased variation of crystallinity was statistically associated with reduced variation of the carbonate-to-phosphate ratio. Anatomical variation in these properties between the different femoral neck quadrants was reduced in the fracture group compared with controls. Although our treatment-naive patients had reduced rather than increased bending resistance, these changes in heterogeneity associated with hip fracture are in another way comparable to the effects of experimental bisphosphonate therapy, which decreases heterogeneity and other indicators of bone's toughness as a material.
Collapse
|
33
|
Hofstaetter JG, Hofstaetter SG, Nawrot-Wawrzyniak K, Hiertz H, Grohs JG, Trieb K, Windhager R, Klaushofer K, Roschger P. Mineralization pattern of vertebral bone material following fragility fracture of the spine. J Orthop Res 2012; 30:1089-94. [PMID: 22228585 DOI: 10.1002/jor.22026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Accepted: 11/08/2011] [Indexed: 02/04/2023]
Abstract
Little is known whether trabecular bone matrix mineralization is altered at the site of osteoporotic vertebral fractures. Bone mineralization density distribution (BMDD) was assessed in trabecular bone of acute, single-level compression fractures of the spine at various stages of fracture repair using quantitative backscattered electron imaging (qBEI). The grading of the repair stage was performed by histological methods. From 20 patients, who underwent either kyphoplasty (n=18) or vertebroplasty (n=2), a vertebral bone biopsy was taken prior to cement augmentation. Six patients took bisphosphonates (BP) prior to fracture. Three study groups were formed: N1=early-, N2=late-healing and B=BP treatment at late healing stage. In general, all groups had an altered BMDD when compared to historical normative reference data. Mean matrix mineralization (CaMean) was significantly (p<0.001) lower in all groups (N1: -5%, N2: -16%, and B2: -16%). In N2, CaMean was -13.1% (p<0.001) lower than N1. At this stage, deposition of new bone matrix and/or formation of woven bone are seen, which also explains the more heterogeneous matrix mineralization (CaWidth). Moreover, BP treatment (B2) led to a significant reduction in CaWidth (-28.5%, p<0.001), when compared to N2. Bone tissue from vertebrae with acute compression fractures reveals a large variation in matrix mineralization depending on the stage of repair. Bisphosphonate treatment does affect the mineralization pattern of tissue repair. The low mineralization values found in early stage of repair suggest that altered bone material properties may play a role in the occurrence of fragility fractures of the spine.
Collapse
Affiliation(s)
- Jochen G Hofstaetter
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Epelboym Y, Gendron RN, Mayer J, Fusco J, Nasser P, Gross G, Ghillani R, Jepsen KJ. The interindividual variation in femoral neck width is associated with the acquisition of predictable sets of morphological and tissue-quality traits and differential bone loss patterns. J Bone Miner Res 2012; 27:1501-10. [PMID: 22461103 DOI: 10.1002/jbmr.1614] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A better understanding of femoral neck structure and age-related bone loss will benefit research aimed at reducing fracture risk. We used the natural variation in robustness (bone width relative to length) to analyze how adaptive processes covary traits in association with robustness, and whether the variation in robustness affects age-related bone loss patterns. Femoral necks from 49 female cadavers (29-93 years of age) were evaluated for morphological and tissue-level traits using radiography, peripheral quantitative computed tomography, micro-computed tomography, and ash-content analysis. Femoral neck robustness was normally distributed and varied widely with a coefficient of variation of 14.9%. Age-adjusted partial regression analysis revealed significant negative correlations (p < 0.05) between robustness and relative cortical area, cortical tissue-mineral density (Ct.TMD), and trabecular bone mineral density (Ma.BMD). Path analysis confirmed these results showing that a one standard deviation (SD) increase in robustness was associated with a 0.70 SD decrease in RCA, 0.47 SD decrease in Ct.TMD, and 0.43 SD decrease in Ma.BMD. Significantly different bone loss patterns were observed when comparing the most slender and most robust tertiles. Robust femora showed significant negative correlations with age for cortical area (R(2) = 0.29, p < 0.03), Ma.BMD (R(2) = 0.34, p < 0.01), and Ct.TMD (R(2) = 0.4, p < 0.003). However, slender femora did not show these age-related changes (R(2) < 0.09, p > 0.2). The results indicated that slender femora were constructed with a different set of traits compared to robust femora, and that the natural variation in robustness was a determinant of age-related bone loss patterns. Clinical diagnoses and treatments may benefit from a better understanding of these robustness-specific structural and aging patterns.
Collapse
Affiliation(s)
- Yan Epelboym
- Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Zoehrer R, Perilli E, Kuliwaba JS, Shapter JG, Fazzalari NL, Voelcker NH. Human bone material characterization: integrated imaging surface investigation of male fragility fractures. Osteoporos Int 2012; 23:1297-309. [PMID: 21695535 DOI: 10.1007/s00198-011-1688-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 05/27/2011] [Indexed: 02/06/2023]
Abstract
UNLABELLED The interrelation of calcium and phosphorus was evaluated as a function of bone material quality in femoral heads from male fragility fracture patients via surface analytical imaging as well as scanning microscopy techniques. A link between fragility fractures and increased calcium to phosphorus ratio was observed despite normal mineralization density distribution. INTRODUCTION Bone fragility in men has been recently recognized as a public health issue, but little attention has been devoted to bone material quality and the possible efficacy in fracture risk prevention. Clinical routine fracture risk estimations do not consider the quality of the mineralized matrix and the critical role played by the different chemical components that are present. This study uses a combination of different imaging and analytical techniques to gain insights into both the spatial distribution and the relationship of phosphorus and calcium in bone. METHODS X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry imaging techniques were used to investigate the relationship between calcium and phosphorus in un-embedded human femoral head specimens from fragility fracture patients and non-fracture age-matched controls. The inclusion of the bone mineral density distribution via backscattered scanning electron microscopy provides information about the mineralization status between the groups. RESULTS A link between fragility fracture and increased calcium and decreased phosphorus in the femoral head was observed despite normal mineralization density distribution. Results exhibited significantly increased calcium to phosphorus ratio in the fragility fracture group, whereas the non-fracture control group ratio was in agreement with the literature value of 1.66 M ratio in mature bone. CONCLUSIONS Our results highlight the potential importance of the relationship between calcium and phosphorus, especially in areas of new bone formation, when estimating fracture risk of the femoral head. The determination of calcium and phosphorus fractions in bone mineral density measurements may hold the key to better fracture risk assessment as well as more targeted therapies.
Collapse
Affiliation(s)
- R Zoehrer
- School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Bedford Park, Adelaide, SA 5042, Australia
| | | | | | | | | | | |
Collapse
|
36
|
Carpentier VT, Wong J, Yeap Y, Gan C, Sutton-Smith P, Badiei A, Fazzalari NL, Kuliwaba JS. Increased proportion of hypermineralized osteocyte lacunae in osteoporotic and osteoarthritic human trabecular bone: implications for bone remodeling. Bone 2012; 50:688-94. [PMID: 22173055 DOI: 10.1016/j.bone.2011.11.021] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 11/25/2011] [Accepted: 11/26/2011] [Indexed: 02/07/2023]
Abstract
Hypermineralized osteocyte lacunae (micropetrosis) have received little research attention. While they are a known aspect of the aging human skeleton, no data are available for pathological bone. In this study, intertrochanteric trabecular bone cores were obtained from patients at surgery for osteoporotic (OP) femoral neck fracture (10F, 4M, 65-94 years), for hip osteoarthritis (OA; 7F, 8M, 62-87 years), and femora at autopsy (CTL; 5F, 11M, 60-84 years). Vertebral trabecular bone cores were also obtained from the vertebra of autopsy cases (CVB; 3F, 6M, 53-83 years). Specimens were resin-embedded, polished, and carbon coated for quantitative backscattered electron imaging (qBEI), energy dispersive X-ray (EDX) spectrometry, and imaging analysis. Bone mineralization (Wt %Ca) was not different between OP, OA, and CTL; but was greater in femoral CTL than in CVB. The percent of hypermineralized osteocyte lacunae relative to the total number (HL/TL) was greater in OP and OA than in CTL. However, relative to bone mineral area, OP was characterised by increased hypermineralized osteocyte lacunar number density (Hd.Lc.Dn), whereas OA was characterised by decreased osteocyte lacunar number density (Lc.Dn) and total osteocyte lacunar number density (Tt.Lc.Dn). Lc.Dn was higher in CVB than in femoral CTL. The calcium-phosphorus ratio (R(Ca/P)) was not different between hypermineralized osteocyte lacunae and bone matrix in each group. In addition, this study focused on the phenomenon of osteocyte lacunae hypermineralization using qBEI. Seven morphological types of osteocyte lacunae hypermineralization were described according to the presence of one or several hypermineralized spherites, associated or not with a hypermineralized lacunar ring. This study has described, for the first time, the morphology of hypermineralized osteocyte lacunae in OP and OA human bone. Further studies are suggested to investigate the functional influence of hypermineralized osteocyte lacunae on bone remodeling and bone biomechanical properties.
Collapse
Affiliation(s)
- Vincent T Carpentier
- Bone and Joint Research Laboratory, Surgical Pathology, SA Pathology and Hanson Institute, Adelaide, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Skedros JG, Knight AN, Farnsworth RW, Bloebaum RD. Do regional modifications in tissue mineral content and microscopic mineralization heterogeneity adapt trabecular bone tracts for habitual bending? Analysis in the context of trabecular architecture of deer calcanei. J Anat 2012; 220:242-55. [PMID: 22220639 DOI: 10.1111/j.1469-7580.2011.01470.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Calcanei of mature mule deer have the largest mineral content (percent ash) difference between their dorsal 'compression' and plantar 'tension' cortices of any bone that has been studied. The opposing trabecular tracts, which are contiguous with the cortices, might also show important mineral content differences and microscopic mineralization heterogeneity (reflecting increased hemi-osteonal renewal) that optimize mechanical behaviors in tension vs. compression. Support for these hypotheses could reveal a largely unrecognized capacity for phenotypic plasticity - the adaptability of trabecular bone material as a means for differentially enhancing mechanical properties for local strain environments produced by habitual bending. Fifteen skeletally mature and 15 immature deer calcanei were cut transversely into two segments (40% and 50% shaft length), and cores were removed to determine mineral (ash) content from 'tension' and 'compression' trabecular tracts and their adjacent cortices. Seven bones/group were analyzed for differences between tracts in: first, microscopic trabecular bone packets and mineralization heterogeneity (backscattered electron imaging, BSE); and second, trabecular architecture (micro-computed tomography). Among the eight architectural characteristics evaluated [including bone volume fraction (BVF) and structural model index (SMI)]: first, only the 'tension' tract of immature bones showed significantly greater BVF and more negative SMI (i.e. increased honeycomb morphology) than the 'compression' tract of immature bones; and second, the 'compression' tracts of both groups showed significantly greater structural order/alignment than the corresponding 'tension' tracts. Although mineralization heterogeneity differed between the tracts in only the immature group, in both groups the mineral content derived from BSE images was significantly greater (P < 0.01), and bulk mineral (ash) content tended to be greater in the 'compression' tracts (immature 3.6%, P = 0.03; mature 3.1%, P = 0.09). These differences are much less than the approximately 8% greater mineral content of their 'compression' cortices (P < 0.001). Published data, suggesting that these small mineralization differences are not mechanically important in the context of conventional tests, support the probability that architectural modifications primarily adapt the tracts for local demands. However, greater hemi-osteonal packets in the tension trabecular tract of only the mature bones (P = 0.006) might have an important role, and possible synergism with mineralization and/or microarchitecture, in differential toughening at the trabeculum level for tension vs. compression strains.
Collapse
Affiliation(s)
- John G Skedros
- Bone and Joint Research Laboratory, Veterans Affairs Medical Center, Salt Lake City, Utah 84107, USA.
| | | | | | | |
Collapse
|
38
|
Weinkamer R, Fratzl P. Mechanical adaptation of biological materials — The examples of bone and wood. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2011. [DOI: 10.1016/j.msec.2010.12.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Johannesdottir F, Poole KE, Reeve J, Siggeirsdottir K, Aspelund T, Mogensen B, Jonsson BY, Sigurdsson S, Harris TB, Gudnason VG, Sigurdsson G. Distribution of cortical bone in the femoral neck and hip fracture: a prospective case-control analysis of 143 incident hip fractures; the AGES-REYKJAVIK Study. Bone 2011; 48:1268-76. [PMID: 21473947 PMCID: PMC3129599 DOI: 10.1016/j.bone.2011.03.776] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 03/28/2011] [Accepted: 03/30/2011] [Indexed: 11/26/2022]
Abstract
In this prospective nested case-control study we analyzed the circumferential differences in estimated cortical thickness (Est CTh) of the mid femoral neck as a risk factor for osteoporotic hip fractures in elderly women and men. Segmental QCT analysis of the mid femoral neck was applied to assess cortical thickness in anatomical quadrants. The superior region of the femoral neck was a stronger predictor for hip fracture than the inferior region, particularly in men. There were significant gender differences in Est CTh measurements in the control group but not in the case group. In multivariable analysis for risk of femoral neck (FN) fracture, Est CTh in the supero-anterior (SA) quadrant was significant in both women and men, and remained a significant predictor after adjustment for FN areal BMD (aBMD, dimensions g/cm², DXA-like), (p=0.05 and p<0.0001, respectively). In conclusion, Est CTh in the SA quadrant best discriminated cases (n=143) from controls (n=298), especially in men. Cortical thinning superiorly in the hip might be of importance in determining resistance to fracture.
Collapse
Affiliation(s)
| | | | | | | | - Thor Aspelund
- University of Iceland, Reykjavik, Iceland
- Icelandic Heart Association, Kopavogur, Iceland
| | - Brynjolfur Mogensen
- University of Iceland, Reykjavik, Iceland
- Landspitali-Univerisity Hospital, Reykjavik, Iceland
| | | | | | | | - Vilmundur G. Gudnason
- University of Iceland, Reykjavik, Iceland
- Icelandic Heart Association, Kopavogur, Iceland
| | - Gunnar Sigurdsson
- University of Iceland, Reykjavik, Iceland
- Icelandic Heart Association, Kopavogur, Iceland
- Landspitali-Univerisity Hospital, Reykjavik, Iceland
| |
Collapse
|
40
|
Bousson V, Bergot C, Wu Y, Jolivet E, Zhou LQ, Laredo JD. Greater tissue mineralization heterogeneity in femoral neck cortex from hip-fractured females than controls. A microradiographic study. Bone 2011; 48:1252-9. [PMID: 21397739 DOI: 10.1016/j.bone.2011.03.673] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 02/04/2011] [Accepted: 03/04/2011] [Indexed: 12/29/2022]
Abstract
In addition to bone quantity, bone quality affects bone strength. Bone quality depends in part on the degree of mineralization of bone tissue (DMB). The relationship between the DMB distribution and the risk of osteoporotic hip fractures remains incompletely investigated. Here, our aim was to compare DMB distribution in femoral neck cortex specimens from 23 women with hip fractures (age, 65-96 years) and 14 control women (age, 75-103 years). Mineralization was determined using quantitative microradiography. We evaluated the following parameters of DMB frequency histograms, for both osteons and interstitial tissue: mode (oDMB(Al)mode and intDMB(Al)mode, respectively); 25th (oDMB(Al)q25, intDMB(Al)q25), 50th (oDMB(Al)q50, intDMB(Al)q50), and 75th (oDMB(Al)q75, intDMB(Al)q75) percentiles; and interquartile range (oDMB(Al)iqr, intDMB(Al)iqr). For each specimen, we also calculated the variance of pixel mineral content for osteons and interstitial tissue (oDMB(Al)var and intDMB(Al)var). We used nonparametric tests to compare frequency histogram parameters between hip-fractured women and controls and Fisher's test to compare variances between groups. All frequency histogram parameters for osteons and interstitial tissue except the 25th percentile, and the variances of pixel mineral content in osteons and interstitial tissue, were significantly different between hip-fractured women and controls, indicating greater heterogeneity of mineralization in the hip-fracture patients than in the controls. These cross-sectional data suggest that bone fragility may be related to greater DMB heterogeneity in osteons and interstitial tissue.
Collapse
Affiliation(s)
- Valérie Bousson
- Laboratoire de Radiologie Expérimentale, Faculté de Médecine Lariboisière-Saint Louis, Université Paris VII, CNRS UMR 7052, 75010 Paris, France.
| | | | | | | | | | | |
Collapse
|
41
|
Cardadeiro G, Baptista F, Zymbal V, Rodrigues LA, Sardinha LB. Ward's area location, physical activity, and body composition in 8- and 9-year-old boys and girls. J Bone Miner Res 2010; 25:2304-12. [PMID: 20737470 DOI: 10.1002/jbmr.229] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bone strength is the result of its material composition and structural design, particularly bone mass distribution. The purpose of this study was to analyze femoral neck bone mass distribution by Ward's area location and its relationship with physical activity (PA) and body composition in children 8 and 9 years of age. The proximal femur shape was defined by geometric morphometric analysis in 88 participants (48 boys and 40 girls). Using dual-energy X-ray absorptiometry (DXA) images, 18 landmarks were digitized to define the proximal femur shape and to identify Ward's area position. Body weight, lean and fat mass, and bone mineral were assessed by DXA, PA by accelerometry, and bone age by the Tanner-Whitehouse III method. Warps analysis with Thin-Plate Spline software showed that the first axis explained 63% of proximal femur shape variation in boys and 58% in girls. Most of this variation was associated with differences in Ward's area location, from the central zone to the superior aspect of the femoral neck in both genders. Regression analysis demonstrated that body composition explained 4% to 7% of the proximal femur shape variation in girls. In boys, body composition variables explained a similar amount of variance, but moderate plus vigorous PA (MVPA) also accounted for 6% of proximal femur shape variation. In conclusion, proximal femur shape variation in children ages 8 and 9 was due mainly to differences in Ward's area position determined, in part, by body composition in both genders and by MVPA in boys. These variables were positively associated with a central Ward's area and thus with a more balanced femoral neck bone mass distribution.
Collapse
Affiliation(s)
- Graça Cardadeiro
- Exercise and Health Laboratory, Faculty of Human Movement, Technical University of Lisbon, Lisbon, Portugal
| | | | | | | | | |
Collapse
|
42
|
Abstract
The anatomic distribution of cortical and cancellous bone in the femoral neck may be critical in determining resistance to fracture. We investigated the effects of aging on femoral neck bone in women. In this cross-sectional study, we used clinical multidetector computed tomography (MDCT) of the hips to investigate aging effects in 100 female volunteers aged 20 to 90 years. We developed a clinically efficient protocol to measure cortical thickness (C.Th) and cortical, trabecular, and integral bone mineral density (CtBMD, TrBMD, and iBMD in mg/cm(3)) in anatomic quadrants of the femoral neck. We used a nested ANOVA to evaluate their associations with height, weight, location in the femoral neck, and age of the subject. Age was the principal determinant of both cortical thickness and BMD. Age had significantly different effects within the anatomic quadrants; compared with young women, elderly subjects had relative preservation of the inferoanterior (IA) quadrant but strikingly reduced C.Th and BMD superiorly. A model including height, weight, and region of interest (and their interactions) explained 83% of the measurement variance (p < .0001). There were marked C.Th and BMD differences between age 25 and age 85 in the already thin superior quadrants. At 25 years the predicted C.Th of the superoposterior quadrant was 1.63 mm, whereas at 85 years it was 0.33 mm [-1.33 mm, 95% confidence interval (CI) of difference over 60 years -1.69 to -0.95]. By contrast, at 25 years mean C.Th of the IA quadrant was 3.9 mm, whereas at 85 years it was 3.3 mm (-0.6 mm, 95% CI -0.83 to -0.10). CtBMD of the IA region was equivalent at 25 and 85 years. In conclusion, elderly women had relative preservation of IA femoral neck bone over seven decades compared with young women but markedly lower C.Th and BMD in the other three quadrants. The IA quadrant transmits mechanical load from walking. Mechanical theory and laboratory tests on cadaveric femurs suggest that localized bone loss may increase the risk of fracture in elderly fallers. It remains to be determined whether this MDCT technique can provide better prediction of hip fracture than conventional clinical dual X-ray absorptiometry (DXA).
Collapse
|
43
|
Mineralization density distribution of postmenopausal osteoporotic bone is restored to normal after long-term alendronate treatment: qBEI and sSAXS data from the fracture intervention trial long-term extension (FLEX). J Bone Miner Res 2010; 25:48-55. [PMID: 19580465 DOI: 10.1359/jbmr.090702] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Long-term treatment studies showed that the therapeutic effects of alendronate (ALN) were sustained over a 10-year treatment period. However, data on the effects on intrinsic bone material properties by long-term reduction of bone turnover are still sparse. We analyzed transiliacal bone biopsies of a subgroup of 30 Fracture Intervention Trial Long-Term Extension (FLEX) participants (n = 6 were treated for 10 years with ALN at dose of 10 mg/day, n = 10 were treated for 10 years with ALN at dose of 5 mg/day, and n = 14 were treated for 5 years with ALN plus a further 5 years with placebo) by quantitative backscattered electron imaging (qBEI) and scanning small-angle X-ray scattering (sSAXS) to determine the bone mineralization density distribution (BMDD) and the mineral particle thickness parameter T. BMDD data from these FLEX participants were compared with those from a previously published healthy population (n = 52). Compared with 5 years of ALN plus 5 years of placebo 10 years of ALN treatment (independent of the dose given) did not produce any difference in any of the BMDD parameters: The weighted mean (Ca(mean)), the typical calcium concentration (Ca(peak)), the heterogeneity of mineralization (Ca(width)), the percentage of low-mineralized bone areas (Ca(low)), and the portion of highly mineralized areas (Ca(high)) were not different for the patients who continued ALN from those who stopped ALN after 5 years. Moreover, no significant differences for any of the BMDD parameters between the FLEX participants and the healthy population could be observed. In none of the investigated cases were abnormally high mineralization or changes in mineral particle thickness observed (Ca(high) and T were both in the normal range). The findings of this study support the recommendation that antiresorptive treatment with ALN should be maintained for 5 years. Even with longer treatment durations of up to 10 years, though, no negative effects on bone matrix mineralization were observed.
Collapse
|
44
|
Fratzl-Zelman N, Roschger P, Gourrier A, Weber M, Misof BM, Loveridge N, Reeve J, Klaushofer K, Fratzl P. Combination of nanoindentation and quantitative backscattered electron imaging revealed altered bone material properties associated with femoral neck fragility. Calcif Tissue Int 2009; 85:335-43. [PMID: 19756347 PMCID: PMC2759010 DOI: 10.1007/s00223-009-9289-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 08/02/2009] [Indexed: 02/08/2023]
Abstract
Osteoporotic fragility fractures were hypothesized to be related to changes in bone material properties and not solely to reduction in bone mass. We studied cortical bone from the superior and inferior sectors of whole femoral neck sections from five female osteoporotic hip fracture cases (74-92 years) and five nonfractured controls (75-88 years). The typical calcium content (Ca(Peak)) and the mineral particle thickness parameter (T) were mapped in large areas of the superior and inferior regions using quantitative backscattered electron imaging (qBEI) and scanning small-angle X-ray scattering, respectively. Additionally, indentation modulus (E) and hardness (H) (determined by nanoindentation) were compared at the local level to the mineral content (Ca(Ind)) at the indent positions (obtained from qBEI). Ca(Peak) (-2.2%, P = 0.002), Ca(Ind) (-1.8%, P = 0.048), E (-5.6%, P = 0.040), and H (-6.0%, P = 0.016) were significantly lower for the superior compared to the inferior region. Interestingly, Ca(Peak) as well as Ca(Ind) were also lower (-2.6%, P = 0.006, and -3.7%, P = 0.002, respectively) in fracture cases compared to controls, while E and H did not show any significant reduction. T values were in the normal range, independent of region (P = 0.181) or fracture status (P = 0.551). In conclusion, it appears that the observed femoral neck fragility is associated with a reduced mineral content, which was not accompanied by a reduction in stiffness and hardness of the bone material. This pilot study suggests that a stiffening process in the organic matrix component contributes to bone fragility independently of mineral content.
Collapse
Affiliation(s)
- N. Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 4th Medical Department, Hanusch Hospital, 1140 Vienna, Austria
| | - P. Roschger
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 4th Medical Department, Hanusch Hospital, 1140 Vienna, Austria
| | - A. Gourrier
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Laboratoire de Physique des Solides, Université Paris-Sud, Bat. 510, 91405 Orsay cedex, France
| | - M. Weber
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Erich Schmid Institute of Materials Science, Austrian Academy of Sciences and Institute of Metal Physics, University of Leoben, 8700 Leoben, Austria
| | - B. M. Misof
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 4th Medical Department, Hanusch Hospital, 1140 Vienna, Austria
- Ludwig Boltzmann Institute of Osteology, UKH Meidling, Kundratstrasse 37, A-1120 Vienna, Austria
| | - N. Loveridge
- Bone Research Division, Department of Medicine, University of Cambridge, Cambridge, CB2 2QQ UK
| | - J. Reeve
- Bone Research Division, Department of Medicine, University of Cambridge, Cambridge, CB2 2QQ UK
| | - K. Klaushofer
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 4th Medical Department, Hanusch Hospital, 1140 Vienna, Austria
| | - P. Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| |
Collapse
|
45
|
Wu Y, Bergot C, Jolivet E, Zhou LQ, Laredo JD, Bousson V. Cortical bone mineralization differences between hip-fractured females and controls. A microradiographic study. Bone 2009; 45:207-12. [PMID: 19379848 DOI: 10.1016/j.bone.2009.04.202] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 04/05/2009] [Accepted: 04/10/2009] [Indexed: 12/29/2022]
Abstract
The strength of bone depends on both bone quantity and bone quality. One determinant of bone quality is the degree of mineralization of bone tissue (DMB). To assess the role for DMB in osteoporotic hip fractures, we compared the degree of mineralization in femoral neck cortex from 23 women with hip fractures (age, 65-96 years) and 14 female controls (age, 75-103 years) using quantitative microradiography calibrated with an aluminum step wedge. Variables were DMB in osteons (oDMB(Al)mean) and interstitial tissue (exDMB(Al)mean). Wilcoxon signed-rank tests were used to compare oDMB(Al)mean to exDMB(Al)mean in each group, and Mann-Whitney tests to compare oDMB(Al)mean and exDMB(Al)mean between hip-fracture patients and controls. DMB was significantly lower in the osteons than in the interstitial tissue in both groups (hip-fracture group, P=0.000; control group, P=0.001). DMB values in osteons and interstitial tissue were significantly greater in the hip-fracture patients than in the controls (P=0.007 and P=0.005, respectively). These cross-sectional data suggest that bone fragility may be related to a higher degree of tissue mineralization.
Collapse
Affiliation(s)
- Yan Wu
- Laboratoire de Radiologie Expérimentale, Faculté de Médecine Lariboisière-Saint Louis, Université Paris VII, CNRS UMR 7052, 10 avenue de Verdun, 75010 Paris, France.
| | | | | | | | | | | |
Collapse
|
46
|
Prediction of incident hip fracture risk by femur geometry variables measured by hip structural analysis in the study of osteoporotic fractures. J Bone Miner Res 2008; 23:1892-904. [PMID: 18684092 PMCID: PMC2686919 DOI: 10.1359/jbmr.080802] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The role of bone tissue's geometric distribution in hip fracture risk requires full evaluation in large population-based datasets. We tested whether section modulus, a geometric index of bending strength, predicted hip fracture better than BMD. Among 7474 women from the Study of Osteoporotic Fractures (SOF) with hip DXA scans at baseline, there were 635 incident hip fractures recorded over 13 yr. Hip structural analysis software was used to derive variables from the DXA scans at the narrow neck (NN), intertrochanter (IT), and shaft (S) regions. Associations of derived structural variables with hip fracture were assessed using Cox proportional hazard modeling. Hip fracture prediction was assessed using the C-index concordance statistic. Incident hip fracture cases had larger neck-shaft angles, larger subperiosteal and estimated endosteal diameters, greater distances from lateral cortical margin to center of mass (lateral distance), and higher estimated buckling ratios (p < 0.0001 for each). Areal BMD, cross-sectional area, cross-sectional moment of inertia, section modulus, estimated cortical thickness, and centroid position were all lower in hip fracture cases (p < 0.044). In hip fracture prediction using NN region parameters, estimated cortical thickness, areal BMD, and estimated buckling ratio were equivalent (C-index = 0.72; 95% CI, 0.70, 0.74), but section modulus performed less well (C-index = 0.61; 95% CI, 0.58, 0.63; p < 0.0001 for difference). In multivariable models combining hip structural analysis variables and age, effects of bone dimensions (i.e., lateral distance, subperiosteal diameter, and estimated endosteal width) were interchangeable, whereas age and neck-shaft angle were independent predictors. Several parsimonious multivariable models that were prognostically equivalent for the NN region were obtained combining a measure of width, a measure of mass, age, and neck-shaft angle (BMD is a ratio of mass to width in the NN region; C-index = 0.77; 95% CI, 0.75, 0.79). Trochanteric fractures were best predicted by analysis of the IT region. Because section modulus failed to predict hip fracture risk as well as areal BMD, the thinner cortices and wider bones among those who fractured may imply that simple failure in bending is not the usual event in fracture. Fracture might require initiation (e.g., by localized crushing or buckling of the lateral cortex).
Collapse
|
47
|
Ruppel ME, Miller LM, Burr DB. The effect of the microscopic and nanoscale structure on bone fragility. Osteoporos Int 2008; 19:1251-65. [PMID: 18317862 DOI: 10.1007/s00198-008-0579-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 01/25/2008] [Indexed: 12/20/2022]
Abstract
Bone mineral density is the gold-standard for assessing bone quantity and diagnosing osteoporosis. Although bone mineral density measurements assess the quantity of bone, the quality of the tissue is an important predictor of fragility. Understanding the macro- and nanoscale properties of bone is critical to understanding bone fragility in osteoporosis. Osteoporosis is a disease that affects more than 75 million people worldwide. The gold standard for osteoporosis prognosis, bone mineral density, primarily measures the quantity of bone in the skeleton, overlooking more subtle aspects of bone's properties. Bone quality, a measure of bone's architecture, geometry and material properties, is evaluated via mechanical, structural and chemical testing. Although decreased BMD indicates tissue fragility at the clinical level, changes in the substructure of bone can help indicate how bone quality is altered in osteoporosis. Additionally, mechanical properties which can quantify fragility, or bone's inability to resist fracture, can be changed due to alterations in bone architecture and composition. Recent studies have focused on examination of bone on the nanoscale, suggesting the importance of understanding the interactions of the mineral crystals and collagen fibrils and how they can alter bone quality. It is therefore important to understand alterations in bone that occur at the macro-, micro- and nanoscopic levels to determine what parameters contribute to decreased bone quality in diseased tissue.
Collapse
Affiliation(s)
- M E Ruppel
- Department of Biomedical Engineering, State University of New York-Stony Brook, Stony Brook, NY 11794, USA
| | | | | |
Collapse
|
48
|
Traini T, Neugebauer J, Thams U, Zöller JE, Caputi S, Piattelli A. Peri-implant bone organization under immediate loading conditions: collagen fiber orientation and mineral density analyses in the minipig model. Clin Implant Dent Relat Res 2008; 11:41-51. [PMID: 18657155 DOI: 10.1111/j.1708-8208.2008.00086.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Mechanical properties of bones are greatly influenced by percentages of organic and mineral constituents. Nevertheless, information about mineralization level on a microscopic scale and collagen fiber organization in peri-implant bone after immediate loading is scarce. PURPOSE The aim of this work was to analyze and compare the degree of mineralization and collagen fiber orientation in alveolar bone (AB) and peri-implant bone of immediately loaded (IL) and unloaded (NL) implants. MATERIALS AND METHODS A total of 25 dental implants of 3.8 mm in diameter and 11 mm in length were used in the present study. In five minipigs, three premolars and the first molar were removed from the left side of the mandible. Three months later, five implants for each animal were inserted. Four implants were loaded immediately with a fixed restoration, while one implant was left unloaded. After a 4-month healing period, all implants were retrieved. Circularly polarized light and scanning electron microscope with backscattered electron imaging were used to analyze both peri-implant and AB retrieved 5 mm from the implant. RESULTS The bone/implant contact ratio (BIC %) was 77.8 +/- 5.9% for the IL implants and 78.0 +/- 5.8% for the NL implants; the difference was not statistically significant (p = 0.554). In the peri-implant bone, the area related to transverse collagen fibers was 112,453 +/- 4,605 pixels for IL implants and 87,256 +/- 2,428 pixels for NL implants. In the AB, the area related to transverse collagen fibers was 172,340 +/- 3,892 pixels. The difference between groups was statistically significant (p < .001). The degree of mineralization of peri-implant bone was 137 +/- 19 gray level for IL implants and 115 +/- 24 gray level for NL implants, while in the AB, the degree of mineralization was 125 +/- 26 gray level. This difference was statistically significant (p < .001). CONCLUSION In this study, it was found that IL and NL implants showed the same degree of osseointegration. The bone matrix around IL implants had a higher quantity of transverse collagen fibers and presented a higher level of mineralization.
Collapse
|
49
|
Roschger P, Paschalis EP, Fratzl P, Klaushofer K. Bone mineralization density distribution in health and disease. Bone 2008; 42:456-66. [PMID: 18096457 DOI: 10.1016/j.bone.2007.10.021] [Citation(s) in RCA: 435] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Accepted: 10/28/2007] [Indexed: 01/15/2023]
Abstract
Human cortical and trabecular bones are formed by individual osteons and bone packets, respectively, which are produced at different time points during the (re)modeling cycle by the coupled activity of bone cells. This leads to a heterogeneously mineralized bone material with a characteristic bone mineralization density distribution (BMDD) reflecting bone turnover, mineralization kinetics and average bone matrix age. In contrast to BMD, which is an estimate of the total amount of mineral in a scanned area of whole bone, BMDD describes the local mineral content of the bone matrix throughout the sample. Moreover, the mineral content of the bone matrix is playing a pivotal role in tuning its stiffness, strength and toughness. BMDD of healthy individuals shows a remarkably small biological variance suggesting the existence of an evolutionary optimum with respect to its biomechanical performance. Hence, any deviations from normal BMDD due to either disease and/or treatment might be of significant biological and clinical relevance. The development of appropriate methods to sensitively measure the BMDD in bone biopsies led to numerous applications of BMDD in the evaluation of diagnosis and treatment of bone diseases, while advancing the understanding of the bone material, concomitantly. For example, transiliacal bone biopsies of postmenopausal osteoporotic women were found to have mostly lower mineralization densities than normal, which were partly associated by an increase of bone turnover, but also caused by calcium and Vit-D deficiency. Antiresorptive therapy causes an increase of degree and homogeneity of mineralization within three years of treatment, while normal mineralization levels are not exceeded. In contrast, anabolic therapy like PTH decreases the degree and homogeneity of matrix mineralization, at least transiently. Osteogenesis imperfecta is generally associated with increased matrix mineralization contributing to the brittleness of bone in this disease, though bone turnover is usually increased suggesting an alteration in the mineralization kinetics. Furthermore, BMDD measurements combined with other scanning techniques like nanoindentation, Fourier transform infrared spectroscopy and small angle X-ray scattering can provide important insights into the structure-function relation of the bone matrix, and ultimately a better prediction of fracture risk in diseases, and after treatment.
Collapse
Affiliation(s)
- P Roschger
- 4th Medical Department, Hanusch Hospital, Heinrich Collin Street 30, A-1140, Vienna, Austria
| | | | | | | |
Collapse
|
50
|
SUTTON-SMITH P, BEARD H, FAZZALARI N. Quantitative backscattered electron imaging of bone in proximal femur fragility fracture and medical illness. J Microsc 2008; 229:60-6. [DOI: 10.1111/j.1365-2818.2007.01867.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|