1
|
Huang H. How my ACL injury recovery journey led me to the medical field? Br J Sports Med 2024; 58:685-686. [PMID: 38653543 DOI: 10.1136/bjsports-2023-108012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Affiliation(s)
- Haiqiang Huang
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Gujar AN, Shivamurthy PG. Effect of 125 Hz and 150 Hz vibrational frequency electric toothbrushes on the rate of orthodontic tooth movement and prostaglandin E2 levels. Korean J Orthod 2023; 53:307-316. [PMID: 37746776 PMCID: PMC10547591 DOI: 10.4041/kjod23.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/03/2023] [Accepted: 08/13/2023] [Indexed: 09/26/2023] Open
Abstract
Objective To evaluate the effects of an electric toothbrush with vibrational frequencies of 125 Hz and 150 Hz on the orthodontic tooth movement (OTM) rate and the production of prostaglandin E2 (PGE2). Methods Out of thirty patients (aged 18-25 years; 16 females and 14 males), ten patients each formed Group A and B, who used electric toothbrushes with 125 Hz and 150 Hz vibrations, respectively. The remaining ten patients (Group C) served as the control group and did not use electric toothbrushes. The rate of OTM and levels of PGE2 using microcapillary pipettes were calculated before the start of retraction (T0), on the 30th day (T1), on the 60th day (T2), and on the 90th day (T3) from the start of retraction in all the groups. Results There was a statistically significant difference in the mean OTM values and PGE2 levels in all three groups at different time intervals, with the maximum difference seen in Group B compared to Group A and least in Group C at T1, T2 and T3. Conclusions The rate of OTM and levels of PGE2 were highest in patients who used an electric toothbrush with 150 Hz mechanical vibration compared to those who used an electric toothbrush with 125 Hz mechanical vibration and least in patients who did not use an electric toothbrush. Mechanical vibration led to an increase in the PGE2 levels and accelerated the OTM.
Collapse
Affiliation(s)
- Anadha N. Gujar
- Department of Orthodontics, Sri Rajiv Gandhi College of Dental Sciences and Hospital, Bangalore, India
| | | |
Collapse
|
3
|
Zarrough AE, Hasturk H, Stephens DN, Van Dyke TE, Kantarci A. Resolvin D1 modulates periodontal ligament fibroblast function. J Periodontol 2023; 94:683-693. [PMID: 36416879 PMCID: PMC10354588 DOI: 10.1002/jper.22-0462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/05/2022] [Accepted: 11/13/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND The resolution of inflammation is an active process mediated by specialized lipid mediators called lipoxins and resolvins. Periodontal ligament fibroblasts (PDLFs) play a significant role in periodontal regeneration. The purpose of the current study was to determine the impact of resolvin D1 (RvD1) on human PDLF cell wound healing and proliferation, receptor expression (G-protein-coupled receptor 32 [GPR32] and formyl peptide receptor 2 [ALX/FPR2]), and cytokine expression and release. METHODS PDLFs were stimulated with interleukin-1β (IL-1β) (500 pg/ml) with and without RvD1 (100 nM). RvD1 receptor expression was determined by quantitative real-time polymerase chain reaction (qPCR), immunofluorescence microscopy, and fluorescence-activated cell sorting. Wound closure was measured by a scratch assay, and proliferation was determined by bromodeoxyuridine incorporation. Interleukin-6 (IL-6), interleukin-8 (IL-8), monocyte chemoattractant protein-1, cyclooxygenase-2, matrix metalloproteinases-1, -2, and -3 (MMP-1, -2, and -3), tissue inhibitors of metalloproteinases-1 and -2 (TIMP-1 and -2), prostaglandin E2, and osteoprotegerin (OPG) gene expression and production were measured using qPCR and Western blotting, multiplex immunoassay, and enzyme-linked immunosorbent assay. RESULTS PDLF expressed GPR32 and ALX/FPR2. RvD1 reversed IL-1β-induced inhibition of wound healing and proliferation of PDLF. IL-1β also induced the production of proinflammatory cytokines and MMPs. This effect was reversed by RvD1. RvD1 reversed IL-1β-induced inhibition of TIMP-1, TIMP-2, and OPG. CONCLUSION The data suggested that RvD1 has a pro-wound healing, proliferative, and anti-inflammatory impact on the PDLF that favors periodontal regeneration.
Collapse
Affiliation(s)
- Ahmed E. Zarrough
- Missouri School of Dentistry & Oral Health, A.T. Still University, St. Louis, Missouri, USA
| | - Hatice Hasturk
- Department of Clinical and Translational Research, Forsyth Institute, Cambridge, Massachusetts, USA
| | - Danielle N. Stephens
- Department of Clinical and Translational Research, Forsyth Institute, Cambridge, Massachusetts, USA
| | - Thomas E. Van Dyke
- Department of Clinical and Translational Research, Forsyth Institute, Cambridge, Massachusetts, USA
| | - Alpdogan Kantarci
- Department of Clinical and Translational Research, Forsyth Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
4
|
Molecular Basis beyond Interrelated Bone Resorption/Regeneration in Periodontal Diseases: A Concise Review. Int J Mol Sci 2023; 24:ijms24054599. [PMID: 36902030 PMCID: PMC10003253 DOI: 10.3390/ijms24054599] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 03/02/2023] Open
Abstract
Periodontitis is the sixth most common chronic inflammatory disease, destroying the tissues supporting the teeth. There are three distinct stages in periodontitis: infection, inflammation, and tissue destruction, where each stage has its own characteristics and hence its line of treatment. Illuminating the underlying mechanisms of alveolar bone loss is vital in the treatment of periodontitis to allow for subsequent reconstruction of the periodontium. Bone cells, including osteoclasts, osteoblasts, and bone marrow stromal cells, classically were thought to control bone destruction in periodontitis. Lately, osteocytes were found to assist in inflammation-related bone remodeling besides being able to initiate physiological bone remodeling. Furthermore, mesenchymal stem cells (MSCs) either transplanted or homed exhibit highly immunosuppressive properties, such as preventing monocytes/hematopoietic precursor differentiation and downregulating excessive release of inflammatory cytokines. In the early stages of bone regeneration, an acute inflammatory response is critical for the recruitment of MSCs, controlling their migration, and their differentiation. Later during bone remodeling, the interaction and balance between proinflammatory and anti-inflammatory cytokines could regulate MSC properties, resulting in either bone formation or bone resorption. This narrative review elaborates on the important interactions between inflammatory stimuli during periodontal diseases, bone cells, MSCs, and subsequent bone regeneration or bone resorption. Understanding these concepts will open up new possibilities for promoting bone regeneration and hindering bone loss caused by periodontal diseases.
Collapse
|
5
|
Manokawinchoke J, Chareonvit S, Trachoo V, Limraksasin P, Egusa H, Osathanon T. Intermittent compressive force regulates dentin matrix protein 1 expression in human periodontal ligament stem cells. J Dent Sci 2023; 18:105-111. [PMID: 36643268 PMCID: PMC9831825 DOI: 10.1016/j.jds.2022.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/04/2022] [Indexed: 01/18/2023] Open
Abstract
Background/purpose Mechanical force differentially regulates periodontal ligament functions depending on types, magnitudes, and duration of stimulation. Intermittent compressive force (ICF) promotes an in vitro mineralization in human periodontal ligament cells. The present study investigated the effect of ICF on dentin matrix protein-1 (DMP1) expression in human periodontal ligament stem cells (hPDLSCs). Materials and methods Cells were treated with ICF in a serum-free culture medium for 24 h The mRNA and protein expression were examined using real-time polymerase chain reaction, immunofluorescence staining and Western blot analysis, respectively. Results The exposure to ICF in a serum-free condition significantly induced DMP1 expression in both mRNA and protein levels. The effect of ICF-induced DMP1 expression was inhibited by pretreatment with cycloheximide, indicating the requirement of the intermediated molecule(s). Pretreatment with transforming growth factor β (TGF-β) receptor inhibitor (SB431542) or neutralized antibody against TGF-β1 prior to ICF application abolished the effect of ICF-induced DMP1 expression. Further, recombinant TGF-β1 treatment stimulated DMP1 expression. Conclusion The present study illustrated that ICF induces DMP1 expression in hPDLSCs via the regulation of TGF-β signaling pathway.
Collapse
Affiliation(s)
- Jeeranan Manokawinchoke
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand,Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Suconta Chareonvit
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Vorapat Trachoo
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Phoonsuk Limraksasin
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand,Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan,Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Thanaphum Osathanon
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand,Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand,Corresponding author. Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
6
|
Fukawa Y, Kayamori K, Tsuchiya M, Ikeda T. IL-1 Generated by Oral Squamous Cell Carcinoma Stimulates Tumor-Induced and RANKL-Induced Osteoclastogenesis: A Possible Mechanism of Bone Resorption Induced by the Infiltration of Oral Squamous Cell Carcinoma. Int J Mol Sci 2022; 24:ijms24010688. [PMID: 36614130 PMCID: PMC9821332 DOI: 10.3390/ijms24010688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/16/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
We previously observed a novel osteoclastogenesis system that is induced by oral squamous cell carcinoma (OSCC) cells, which target osteoclast precursor cells (OPC) without upregulation of the master transcriptional factor of osteoclastogenesis, NFATc1. Here, we analyzed inflammatory cytokines that were preferentially expressed in one of the osteoclastogenic OSCC cell lines, namely NEM, compared with the subclone that had lost its osteoclastogenic properties. Based on a gene expression microarray and a protein array analyses, IL-1, IL-6, IL-8, and CXCL1 were chosen as candidates responsible for tumor-induced osteoclastogenesis. From the results of the in vitro osteoclastogenesis assay using OPCs cultured with OSCC cells or their culture supernatants, IL-1 was selected as a stimulator of both OSCC-induced and RANKL-induced osteoclastogenesis. The IL-1 receptor antagonist significantly attenuated osteoclastogenesis induced by NEM cells. The stimulatory effects of IL-1 for OSCC-induced and RANKL-induced osteoclastogenesis were effectively attenuated with cannabidiol and denosumab, respectively. These results suggest that IL-1 secreted from OSCC cells stimulates not only tumor-induced osteoclastogenesis targeting OPCs but also physiological RANKL-induced osteoclastogenesis, and this may be the biological mechanism of bone resorption induced by the infiltration of OSCC. These results also suggest that IL-1 inhibitors are candidates for therapeutic agents against bone resorption induced by OSCC.
Collapse
|
7
|
Zaghloul N, Kurepa D, Bader MY, Nagy N, Ahmed MN. Prophylactic inhibition of NF-κB expression in microglia leads to attenuation of hypoxic ischemic injury of the immature brain. J Neuroinflammation 2020; 17:365. [PMID: 33261624 PMCID: PMC7709340 DOI: 10.1186/s12974-020-02031-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/10/2020] [Indexed: 11/29/2022] Open
Abstract
Background Periventricular leukomalacia (PVL), a devastating brain injury affecting premature infants, is the most common cause of cerebral palsy. PVL is caused by hypoxia ischemia (HI) and is characterized by white matter necrotic lesions, microglial activation, upregulation of NF-κB, and neuronal death. The microglia is the main cell involved in PVL pathogenesis. The goal of this study was to investigate the role of microglial NF-κB activity and its prophylactic inhibition in a neonate mouse model of HI. Methods Transgenic mice with specific knockout NF-κB in microglia and colony stimulating factor 1 receptor Cre with floxed IKKβ (CSF-1R Cre + IKKβflox/wt ) were used. Postnatal day 5 (P5) mice underwent sham or bilateral temporary carotid artery ligation followed by hypoxia. After HI insult, inflammatory cytokines, volumetric MRI, histopathology, and immunohistochemistry for oligodendroglia and microglial activation markers were analyzed. Long-term neurobehavioral assessment, including grip strength, rotarod, and open field testing, was performed at P60. Results We demonstrate that selective inhibition of NF-κB in microglia decreases HI-induced brain injury by decreasing microglial activation, proinflammatory cytokines, and nitrative stress. Rescue of oligodendroglia is evidenced by immunohistochemistry, decreased ventriculomegaly on MRI, and histopathology. This selective inhibition leads to attenuation of paresis, incoordination, and improved grip strength, gait, and locomotion. Conclusion We conclude that NF-κb activation in microglia plays a major role in the pathogenesis of hypoxic ischemic injury of the immature brain, and its prophylactic inhibition offers significant neuroprotection. Using a specific inhibitor of microglial NF-κB may offer a new prophylactic or therapeutic alternative in preterm infants affected by HI and possibly other neurological diseases in which microglial activation plays a role.
Collapse
Affiliation(s)
- Nahla Zaghloul
- Department of Pediatrics, Division of Neonatology, University of Arizona, 1501 N. Campbell Avenue, Tucson, AZ, USA.
| | - Dalibor Kurepa
- Department of Pediatrics, Division of Neonatology, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Mohammad Y Bader
- Department of Pediatrics, Division of Neonatology, University of Arizona, 1501 N. Campbell Avenue, Tucson, AZ, USA
| | - Nadia Nagy
- Department of Pediatrics, Division of Neonatology, University of Arizona, 1501 N. Campbell Avenue, Tucson, AZ, USA
| | - Mohamed N Ahmed
- Department of Pediatrics, Division of Neonatology, University of Arizona, 1501 N. Campbell Avenue, Tucson, AZ, USA
| |
Collapse
|
8
|
Ruiz-Heiland G, Yong JW, von Bremen J, Ruf S. Leptin reduces in vitro cementoblast mineralization and survival as well as induces PGE2 release by ERK1/2 commitment. Clin Oral Investig 2020; 25:1933-1944. [PMID: 32820432 PMCID: PMC7965856 DOI: 10.1007/s00784-020-03501-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 08/05/2020] [Indexed: 12/18/2022]
Abstract
Objectives Juvenile obesity is a complex clinical condition that is present more and more frequently in the daily orthodontic practice. Over-weighted patients have an impaired bone metabolism, due in part to their increased levels of circulating adipokines. Particularly, leptin has been reported to play a key role in bone physiology. Leptin is ubiquitously present in the body, including blood, saliva, and crevicular fluid. If, and to what extent, it could influence the reaction of cementoblasts during orthodontic-induced forces is yet unknown. Material and methods OCCM-30 cementoblasts were cultivated under compressive forces using different concentrations of leptin. The expression of ObR, Runx-2, Osteocalcin, Rank-L, Sost, Caspase 3, 8, and 9 were analyzed by RT-PCR. Western blots were employed for protein analysis. The ERK1/2 antagonist FR180204 (Calbiochem) was used and cPLA2 activation, PGE2, and cytochrome C release were further evaluated. Results In vitro, when compressive forces are applied, leptin promotes ERK1/2 phosphorylation, as well as upregulates PGE2 and caspase 3 and caspase 9 on OCCM cells. Blockade of ERK1/2 impairs leptin-induced PGE2 secretion and reduced caspase 3 and caspase 9 expression. Conclusions Leptin influences the physiological effect of compressive forces on cementoblasts, exerting in vitro a pro-inflammatory and pro-apoptotic effect. Clinical relevance Our findings indicate that leptin exacerbates the physiological effect of compressive forces on cementoblasts promoting the release of PGE2 and increases the rate of cell apoptosis, and thus, increased levels of leptin may influence the inflammatory response during orthodontically induced tooth movement.
Collapse
Affiliation(s)
- G Ruiz-Heiland
- Department of Orthodontics, University of Giessen, Schlangenzahl 14, 35392, Giessen, Germany.
| | - J W Yong
- Department of Orthodontics, University of Giessen, Schlangenzahl 14, 35392, Giessen, Germany
| | - J von Bremen
- Department of Orthodontics, University of Giessen, Schlangenzahl 14, 35392, Giessen, Germany
| | - S Ruf
- Department of Orthodontics, University of Giessen, Schlangenzahl 14, 35392, Giessen, Germany
| |
Collapse
|
9
|
Distinct Signaling Pathways Between Human Macrophages and Primary Gingival Epithelial Cells by Aggregatibacter actinomycetemcomitans. Pathogens 2020; 9:pathogens9040248. [PMID: 32230992 PMCID: PMC7238148 DOI: 10.3390/pathogens9040248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
In aggressive periodontitis, the dysbiotic microbial community in the subgingival crevice, which is abundant in Aggregatibacter actinomycetemcomitans, interacts with extra- and intracellular receptors of host cells, leading to exacerbated inflammation and subsequent tissue destruction. Our goal was to understand the innate immune interactions of A. actinomycetemcomitans with macrophages and human gingival epithelial cells (HGECs) on the signaling cascade involved in inflammasome and inflammatory responses. U937 macrophages and HGECs were co-cultured with A. actinomycetemcomitans strain Y4 and key signaling pathways were analyzed using real-time PCR, Western blotting and cytokine production by ELISA. A. actinomycetemcomitans infection upregulated the transcription of TLR2, TLR4, NOD2 and NLRP3 in U937 macrophages, but not in HGECs. Transcription of IL-1β and IL-18 was upregulated in macrophages and HGECs after 1 h interaction with A. actinomycetemcomitans, but positive regulation persisted only in macrophages, resulting in the presence of IL-1β in macrophage supernatant. Immunoblot data revealed that A. actinomycetemcomitans induced the phosphorylation of AKT and ERK1/2, possibly leading to activation of the NF-κB pathway in macrophages. On the other hand, HGEC signaling induced by A. actinomycetemcomitans was distinct, since AKT and 4EBP1 were phosphorylated after stimulation with A. actinomycetemcomitans, whereas ERK1/2 was not. Furthermore, A. actinomycetemcomitans was able to induce the cleavage of caspase-1 in U937 macrophages in an NRLP3-dependent pathway. Differences in host cell responses, such as those seen between HGECs and macrophages, suggested that survival of A. actinomycetemcomitans in periodontal tissues may be favored by its ability to differentially activate host cells.
Collapse
|
10
|
Benjakul S, Leethanakul C, Jitpukdeebodintra S. Low magnitude high frequency vibration induces RANKL via cyclooxygenase pathway in human periodontal ligament cells in vitro. J Oral Biol Craniofac Res 2019; 9:251-255. [PMID: 31211043 DOI: 10.1016/j.jobcr.2019.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/02/2019] [Indexed: 01/12/2023] Open
Abstract
Objective This study aimed to examine the effects of PGE2 on RANKL expression in response to vibration and vibration in combination with compressive stress and characterise this transduction pathway in periodontal ligament (PDL) cells. Methods Cultured human PDL cells obtained from extracted premolar teeth (from six individuals) were subjected to three cycles of vibration (0.3 g, 30 Hz for 20 min every 24 h; V), compressive stress (1.5 g/cm2, 48 h; C) or vibration in combination with compressive stress (VC). To investigate whether the expression of RANKL and PGE2 was COX-dependent, PDL cells were treated with indomethacin prior to the onset of mechanical stimulation. RANKL and OPG expressions were examined by quantitative real-time polymerase chain reaction (qPCR). Quantification of PGE2, soluble RANKL (sRANKL) and OPG productions were measured using enzyme-linked immunosorbent assay (ELISAs). Results All mechanical stresses (V, C and VC) significantly increased PGE2 and RANKL. OPG was not affected by vibration, but was downregulated in compressed cells (C and VC). Indomethacin abolished induction of RANKL and downregulated OPG in response to all mechanical stresses. Conclusion These results suggest that vibration, compressive stress and vibration in combination with compressive stress induce RANKL expression in human PDL cells by activating the cyclooxygenase pathway.
Collapse
Affiliation(s)
- Sutiwa Benjakul
- Orthodontic Section, Faculty of Dentistry, Thammasat University, Thailand
| | - Chidchanok Leethanakul
- Orthodontic Section, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Thailand
| | | |
Collapse
|
11
|
Benjakul S, Jitpukdeebodintra S, Leethanakul C. Effects of low magnitude high frequency mechanical vibration combined with compressive force on human periodontal ligament cells in vitro. Eur J Orthod 2019; 40:356-363. [PMID: 29016746 DOI: 10.1093/ejo/cjx062] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Objective Vibration can be used to accelerate tooth movement, though the exact mechanisms remain unclear. This study aimed to investigate the effects of low magnitude high frequency (LMHF) vibration combined with compressive force on periodontal ligament (PDL) cells in vitro. Materials and methods Human PDL cells were isolated from extracted premolar teeth of four individuals. To determine the optimal frequency for later used in combination with compressive force, three cycles of low-magnitude (0.3 g) vibrations at various frequencies (30, 60, or 90 Hz) were applied to PDL cells for 20 min every 24 h. To investigate the effects of vibration combined with compressive force, PDL cells were subjected to three cycles of optimal vibration frequency (V) or 1.5 g/cm2 compressive force for 48 h (C) or vibration combined with compressive force (VC). Cell viability was assessed using MTT assay. PGE2, soluble RANKL (sRANKL), and OPG production were quantified by ELISA. RANKL, OPG, and Runx2 expression were determined using real-time PCR. Results Cell viability was decreased in groups C and VC. PGE2 and RANKL, but not OPG, were increased in groups V, C, and VC, thus increasing the RANKL/OPG ratio. The highest level was observed in group VC. sRANKL was increased in groups V, C, and VC; however, no significant different between the experimental groups. Runx2 expression was reduced in groups C and VC. Conclusions Vibration increased PGE2, RANKL, and sRANKL, but not OPG and Runx2. Vibration had the additive effects on PGE2 and RANKL, but not sRANKL in compressed PDL cells.
Collapse
Affiliation(s)
- Sutiwa Benjakul
- Orthodontic Section, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Suwanna Jitpukdeebodintra
- Department of Oral Biology, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Chidchanok Leethanakul
- Orthodontic Section, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
12
|
Matsumoto Y, Sringkarnboriboon S, Ono T. Proinflammatory mediators related to orthodontically induced periapical root resorption in rat mandibular molars. Eur J Orthod 2019; 39:686-691. [PMID: 28444165 DOI: 10.1093/ejo/cjx033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objectives The early phase of orthodontic tooth movement involves acute inflammatory response that may induce bone resorption. The aim of this study was to localize and quantify cells in the periodontium expressing proinflammatory mediators during orthodontically induced periapical root resorption of the rat mandibular molars. Materials and methods The levels of proinflammatory cytokines interleukin-1 (IL-1) α and β, tumor necrosis factor-α (TNF-α), inflammatory enzymes cyclooxygenase (COX) 1 and 2, and their product prostaglandin E2 (PGE2) in the root resorption site were compared to those in the corresponding area of the untreated periodontal ligament (PDL) of physiologically drifting teeth. Continuous heavy orthodontic force was applied to the mandibular first molar for 8 and 15 days while in occlusion to induce root resorption. Frozen sections including root resorption lacunae were analyzed for the activity of non-specific esterase (NSE) and tartrate-resistant acid phosphatase (TRAP) by enzyme histochemistry and for the expression of IL-1α, IL-1β, TNF-α, COX-1, COX-2, and PGE2 by immunohistochemistry. Results The active root resorption lacunae had significantly more TRAP-positive multinucleated odontoclasts, whereas the number of NSE-positive cells of the monocyte-macrophage lineage did not differ from that in the control PDL. Several types of periodontal cells exhibited a significant increase in the expression of IL-1α, IL-1β, TNF-α, COX-2, and PGE2 in the root resorption zone, while COX-1 was rarely detected. Conclusions These data suggest that proinflammatory mediators expressed in periodontal cells may synergistically promote apical root resorption in response to continuous heavy mechanical force applied to teeth.
Collapse
Affiliation(s)
- Yoshiro Matsumoto
- Department of Orthodontic Science, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Takashi Ono
- Department of Orthodontic Science, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
13
|
Issaranggun Na Ayuthaya B, Everts V, Pavasant P. The immunopathogenic and immunomodulatory effects of interleukin-12 in periodontal disease. Eur J Oral Sci 2018; 126:75-83. [PMID: 29411897 DOI: 10.1111/eos.12405] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Interleukin 12 (IL-12) is an inflammatory cytokine that promotes the response of the immune system. This cytokine has been implicated as a potent stimulator of several diseases characterized by inflammatory-induced bone destruction, such as rheumatoid arthritis and periodontitis. Yet, the exact role of IL-12 in the development and progress of periodontitis has not been clarified. Several studies have demonstrated a positive correlation between the level of IL-12 and the severity of periodontal destruction. Deletion of IL-12 in mice with periodontitis significantly suppressed the level of bone destruction. Interestingly, next to a role in modulating the pathogenesis, IL-12 also has immunological-regulatory properties. This cytokine induces expression of immunosuppressive molecules, such as indoleamine-pyrrole 2,3-dioxygenase (IDO). Thus, these findings suggest both negative and positive influences of IL-12 in periodontal disease. It is currently proposed that the diversity of action of cytokines is a molecular key which regulates biological development and homeostasis. Accordingly, the actions of IL-12 might be one of the mechanisms that regulate homeostasis of periodontal tissue during and following inflammation. Therefore, this article aims to review both destructive and protective functionalities of IL-12 with an emphasis on periodontal disease.
Collapse
Affiliation(s)
- Benjar Issaranggun Na Ayuthaya
- Department of Pharmacology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Research Unit of Mineralized Tissue, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Vincent Everts
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Prasit Pavasant
- Research Unit of Mineralized Tissue, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
14
|
Interleukin-1β induces human cementoblasts to support osteoclastogenesis. Int J Oral Sci 2017; 9:e5. [PMID: 29235551 PMCID: PMC5729550 DOI: 10.1038/ijos.2017.45] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2017] [Indexed: 12/11/2022] Open
Abstract
Injury of the periodontium followed by inflammatory response often leads to root resorption. Resorption is accomplished by osteoclasts and their generation may depend on an interaction with the cells in direct contact with the root, the cementoblasts. Our study aimed to investigate the role of human cementoblasts in the formation of osteoclasts and the effect of interleukin (IL)-1β hereupon. Extracted teeth from healthy volunteers were subjected to sequential digestion by type I collagenase and trypsin. The effect of enzymatic digestion on the presence of cells on the root surface was analyzed by histology. Gene expression of primary human cementoblasts (pHCB) was compared with a human cementoblast cell line (HCEM). The pHCBs were analyzed for their expression of IL-1 receptors as well as of receptor activator of nuclear factor kappa-B ligand (RANKL) and osteoprotegerin (OPG). In a co-culture system consisting of osteoclast precursors (blood monocytes) and pHCBs, the formation of osteoclasts and their resorptive activity was assessed by osteo-assay and ivory slices. The cells obtained after a 120 min enzyme digestion expressed the highest level of bone sialoprotein, similar to that of HCEM. This fraction of isolated cells also shared a similar expression pattern of IL-1 receptors (IL1-R1 and IL1-R2). Treatment with IL-1β potently upregulated RANKL expression but not of OPG. pHCBs were shown to induce the formation of functional osteoclasts. This capacity was significantly stimulated by pretreating the pHCBs with IL-1β prior to their co-culture with human blood monocytes. Our study demonstrated that cementoblasts have the capacity to induce osteoclastogenesis, a capacity strongly promoted by IL-1β. These results may explain why osteoclasts can be formed next to the root of teeth. An investigation into the interaction between tooth root cells and an inflammatory protein sheds light on root degradation following injury. Osteoclast cells digest old bone to release nutrients and recycle bone tissues in a vital process called bone resorption. Cementum, the mineral substance covering tooth roots, is not usually resorbed, but injury to the tissues surrounding roots often triggers inflammation followed by root degradation. To understand this phenomenon better, Ruchanee Salingcarnboriboon Ampornaramveth at Chulalongkorn University in Bangkok, Thailand, and co-workers investigated whether cementum cells can promote the formation of osteoclasts. They found that when cementum cells were treated with interleukin 1 beta, an inflammatory protein expressed at high levels in tissues following injury, levels of another protein needed for osteoclast formation increased. This boosted osteoclast formation around roots, resulting in root resorption
Collapse
|
15
|
Song L, Li J, Yuan X, Liu W, Chen Z, Guo D, Yang F, Guo Q, Song H. Carbon monoxide-releasing molecule suppresses inflammatory and osteoclastogenic cytokines in nicotine- and lipopolysaccharide-stimulated human periodontal ligament cells via the heme oxygenase-1 pathway. Int J Mol Med 2017; 40:1591-1601. [DOI: 10.3892/ijmm.2017.3129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 09/05/2017] [Indexed: 11/06/2022] Open
|
16
|
Issaranggun Na Ayuthaya B, Everts V, Pavasant P. Interleukin-12 Induces Receptor Activator of Nuclear Factor-Kappa B Ligand Expression by Human Periodontal Ligament Cells. J Periodontol 2017; 88:e109-e119. [PMID: 28398106 DOI: 10.1902/jop.2017.160813] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Increased level of proinflammatory cytokine interleukin (IL)-12 correlates with the severity of periodontitis. Yet, a possible role of IL-12 in periodontal disease has not been clarified. The aim of this study is to investigate whether IL-12 affects expression of receptor activator of nuclear factor-kappa B (NF-κB) ligand (RANKL), a potent osteoclast-stimulating factor, by human periodontal ligament (hPDL) cells. METHODS To determine the effect of IL-12, hPDL cells were incubated with recombinant human IL-12 (p70) in a dose- (0 to 10 ng/mL) and time-dependent manner. Expression of RANKL was evaluated at mRNA and protein levels. Underlying signaling pathways of IL-12 were determined by using specific inhibitors. RESULTS Under the influence of IL-12, hPDL cells expressed significantly higher levels of RANKL. Expression was mediated by signal transducer and activator of transcription 4 and NF-κB signaling pathways. Conditioned medium of IL-12-incubated cells proved to contain molecule(s) that induced RANKL expression. Addition of suramin (G protein-coupled receptor inhibitor) and ethylene glycol tetraacetic acid (calcium chelator) suggested existence of intermediate molecule(s) that could activate heterotrimeric G protein signaling in a calcium-dependent pathway. CONCLUSIONS Expression of RANKL by hPDL cells significantly increased after IL-12 treatment. Therefore, this study supports a close interrelationship between immune and skeletal systems and suggests an osteolytic role of IL-12 in pathogenesis of periodontal disease.
Collapse
Affiliation(s)
| | - Vincent Everts
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam, University of Amsterdam, Amsterdam, The Netherlands.,Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam, VU University Amsterdam, Amsterdam, The Netherlands.,Research Institute MOVE, VU University Amsterdam
| | - Prasit Pavasant
- Mineralized Tissue Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Department of Anatomy, Faculty of Dentistry, Chulalongkorn University
| |
Collapse
|
17
|
Kim K, Jeon M, Lee HS, Park JC, Moon SJ, Kim SO, Cho SW, Song JS. Comparative analysis of secretory factors from permanent- and deciduous-teeth periodontal ligament cells. Arch Oral Biol 2016; 71:65-79. [PMID: 27448989 DOI: 10.1016/j.archoralbio.2016.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 06/20/2016] [Accepted: 07/12/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Studies of regenerative therapies have focused on the paracrine effects of mesenchymal stem cells, but little has been revealed about the humoral factors of periodontal ligament (PDL) stem cells. The aim of this study was to identify and compare the secretory factors of human permanent- and deciduous-teeth PDL cells (P-PDL and D-PDL cells, respectively) in order to understand the characteristics of these cells and their potential applications in regenerative therapies. DESIGN Conditioned media were collected from P-PDL and D-PDL cells (P-PDL-CM and D-PDL-CM, respectively). These media were analyzed with high-performance liquid-chromatography-coupled electrospray ionization tandem mass spectrometry and a cytokine membrane assay. In addition, Western blot analysis was performed to verify the differences between the two media. RESULTS Cytokines related to neurogenesis (NT-3 and NT-4) and angiogenesis-related cytokines (EGF and IGF-1) were identified in P-PDL-CM. The expression levels of immune-response-related cytokines (interleukins I, II, and IV) and secreted proteins related to tissue degradation and catalytic activities (matrix metallopeptidase 1 (MMP1), Proteasome subunit, alpha type, 1 (PSMA1), and cullin 7 (CUL7)) were higher in D-PDL-CM. Vasorin (VASN) was expressed more strongly in P-PDL-CM, but tudor domain containing 7 (TDRD7) was expressed more strongly in D-PDL-CM in Western blot analysis. CONCLUSION The cytokine expressions of the two cell types showed different patterns, especially in neurogenesis and immune responses. P-PDL cells are more suitable candidates for applications in regenerative therapies.
Collapse
MESH Headings
- Adolescent
- Blotting, Western
- Cells, Cultured
- Child
- Child, Preschool
- Chromatography, High Pressure Liquid
- Culture Media, Conditioned
- Cytokines/immunology
- Cytokines/metabolism
- Dentition, Permanent
- Electrophoresis, Polyacrylamide Gel
- Female
- Humans
- Infant
- Male
- Periodontal Ligament/cytology
- Periodontal Ligament/metabolism
- Spectrometry, Mass, Electrospray Ionization
- Tooth, Deciduous
Collapse
Affiliation(s)
- Kirim Kim
- Department of Pediatric Dentistry, Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Mijeong Jeon
- Department of Pediatric Dentistry, Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Hyo-Seol Lee
- Department of Pediatric Dentistry, College of Dentistry, Kyunghee University, Seoul, Republic of Korea
| | - Jung-Chul Park
- Department of Periodontics, College of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Seok-Jun Moon
- Department of Oral Biology, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Seong-Oh Kim
- Department of Pediatric Dentistry, Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Sung-Won Cho
- Department of Oral Biology, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Je Seon Song
- Department of Pediatric Dentistry, Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Abstract
Aggregatibacter actinomycetemcomitans is a gram-negative microbe involved in periodontitis. Strains with varying degrees of virulence have been identified, in healthy and periodontally compromised individuals alike. Hosts mount differential immune responses to its various serotypes and virulence factors. Studies have explored host immune response in terms of antibody titers, leukocyte responses, and specific inflammatory mediators, questioning the ways in which the infectious microorganism survives. This mini-review will identify the key themes in immune response patterns of individuals both affected by and free from aggressive periodontal disease, thereby using it to understand various forms of periodontitis.
Collapse
Affiliation(s)
- Nishat Shahabuddin
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, USA; Departments of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, USA
| | - Kathleen Boesze-Battaglia
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, USA
| | - Edward T Lally
- Departments of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
19
|
Li ML, Yi J, Yang Y, Zhang X, Zheng W, Li Y, Zhao Z. Compression and hypoxia play independent roles while having combinative effects in the osteoclastogenesis induced by periodontal ligament cells. Angle Orthod 2015; 86:66-73. [PMID: 25844508 DOI: 10.2319/121414.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To investigate the isolated and combined effects of compression and hypoxia on the osteoclastogenesis induced by periodontal ligament cells (PDLCs). MATERIALS AND METHODS A periodontal ligament tissue model (PDLtm) was established by 3-D culturing human PDLCs on a thin sheet of poly lactic-co-glycolic acid scaffold. The PDLtm was treated with hypoxia and/or compression for 6, 24, or 72 hours. After that, a real-time polymerase chain reaction was used for gene expression analysis. The conditioned media were used for the coculture of osteoblast and osteoclast (OC) precursors; tartrate-resistant acid phosphatase staining was done to examine OC formation. RESULTS Either compression or hypoxia alone significantly up-regulated the gene expression of pro-osteoclastogenic cytokines in the PDLtm and enhanced osteoclastogenesis in the cocultures, and the combination of the two had significantly stronger effects than either stimulation alone. In addition, comparing the two stimulants, we found that the osteoclastogenic property of the PDLCs peaked earlier (at 6 hours) in the compression group than in the hypoxia group (at 24 hours). CONCLUSIONS Both compressive force and hypoxia may take part in initiating osteoclastogenesis in orthodontic tooth movement and may have combinatory effects, which could update our concepts of the mechanisms involved in the initiation of bone resorption on the pressure side of the tooth in question.
Collapse
Affiliation(s)
- Mei Le Li
- a PhD Student, Department of Orthodontics, State Key Laboratory of Oral Diseases, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jianru Yi
- a PhD Student, Department of Orthodontics, State Key Laboratory of Oral Diseases, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Yang
- b Postgraduate Student, Department of Orthodontics, State Key Laboratory of Oral Diseases, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuan Zhang
- b Postgraduate Student, Department of Orthodontics, State Key Laboratory of Oral Diseases, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Zheng
- c Lecturer, Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Li
- d Associate Professor, Department of Orthodontics, State Key Laboratory of Oral Diseases, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- e Professor, Department of Orthodontics, State Key Laboratory of Oral Diseases, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Anti-inflammatory and antiosteoclastogenic activities of parthenolide on human periodontal ligament cells in vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:546097. [PMID: 25610476 PMCID: PMC4290145 DOI: 10.1155/2014/546097] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 12/24/2022]
Abstract
Periodontitis is an inflammatory disease that causes osteolysis and tooth loss. It is known that the nuclear factor kappa B (NF-κB) signalling pathway plays a key role in the progression of inflammation and osteoclastogenesis in periodontitis. Parthenolide (PTL), a sesquiterpene lactone extracted from the shoots of Tanacetum parthenium, has been shown to possess anti-inflammatory properties in various diseases. In the study reported herein, we investigated the effects of PTL on the inflammatory and osteoclastogenic response of human periodontal ligament-derived cells (hPDLCs) and revealed the signalling pathways in this process. Our results showed that PTL decreased NF-κB activation, I-κB degradation, and ERK activation in hPDLCs. PTL significantly reduced the expression of inflammatory (IL-1β, IL-6, and TNF-α) and osteoclastogenic (RANKL, OPG, and M-CSF) genes in LPS-stimulated hPDLCs. In addition, PTL attenuated hPDLC-induced osteoclastogenic differentiation of macrophages (RAW264.7 cells), as well as reducing gene expression of osteoclast-related markers in RAW264.7 cells in an hPDLC-macrophage coculture model. Taken together, these results demonstrate the anti-inflammatory and antiosteoclastogenic activities of PTL in hPDLCs in vitro. These data offer fundamental evidence supporting the potential use of PTL in periodontitis treatment.
Collapse
|
21
|
Cytokine-mediated bone destruction in rheumatoid arthritis. J Immunol Res 2014; 2014:263625. [PMID: 25295284 PMCID: PMC4176903 DOI: 10.1155/2014/263625] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/27/2014] [Indexed: 12/29/2022] Open
Abstract
Bone homeostasis, which involves formation and resorption, is an important process for maintaining adequate bone mass in humans. Rheumatoid arthritis (RA) is an autoimmune disease characterized by inflammation and bone loss, leading to joint destruction and deformity, and is a representative disease of disrupted bone homeostasis. The bone loss and joint destruction are mediated by immunological insults by proinflammatory cytokines and various immune cells. The connection between bone and immunity has been intensely studied and comprises the emerging field of osteoimmunology. Osteoimmunology is an interdisciplinary science investigating the interplay between the skeletal and the immune systems. The main contributors in osteoimmunology are the bone effector cells, such as osteoclasts or osteoblasts, and the immune cells, particularly lymphocytes and monocytes. Physiologically, osteoclasts originate from immune cells, and immune cells regulate osteoblasts and vice versa. Pathological conditions such as RA might affect these interactions, thereby altering bone homeostasis, resulting in the unfavorable outcome of bone destruction. In this review, we describe the osteoclastogenic roles of the proinflammatory cytokines and immune cells that are important in the pathophysiology of RA.
Collapse
|
22
|
RANKL expression in periodontal disease: where does RANKL come from? BIOMED RESEARCH INTERNATIONAL 2014; 2014:731039. [PMID: 24719884 PMCID: PMC3955606 DOI: 10.1155/2014/731039] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/22/2014] [Indexed: 11/18/2022]
Abstract
Periodontitis is an inflammatory disease characterized by periodontal pocket formation and alveolar bone resorption. Periodontal bone resorption is induced by osteoclasts and receptor activator of nuclear factor-κB ligand (RANKL) which is an essential and central regulator of osteoclast development and osteoclast function. Therefore, RANKL plays a critical role in periodontal bone resorption. In this review, we have summarized the sources of RANKL in periodontal disease and explored which factors may regulate RANKL expression in this disease.
Collapse
|
23
|
Ando-Suguimoto ES, da Silva MP, Kawamoto D, Chen C, DiRienzo JM, Mayer MPA. The cytolethal distending toxin of Aggregatibacter actinomycetemcomitans inhibits macrophage phagocytosis and subverts cytokine production. Cytokine 2014; 66:46-53. [PMID: 24548424 DOI: 10.1016/j.cyto.2013.12.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 11/19/2013] [Accepted: 12/24/2013] [Indexed: 02/06/2023]
Abstract
Aggregatibacter actinomycetemcomitans is an important periodontal pathogen that can participate in periodontitis and other non-oral infections. The cytolethal distending toxin (Cdt) is among the virulence factors produced by this bacterium. The Cdt is also secreted by several mucosa-associated Gram-negative pathogens and may play a role in perpetuating the infection by modulating the immune response. Although the toxin targets a wide range of eukaryotic cell types little is known about its activity on macrophages which play a key part in alerting the rest of the immune system to the presence of pathogens and their virulence factors. In view of this, we tested the hypothesis that the A. actinomycetemcomitans Cdt (AaCdt) disrupts macrophage function by inhibiting phagocytic activity as well as affecting the production of cytokines. Murine macrophages were co-cultured with either wild-type A. actinomycetemcomitans or a Cdt(-) mutant. Viable counts and qPCR showed that phagocytosis of the wild-type strain was significantly reduced relative to that of the Cdt(-) mutant. Addition of recombinant Aa(r)Cdt to co-cultures along with the Cdt(-) mutant diminished the phagocytic activity similar to that observed with the wild type strain. High concentrations of Aa(r)Cdt resulted in decreased phagocytosis of fluorescent bioparticles. Nitric oxide production was modulated by the presence of Cdt and the levels of IL-1β, IL-12 and IL-10 were increased. Production of TNF-α did not differ in the co-culture assays but was increased by the presence of Aa(r)Cdt. These data suggest that the Cdt may modulate macrophage function in A. actinomycetemcomitans infected sites by impairing phagocytosis and modifying the pro-inflammatory/anti-inflammatory cytokine balance.
Collapse
Affiliation(s)
| | - Maike Paulino da Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Dione Kawamoto
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Casey Chen
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Ostrow School of Dentistry of University of Southern California, USA
| | - Joseph M DiRienzo
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, PA, USA
| | - Marcia Pinto Alves Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
24
|
Leite FRM, Aquino SGD, Guimarães MR, Cirelli JA, Junior CR. RANKL expression is differentially modulated by TLR2 and TLR4 signaling in fibroblasts and osteoblasts. ACTA ACUST UNITED AC 2014. [DOI: 10.7243/2053-213x-2-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Kayal RA. The role of osteoimmunology in periodontal disease. BIOMED RESEARCH INTERNATIONAL 2013; 2013:639368. [PMID: 24151615 PMCID: PMC3789307 DOI: 10.1155/2013/639368] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 08/15/2013] [Accepted: 08/17/2013] [Indexed: 12/26/2022]
Abstract
Periodontal disease is a pathological condition that involves inflammation of the tooth supporting structures. It occurs in response to the presence of bacterial plaque on the tooth structure. The host defense system, including innate and adaptive immunity, is responsible for combating the pathologic bacteria invading the periodontal tissue. Failure to eradicate the invading pathogens will result in a continuous state of inflammation where inflammatory cells such as lymphocytes, PMNs, and macrophages will continue to produce inflammatory mediators in an effort to destroy the invaders. Unfortunately, these inflammatory mediators have a deleterious effect on the host tissue as well as foreign microbes. One of the effects of these mediators on the host is the induction of matrix degradation and bone resorption through activation of proteases and other inflammatory mediators that activate osteoclasts.
Collapse
Affiliation(s)
- Rayyan A. Kayal
- Department of Oral Basic and Clinical Science, King Abdulaziz University Faculty of Dentistry, P.O. Box 3738, Jeddah 21481, Saudi Arabia
| |
Collapse
|
26
|
Comparative gene expression analysis of the human periodontal ligament in deciduous and permanent teeth. PLoS One 2013; 8:e61231. [PMID: 23593441 PMCID: PMC3620385 DOI: 10.1371/journal.pone.0061231] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 03/07/2013] [Indexed: 01/09/2023] Open
Abstract
There are histological and functional differences between human deciduous and permanent periodontal ligament (PDL) tissues. The aim of this study was to determine the differences between these two types of tissue at the molecular level by comparing their gene expression patterns. PDL samples were obtained from permanent premolars (n = 38) and anterior deciduous teeth (n = 31) extracted from 40 healthy persons. Comparative cDNA microarray analysis revealed several differences in gene expression between the deciduous and permanent PDL tissues. These findings were verified by qRT-PCR (quantitative reverse-transcription-polymerase chain reaction) analysis, and the areas where genes are expressed were revealed by immunohistochemical staining. The expressions of 21 genes were up-regulated in deciduous relative to PDL tissues, and those of 30 genes were up-regulated in permanent relative to deciduous PDL tissues. The genes that were up-regulated in deciduous PDL tissues were those involved in the formation of the extracellular matrix (LAMC2, LAMB3, and COMP), tissue development (IGF2BP, MAB21L2, and PAX3), and inflammatory or immune reactions leading to tissue degradation (IL1A, CCL21, and CCL18). The up-regulated genes in permanent PDL tissues were related to tissue degradation (IL6 and ADAMTS18), myocontraction (PDE3B, CASQ2, and MYH10), and neurological responses (FOS, NCAM2, SYT1, SLC22A3, DOCK3, LRRTM1, LRRTM3, PRSS12, and ARPP21). The analysis of differential gene expressions between deciduous and permanent PDL tissues aids our understanding of histological and functional differences between them at the molecular level.
Collapse
|
27
|
Gannon SC, Cantley MD, Haynes DR, Hirsch R, Bartold PM. Azithromycin suppresses human osteoclast formation and activity in vitro. J Cell Physiol 2013; 228:1098-107. [PMID: 23065774 DOI: 10.1002/jcp.24259] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 10/03/2012] [Indexed: 12/29/2022]
Abstract
Azithromycin is an antibiotic with anti-inflammatory properties used as an adjunct to treat periodontitis, a common inflammatory mediated condition featuring pathologic alveolar bone resorption. This study aimed to determine the effect of azithromycin on human osteoclast formation and resorptive activity in vitro. Osteoclasts were generated from peripheral blood mononuclear cells stimulated with macrophage colony stimulating factor (M-CSF) and receptor activator of nuclear factor kappa B (RANK) ligand. The effects of azithromycin at concentrations ranging from 0.5 to 40 µg/ml were tested. Osteoclast formation and activity, acidification, actin ring formation and expression of mRNA, and protein encoding for key osteoclast genes were assessed. The results demonstrated that azithromycin reduced osteoclast resorptive activity at all concentrations tested with osteoclast formation being significantly reduced at the higher concentrations (20 and 40 µg/ml). mRNA and protein expression of key osteoclast transcription factor Nuclear Factor of Activated T cells (NFATc1) was significantly reduced by azithromycin at later stages of osteoclast development (day 17). Azithromycin also reduced tumor necrosis factor receptor associated factor-6 (TRAF6) mRNA expression at day 14, and cathepsin K mRNA expression at days 14 and 17. Integrin β3 and MMP-9 mRNA expression was reduced by azithromycin at day 17 in osteoclasts cultured on dentine. The osteoclast proton pump did not appear to be affected by azithromycin, however formation of the actin ring cytoskeleton was inhibited. This study demonstrates that azithromycin inhibits human osteoclast function in vitro, which may account for at least some of the beneficial clinical effects observed with azithromycin treatment in periodontitis.
Collapse
Affiliation(s)
- Siobhan C Gannon
- Colgate Australian Clinical Dental Research Centre, School of Dentistry, University of Adelaide, South Australia, Australia
| | | | | | | | | |
Collapse
|
28
|
Magnolol ameliorates ligature-induced periodontitis in rats and osteoclastogenesis: in vivo and in vitro study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:634095. [PMID: 23573141 PMCID: PMC3618931 DOI: 10.1155/2013/634095] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/01/2013] [Accepted: 02/01/2013] [Indexed: 11/17/2022]
Abstract
Periodontal disease characterized by alveolar bone resorption and bacterial pathogen-evoked inflammatory response has been believed to have an important impact on human oral health. The aim of this study was to evaluate whether magnolol, a main constituent of Magnolia officinalis, could inhibit the pathological features in ligature-induced periodontitis in rats and osteoclastogenesis. The sterile, 3–0 (diameter; 0.2 mm) black braided silk thread, was placed around the cervix of the upper second molars bilaterally and knotted medially to induce periodontitis. The morphological changes around the ligated molars and alveolar bone were examined by micro-CT. The distances between the amelocemental junction and the alveolar crest of the upper second molars bilaterally were measured to evaluate the alveolar bone loss. Administration of magnolol (100 mg/kg, p.o.) significantly inhibited alveolar bone resorption, the number of osteoclasts on bony surface, and protein expression of receptor activator of nuclear factor-κB ligand (RANKL), a key mediator promoting osteoclast differentiation, in ligated rats. Moreover, the ligature-induced neutrophil infiltration, expression of inducible nitric oxide synthase, cyclooxygenase-2, matrix metalloproteinase (MMP)-1 and MMP-9, superoxide formation, and nuclear factor-κB activation in inflamed gingival tissues were all attenuated by magnolol. In the in vitro study, magnolol also inhibited the growth of Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans that are key pathogens initiating periodontal disease. Furthermore, magnolol dose dependently reduced RANKL-induced osteoclast differentiation from RAW264.7 macrophages, tartrate-resistant acid phosphatase (TRAP) activity of differentiated cells accompanied by a significant attenuation of resorption pit area caused by osteoclasts. Collectively, we demonstrated for the first time that magnolol significantly ameliorates the alveolar bone loss in ligature-induced experimental periodontitis by suppressing periodontopathic microorganism accumulation, NF-κB-mediated inflammatory mediator synthesis, RANKL formation, and osteoclastogenesis. These activities support that magnolol is a potential agent to treat periodontal disease.
Collapse
|
29
|
Sooampon S, Manokawinchoke J, Pavasant P. Transient receptor potential vanilloid-1 regulates osteoprotegerin/RANKL homeostasis in human periodontal ligament cells. J Periodontal Res 2012; 48:22-9. [PMID: 22587561 DOI: 10.1111/j.1600-0765.2012.01493.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND OBJECTIVE Increasing evidence has shown the presence of transient receptor potential vanilloid-1 (TRPV1) in a variety of nonneuronal tissues; however, the function of TRPV1 in these cells is not well understood. In this study, we aimed to investigate the expression and function of TRPV1 in human periodontal ligament (HPDL) cells. As HPDL cells are known to play an important role in the bone-remodeling process, we hypothesized that TRPV1 might be implicated in the regulation of osteoprotegerin (OPG) and RANKL expression. MATERIAL AND METHODS TRPV1 expression was examined by western blot analysis. The function of TRPV1 was studied using capsaicin, a well-known TRPV1 agonist. RT-PCR was performed to study the expression of OPG and RANKL mRNAs. The expression of OPG and RANKL proteins was analyzed by ELISA and western blotting, respectively. The mechanisms of capsaicin-induced OPG expression in HPDL cells were studied using inhibitors. RESULTS In this study we found that TRPV1 was present in HPDL cells. Treatment with capsaicin induced OPG expression in a dose-dependent manner but did not affect the expression of RANKL. The increase of the OPG/RANKL ratio was also found in human osteoblasts, but not in MC3T3-E1 cells, a mouse osteoblastic cell line, suggesting species specificity. Capsazepine, the competitive TRPV1 antagonist, significantly abolished the effect of capsaicin on OPG expression in HPDL cells. In addition, studies investigating the effects of a calcium chelator and a phospholipase C inhibitor indicated that calcium ions and phospholipase C were required for the induction. Interestingly, capsaicin was able to increase the OPG/RANKL ratio, even in the presence of prostaglandin E2, a potent inducer of RANKL. CONCLUSION Our study demonstrates that activation of TRPV1 leads to an increase of the OPG/RANKL ratio in HPDL cells. These findings suggest the novel function of TRPV1 in periodontal tissues, at least, as the regulator of the OPG/RANKL axis.
Collapse
Affiliation(s)
- S Sooampon
- Department of Pharmacology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | | | | |
Collapse
|
30
|
Umeda JE, Demuth DR, Ando ES, Faveri M, Mayer MPA. Signaling transduction analysis in gingival epithelial cells after infection with Aggregatibacter actinomycetemcomitans. Mol Oral Microbiol 2011; 27:23-33. [PMID: 22230463 DOI: 10.1111/j.2041-1014.2011.00629.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Periodontal diseases result from the interaction of bacterial pathogens with the host's gingival tissue. Gingival epithelial cells are constantly challenged by microbial cells and respond by altering their transcription profiles, inducing the production of inflammatory mediators. Different transcription profiles are induced by oral bacteria and little is known about how the gingival epithelium responds after interaction with the periodontopathogenic organism Aggregatibacter actinomycetemcomitans. In the present study, we examined the transcription of genes involved in signaling transduction pathways in gingival epithelial cells exposed to viable A. actinomycetemcomitans. Immortalized gingival epithelial cells (OBA-9) were infected with A. actinomycetemcomitans JP2 for 24 h and the transcription profile of genes encoding human signal transduction pathways was determined. Functional analysis of inflammatory mediators positively transcribed was performed by ELISA in culture supernatant and in gingival tissues. Fifteen of 84 genes on the array were over-expressed (P < 0.01) after 24 h of infection with viable A. actinomycetemcomitans. Over-expressed genes included those implicated in tissue remodeling and bone resorption, such as CSF2, genes encoding components of the LDL pathway, nuclear factor-κB-dependent genes and other cytokines. The ELISA data confirmed that granulocyte-macrophage colony-stimulating factor/colony-stimulating factor 2, tumor necrosis factor-α and intercellular adhesion molecule-1 were highly expressed by infected gingival cells when compared with control non-infected cells, and presented higher concentrations in tissues from patients with aggressive and chronic periodontitis than in tissues from healthy controls. The induction in epithelial cells of factors such as the pro-inflammatory cytokine CSF2, which is involved in osteoclastogenesis, may help to explain the outcomes of A. actinomycetemcomitans infection.
Collapse
Affiliation(s)
- J E Umeda
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
31
|
Reddi D, Brown SJ, Belibasakis GN. Porphyromonas gingivalis induces RANKL in bone marrow stromal cells: involvement of the p38 MAPK. Microb Pathog 2011; 51:415-20. [PMID: 21939752 DOI: 10.1016/j.micpath.2011.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 08/27/2011] [Accepted: 09/06/2011] [Indexed: 11/19/2022]
Abstract
Periodontitis is a bacterially-induced oral inflammatory disease that is characterised by tissue degradation and bone loss. Porphyromonas gingivalis is a gram negative bacterial species highly associated with the pathogenesis of chronic periodontitis. Receptor activator of nuclear factor-kB ligand (RANKL) induces bone resorption whilst osteoprotegerin (OPG) is a decoy receptor that blocks this process. Cyclooxygenase-2 (COX-2) is an enzyme responsible for the production of prostaglandin (PGE)(2,) which is a major inflammatory mediator of bone resorption. Mitogen-activated protein kinases (MAPK) are intracellular signalling molecules involved in various cell processes, including inflammation. This study aimed to investigate the effect of P. gingivalis on MAPKs and their involvement in the regulation of RANKL, OPG and COX-2 expression in bone marrow stromal cells. P. gingivalis challenge resulted in the phosphorylation of primarily the p38 MAPK. RANKL and COX-2 mRNA expressions were up-regulated, whereas OPG was down-regulated by P. gingivalis. The p38 synthetic inhibitor SB203580 abolished the P. gingivalis-induced RANKL and COX-2 expression, but did not affect OPG. Collectively, these results suggest that the p38 MAPK pathway is involved in the induction of RANKL and COX-2 by P. gingivalis, providing further insights into the pathogenic mechanisms of periodontitis.
Collapse
Affiliation(s)
- Durga Reddi
- Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| | | | | |
Collapse
|
32
|
Liu D, Yao S, Wise GE. MyD88 expression in the rat dental follicle: implications for osteoclastogenesis and tooth eruption. Eur J Oral Sci 2010; 118:333-41. [PMID: 20662905 DOI: 10.1111/j.1600-0722.2010.00751.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Myeloid differentiation factor 88 (MyD88) is a key adaptor molecule in the interleukin (IL)-1 and IL-18 toll-like receptor signaling pathways. Because MyD88 is present in dental follicle (DF) cells in vitro, the purpose of this study was to determine its chronological expression in vivo, as well as its possible role in osteoclastogenesis and tooth eruption. An oligo DNA microarray was used to determine expression of the Myd88 gene in vivo in the DFs from the first mandibular molars of postnatal rats from days 1 to 11. The results showed that MyD88 was expressed maximally on day 3. Using small interfering RNA (siRNA) to knock down MyD88 expression in the DF cells also reduced the expression of the nuclear factor-kappa B-1 (NFKB1) and monocyte chemoattractant protein 1 (MCP-1) genes. Interleukin-1alpha up-regulated the expression of NFKB1, MCP-1, and receptor activator of nuclear factor kappa B ligand (RANKL), but knockdown of MyD88 nullified this IL-1alpha effect. Conditioned medium from DF cells with MyD88 knocked down had reduced chemotactic activity for mononuclear cells and reduced osteoclastogenesis, as opposed to controls. In conclusion, the maximal expression of MyD88 in the DF of postnatal day 3 rats may contribute to the major burst of osteoclastogenesis needed for eruption by up-regulating MCP-1 and RANKL expression.
Collapse
Affiliation(s)
- Dawen Liu
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | |
Collapse
|
33
|
Guan SM, Fu SM, He JJ, Zhang M. Prevotella intermedia induces prostaglandin E2 via multiple signaling pathways. J Dent Res 2010; 90:121-7. [PMID: 21057037 DOI: 10.1177/0022034510382545] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Prostaglandin E(2) (PGE(2)) plays important roles in the bone resorption of inflammatory diseases such as rheumatoid arthritis and periodontitis via specific prostaglandin receptors (i.e., EP1-EP4). In this study, the authors examined whether Prevotella intermedia regulates PGE(2) production and EP expression in human periodontal ligament fibroblasts (hPDLs); they also explored the potential signaling pathways involved in PGE(2) production. P. intermedia induced PGE(2) production and cyclooxygenase-2 (COX-2) expression in a dose- and time-dependent manner. Indomethacin and NS-398 completely abrogated the P. intermedia-induced PGE(2) production without modulating COX-2 expression. Specific inhibitors of extracellular signal-regulated kinase, c-Jun N-terminal kinase, p38, phosphatidylinositol 3-kinase, and protein kinase C--but not c-AMP and protein kinase A--significantly attenuated the P. intermedia-induced COX-2 and PGE(2) expression. P. intermedia reduced EP1 expression in a concentration- and time-dependent manner. The results indicate that the COX-2-dependent induction of PGE(2) by P. intermedia in hPDLs is mediated by multiple signaling pathways.
Collapse
Affiliation(s)
- S-M Guan
- Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China.
| | | | | | | |
Collapse
|
34
|
Szekanecz Z, Szántó S, Szabó Z, Váncsa A, Szamosi S, Bodnár N, Szücs G. Biologics - beyond the joints. Autoimmun Rev 2010; 9:820-4. [PMID: 20667515 DOI: 10.1016/j.autrev.2010.07.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 07/21/2010] [Indexed: 12/23/2022]
Abstract
Biologics including tumor necrosis factor α (TNF-α), interleukin-6 receptor (IL-6R), T and B cell inhibitors are very effective therapeutic agents for the treatment of arthritides. These compounds effectively improve articular symptoms and inhibit joint damage. In this respect, there are no major differences in the efficacy of the available biologics. However, many arthritis patients also exert extra-articular features, systemic manifestations of the disease. These associated conditions include uveitis, inflammatory bowel disease, psoriasis, secondary bone loss and cardiovascular disease. There have been data suggesting that there may be differences in the effects of various TNF inhibitors, rituximab and tocilizumab on the systemic manifestations described above. At present, we do not always have sufficient evidence to confirm these differences, therefore, more information should be obtained from large trials and long-term observational studies.
Collapse
Affiliation(s)
- Zoltán Szekanecz
- Department of Rheumatology, Institute of Medicine, University of Debrecen Medical and Health Science Center, Hungary.
| | | | | | | | | | | | | |
Collapse
|
35
|
Wang XJ, Liu YF, Wang QY, Tsuruoka M, Ohta K, Wu SX, Yakushiji M, Inoue T. Functional expression of α7 nicotinic acetylcholine receptors in human periodontal ligament fibroblasts and rat periodontal tissues. Cell Tissue Res 2010; 340:347-55. [DOI: 10.1007/s00441-010-0949-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 02/17/2010] [Indexed: 10/19/2022]
|
36
|
Ho YC, Yang SF, Huang FM, Chang YC. Up-regulation of osteolytic mediators in human osteosarcoma cells stimulated with nicotine. J Periodontal Res 2009; 44:760-6. [DOI: 10.1111/j.1600-0765.2008.01188.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Atanda A, Reddy D, Rice JA, Terry MA. Injuries and chronic conditions of the knee in young athletes. Pediatr Rev 2009; 30:419-28; quiz 429-30. [PMID: 19884282 DOI: 10.1542/pir.30-11-419] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Alfred Atanda
- Department of Orthopaedic Surgery, A.I. DuPont Children's Hospital, Wilmington, DE, USA
| | | | | | | |
Collapse
|
38
|
KRAJEWSKI ANNAC, BIESSEI JANINE, KUNZE MELANIE, MAERSCH S, PERABO LUCA, NOACK MICHAELJ. Influence of lipopolysaccharide and interleukin-6 on RANKL and OPG expression and release in human periodontal ligament cells. APMIS 2009; 117:746-54. [DOI: 10.1111/j.1600-0463.2009.02532.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Yongchaitrakul T, Manokawinchoke J, Pavasant P. Osteoprotegerin induces osteopontin via syndecan-1 and phosphoinositol 3-kinase/Akt in human periodontal ligament cells. J Periodontal Res 2009; 44:776-83. [PMID: 19602124 DOI: 10.1111/j.1600-0765.2008.01190.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND OBJECTIVE Our previous study found that thrombin induced osteoprotegerin synthesis in human periodontal ligament cells. As elevated levels of osteoprotegerin can exert biological effects on various cell types, in the present study we investigated the effect of osteoprotegerin on the expression of osteopontin in human periodontal ligament cells. MATERIAL AND METHODS Cultured human periodontal ligament cells were treated with recombinant human osteoprotegerin (0-100 ng/mL) for 24-48 h. The expression of osteopontin mRNA and protein was analyzed using reverse transcription-polymerase chain reaction and western blot analyses, respectively. Phosphoinositol 3-kinase inhibitor, Akt inhibitor, heparinase, neutralizing antibody against receptor activator of nuclear factor-kappaB ligand (RANKL) and syndecan-1, and small interfering RNA against syndecan-1, were used to determine the mechanism involved. RESULTS Osteoprotegerin up-regulated the mRNA and protein expression of osteopontin in human periodontal ligament cells in a dose-dependent manner. Addition of neutralizing antibody against RANKL attenuated the inductive effect of osteoprotegerin on osteopontin expression. In addition, the inductive effect of osteoprotegerin was abolished by phosphoinositol 3-kinase and Akt inhibitors, as well as by syndecan-1 antibody or syndecan-1 small interfering RNA. None of the inhibitors had any effect on the background level of osteopontin expression. CONCLUSION An increased level of osteoprotegerin can generate signals via a RANKL/syndecan-1/phosphoinositol 3-kinase/Akt pathway. The results also suggest that osteopontin is one of the downstream targets of the pathway mediated by osteoprotegerin in human periodontal ligament cells. Thus, in addition to counteracting RANKL in the RANKL-osteoprotegerin system, osteoprotegerin may play a role in periodontal tissue remodeling through modulation of the extracellular matrix.
Collapse
Affiliation(s)
- T Yongchaitrakul
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Patumwan, Bangkok, Thailand
| | | | | |
Collapse
|
40
|
Chen SC, Huang FM, Lee SS, Li MZ, Chang YC. The upregulation of receptor activator NF-κB ligand expression by interleukin-1α andPorphyromonas endodontalisin human osteoblastic cells. Int Endod J 2009; 42:375-80. [DOI: 10.1111/j.1365-2591.2008.01539.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Abstract
The nuclear factor kappa B (NF-kappaB) transcription factors are activated by a range of stimuli including pro-inflammatory cytokines. Active NF-kappaB regulates the expression of genes involved in inflammation and cell survival and aberrant NF-kappaB activity plays pathological roles in certain types of cancer and diseases characterized by chronic inflammation. NF-kappaB signaling is an attractive target for the development of novel anti-inflammatory or anti-cancer drugs and we discuss here how the method of peptide transduction has been used to specifically target NF-kappaB. Peptide transduction relies on the ability of certain small cell-penetrating peptides (CPPs) to enter cells, and a panel of CPP-linked inhibitors (CPP-Is) has been developed to directly inhibit NF-kappaB signaling. Remarkably, several of these NF-kappaB-targeting CPP-Is are effective in vivo and therefore offer exciting potential in the clinical setting.
Collapse
Affiliation(s)
- J. S. Orange
- Department of Pediatrics, University of Pennsylvania School of Medicine, The Children’s Hospital of Philadelphia 3615 Civic Center Blvd., ARC 1016H, Philadelphia, PA 19104 USA
| | - M. J. May
- Department of Animal Biology and The Mari Lowe Center for Comparative Oncology, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street (OVH 200E), Philadelphia, PA 19104 USA
| |
Collapse
|
42
|
Rossa C, Liu M, Kirkwood KL. A dominant function of p38 mitogen-activated protein kinase signaling in receptor activator of nuclear factor-kappaB ligand expression and osteoclastogenesis induction by Aggregatibacter actinomycetemcomitans and Escherichia coli lipopolysaccharide. J Periodontal Res 2008; 43:201-11. [PMID: 18302623 PMCID: PMC3086662 DOI: 10.1111/j.1600-0765.2007.01013.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND OBJECTIVE Lipopolysaccharide from gram-negative bacteria is one of the microbial-associated molecular patterns that initiate the immune/inflammatory response, leading to the tissue destruction observed in periodontitis. The aim of this study was to evaluate the role of the p38 mitogen-activated protein kinase (MAPK) signaling pathway in lipopolysaccharide-induced receptor activator of nuclear factor-kappaB ligand (RANKL) expression by murine periodontal ligament cells. MATERIAL AND METHODS Expression of RANKL and osteoprotegerin mRNA was studied by reverse transcription-polymerase chain reaction upon stimulation with lipopolysaccharide from Escherichia coli and Aggregatibacter actinomycetemcomitans. The biochemical inhibitor SB203580 was used to evaluate the contribution of the p38 MAPK signaling pathway to lipopolysaccharide-induced RANKL and osteoprotegerin expression. Stable cell lines expressing dominant-negative forms of MAPK kinase (MKK)-3 and MKK6 were generated to confirm the role of the p38 MAPK pathway. An osteoclastogenesis assay using a coculture model of the murine monocytic cell line RAW 264.7 was used to determine if osteoclast differentiation induced by lipopolysaccharide-stimulated periodontal ligament was correlated with RANKL expression. RESULTS Inhibiting p38 MAPK prior to lipopolysaccharide stimulation resulted in a significant decrease of RANKL mRNA expression. Osteoprotegerin mRNA expression was not affected by lipopolysaccharide or p38 MAPK. Lipopolysaccharide-stimulated periodontal ligament cells increased osteoclast differentiation, an effect that was completely blocked by osteoprotegerin and significantly decreased by inhibition of MKK3 and MKK6, upstream activators of p38 MAPK. Conditioned medium from murine periodontal ligament cultures did not increase osteoclast differentiation, indicating that periodontal ligament cells produced membrane-bound RANKL. CONCLUSION Lipopolysaccharide resulted in a significant increase of RANKL in periodontal ligament cells. The p38 MAPK pathway is required for lipopolysaccharide-induced membrane-bound RANKL expression in these cells.
Collapse
Affiliation(s)
- Carlos Rossa
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, State University of Sao Paulo (UNESP), Araraquara, SP, Brazil
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Min Liu
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Keith L. Kirkwood
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
43
|
Hikiji H, Takato T, Shimizu T, Ishii S. The roles of prostanoids, leukotrienes, and platelet-activating factor in bone metabolism and disease. Prog Lipid Res 2008; 47:107-26. [DOI: 10.1016/j.plipres.2007.12.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Revised: 11/29/2007] [Accepted: 12/04/2007] [Indexed: 12/11/2022]
|
44
|
Yoon DY, Dinarello CA. Differential effects of anti-IL-1R accessory protein antibodies on IL-1alpha or IL-1beta-induced production of PGE(2) and IL-6 from 3T3-L1 cells. BMB Rep 2007; 40:562-70. [PMID: 17669273 DOI: 10.5483/bmbrep.2007.40.4.562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Soluble or cell-bound IL-1 receptor accessory protein (IL-1RAcP) does not bind IL-1 but rather forms a complex with IL-1 and IL-1 receptor type I (IL-1RI) resulting in signal transduction. Synthetic peptides to various regions in the Ig-like domains of IL-1RAcP were used to produce antibodies and these antibodies were affinity-purified using the respective antigens. An anti-peptide-4 antibody which targets domain III inhibited 70% of IL-1beta-induced productions of IL-6 and PGE(2) from 3T3-L1 cells. Anti-peptide-2 or 3 also inhibited IL-1-induced IL-6 production by 30%. However, anti-peptide-1 which is directed against domain I had no effect. The antibody was more effective against IL-1beta compared to IL-1alpha. IL-1-induced IL-6 production was augmented by coincubation with PGE(2). The COX inhibitor ibuprofen blocked IL-1-induced IL-6 and PGE(2) production. These results confirm that IL-1RAcP is essential for IL-1 signaling and that increased production of IL-6 by IL-1 needs the co-induction of PGE(2). However, the effect of PGE(2) is independent of expressions of IL-1RI and IL-1RAcP. Our data suggest that domain III of IL-1RAcP may be involved in the formation or stabilization of the IL-1RI/IL-1 complex by binding to epitopes on domain III of the IL-1RI created following IL-1 binding to the IL-1RI.
Collapse
Affiliation(s)
- Do-Young Yoon
- Laboratory of Cell and Immunobiochemistry, Department of Bioscience and Biotechnology, Konkuk University, Hwayang Dong 1, Seoul 143-801, Korea
| | | |
Collapse
|
45
|
Oikawa A, Kobayashi M, Okamatsu Y, Shinki T, Kamijo R, Yamamoto M, Hasegawa K. Mitogen-activated protein kinases mediate interleukin-1?-induced receptor activator of nuclear factor-?B ligand expression in human periodontal ligament cells. J Periodontal Res 2007; 42:367-76. [PMID: 17559635 DOI: 10.1111/j.1600-0765.2006.00959.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND OBJECTIVE Interleukin-1beta-stimulated receptor activator of nuclear factor-kappaB ligand (RANKL) expression in human periodontal ligament cells is partially mediated by endogenous prostaglandin E2, whereas mitogen-activated protein kinases (MAPKs) are implicated in regulating various interleukin-1-responsive genes. We investigated herein the involvement of MAPKs in interleukin-1beta-stimulated RANKL expression in human periodontal ligament cells. MATERIAL AND METHODS Human periodontal ligament cells were pretreated separately with specific inhibitors of MAPKs, including extracellular signal-regulated kinase, p38 MAPK and c-Jun N-terminal kinase, and subsequently treated with interleukin-1beta. Following each treatment, the phosphorylation of each MAPK, the expression of RANKL, and the production of prostaglandin E2 were determined. RANKL activity was evaluated using an assay to determine the survival of prefusion osteoclasts. RESULTS Interleukin-1beta induced RANKL expression at the mRNA and protein levels, as well as RANKL activity in human periodontal ligament cells. Interleukin-1beta also activated extracellular signal-regulated kinase, p38 MAPK, and c-Jun N-terminal kinase. Pretreatment with each MAPK inhibitor partially, but significantly, suppressed interleukin-1beta-induced RANKL expression and its activity, as well as prostaglandin E2 production. CONCLUSION In human periodontal ligament cells, three types of MAPK inhibitor may abrogate RANKL expression and activity induced by interleukin-1beta, directly or indirectly through partial suppression of prostaglandin E2 synthesis. In addition, extracellular signal-regulated kinase, p38 MAPK, and c-Jun N-terminal kinase signals may co-operatively mediate interleukin-1beta-stimulated RANKL expression and its activity in those cells.
Collapse
Affiliation(s)
- A Oikawa
- Department of Periodontology, Showa University School of Dentistry, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Niki Y, Takaishi H, Takito J, Miyamoto T, Kosaki N, Matsumoto H, Toyama Y, Tada N. Administration of Cyclooxygenase-2 Inhibitor Reduces Joint Inflammation but Exacerbates Osteopenia in IL-1α Transgenic Mice Due to GM-CSF Overproduction. THE JOURNAL OF IMMUNOLOGY 2007; 179:639-46. [PMID: 17579086 DOI: 10.4049/jimmunol.179.1.639] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-1alpha transgenic (Tg) mice exhibit chronic inflammatory arthritis and subsequent osteopenia, with IL-1-induced GM-CSF playing an important role in the pathogenesis. This study analyzed the mechanisms underlying osteopenia in Tg mice, and the therapeutic effects of the cyclooxygenase-2 inhibitor celecoxib on such osteopenia. Inhibited osteoclast formation was observed in RANKL-treated bone marrow cell (BMC) cultures from Tg mice and coculture of Tg-derived BMCs and wild-type-derived primary osteoblasts (POBs). FACS analysis indicated that this inhibition was attributable to a decreased number of osteoclast precursors within Tg-derived BMCs. Moreover, in coculture of Tg-derived POBs and either Tg- or wild-type-derived BMCs, osteoclast formation was markedly inhibited because Tg-derived POBs produced abundant GM-CSF, known as a potent inhibitor of osteoclast differentiation. Histomorphometric analysis of Tg mice revealed that both bone formation and resorption were decreased, with bone formation decreased more prominently. Interestingly, administration of celecoxib resulted in further deterioration of osteopenia where bone formation was markedly suppressed, whereas bone resorption remained unchanged. These results were explained by our in vitro observation that celecoxib dose-dependently and dramatically decreased osteogenesis by Tg mouse-derived POBs in culture, whereas mRNA expressions of GM-CSF and M-CSF remained unchanged. Consequently, blockade of PGE(2) may exert positive effects on excessively enhanced bone resorption observed in inflammatory bone disease, whereas negative effects may occur mainly through reduced bone formation, when bone resorption is constitutively down-regulated as seen in Tg mice.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/administration & dosage
- Arthritis, Experimental/enzymology
- Arthritis, Experimental/genetics
- Arthritis, Experimental/immunology
- Arthritis, Experimental/prevention & control
- Bone Diseases, Metabolic/enzymology
- Bone Diseases, Metabolic/genetics
- Bone Diseases, Metabolic/immunology
- Bone Diseases, Metabolic/metabolism
- Bone Resorption/enzymology
- Bone Resorption/genetics
- Bone Resorption/pathology
- Bone Resorption/prevention & control
- Celecoxib
- Cells, Cultured
- Coculture Techniques
- Cyclooxygenase 2 Inhibitors/administration & dosage
- Dinoprostone/antagonists & inhibitors
- Granulocyte-Macrophage Colony-Stimulating Factor/biosynthesis
- Granulocyte-Macrophage Colony-Stimulating Factor/genetics
- Interleukin-1alpha/genetics
- Mice
- Mice, Inbred C3H
- Mice, Transgenic
- Osteoclasts/enzymology
- Osteoclasts/pathology
- Osteogenesis/genetics
- Pyrazoles/administration & dosage
- Sulfonamides/administration & dosage
Collapse
Affiliation(s)
- Yasuo Niki
- Department of Orthopaedic Surgery, Keio University, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Wara-aswapati N, Surarit R, Chayasadom A, Boch JA, Pitiphat W. RANKL Upregulation Associated With Periodontitis andPorphyromonas gingivalis. J Periodontol 2007; 78:1062-9. [PMID: 17539720 DOI: 10.1902/jop.2007.060398] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Receptor activator of nuclear factor-kappa B (NF-kappaB) ligand (RANKL) and osteoprotegerin (OPG) are critical for homeostatic control of osteoclast activity, suggesting their vital roles in the progression of bone loss in periodontitis. In this study, the expression of RANKL and OPG mRNA and the relationship between these factors and periodontopathic bacteria in periodontal tissue were studied. METHODS Gingival tissue and subgingival plaque samples were collected from 15 patients with chronic periodontitis and 15 periodontally healthy subjects. RNA was extracted from the tissue and subjected to reverse transcription-polymerase chain reaction (RT-PCR) using primers specific for RANKL or OPG. Beta-actin was amplified as a control to ensure equal loading. The intensity of RT-PCR products was analyzed by a densitometer in proportion to the intensity of beta-actin. The numbers of Porphyromonas gingivalis and Actinobacillus actinomycetemcomitans were determined by quantitative real-time PCR. RESULTS Our results showed increased levels of RANKL mRNA in chronic periodontitis tissues. The RANKL/OPG expression ratio was significantly higher in the periodontitis group compared to the healthy control group (P = 0.001). Interestingly, the expression of RANKL (r = 0.64; P <0.001), but not OPG (r = -0.24; P = 0.20), was significantly correlated with increased numbers of P. gingivalis. A. actinomycetemcomitans was detected in only 6.7% of all sites. CONCLUSIONS Chronic periodontitis was associated with RANKL mRNA upregulation and increased RANKL/OPG mRNA expression ratio. In addition, our data showed for the first time to our knowledge an association between upregulated RANKL levels and the number of P. gingivalis in clinically obtained periodontal tissues.
Collapse
Affiliation(s)
- Nawarat Wara-aswapati
- Department of Periodontology, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand.
| | | | | | | | | |
Collapse
|
48
|
|
49
|
Yongchaitrakul T, Lertsirirangson K, Pavasant P. Human periodontal ligament cells secrete macrophage colony-stimulating factor in response to tumor necrosis factor-alpha in vitro. J Periodontol 2006; 77:955-62. [PMID: 16734568 DOI: 10.1902/jop.2006.050338] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Human periodontal ligament (HPDL) cells may support osteoclastogenesis by expressing receptor activator of nuclear factor-kappa B ligand (RANKL) in response to periopathogenic factors and inflammatory cytokines. Because osteoclastogenesis requires the presence of macrophage colony-stimulating factor (M-CSF), we examined whether HPDL cells secrete M-CSF in response to tumor necrosis factor-alpha (TNF-alpha). METHODS Cultured HPDL cells were treated with TNF-alpha in serum-free condition. The expression of M-CSF and RANKL was determined by reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. Inhibitors and anti-TNF receptor (TNFR) neutralizing antibodies were used for the inhibitory experiments. A migration assay was performed. RESULTS TNF-alpha upregulated M-CSF and RANKL in HPDL cells. The effect on M-CSF expression could be partially blocked by pyrrolidine-dithiocarbamate ammonium salt and LY294002 but not by NS398. Neutralizing antibody to TNFR1 could diminish the effect of TNF-alpha. In addition, TNF-treated culture medium exhibited chemotactic effect for RAW264.7. CONCLUSIONS HPDL cells are capable of secreting M-CSF and expressing RANKL in response to TNF-alpha. The upregulation of M-CSF is possibly one of the mechanisms essential for periodontal tissue destruction in response to inflammatory cytokines. The upregulation is partly through nuclear factor-kappa B (NF-kappaB) and phosphatidylinositol 3'-kinase and possibly involves TNFR1.
Collapse
Affiliation(s)
- Tussanee Yongchaitrakul
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | | | | |
Collapse
|
50
|
Coetzee M, Haag M, Kruger MC. Effects of arachidonic acid, docosahexaenoic acid, prostaglandin E(2) and parathyroid hormone on osteoprotegerin and RANKL secretion by MC3T3-E1 osteoblast-like cells. J Nutr Biochem 2006; 18:54-63. [PMID: 16650751 DOI: 10.1016/j.jnutbio.2006.03.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 02/15/2006] [Accepted: 03/06/2006] [Indexed: 01/05/2023]
Abstract
Bone is continuously remodeled through resorption by osteoclasts and the subsequent synthesis of the bone matrix by osteoblasts. Cell-to-cell contact between osteoblasts and osteoclast precursors is required for osteoclast formation. RANKL (receptor activator of nuclear factor-kappaB ligand) expressed on osteoblastic cell membranes stimulates osteoclastogenesis, while osteoprotegerin (OPG) secreted by osteoblasts inhibits osteoclastogenesis. Although polyunsaturated fatty acids (PUFAs) have been implicated in bone homeostasis, the effects thereof on OPG and RANKL secretion have not been investigated. MC3T3-E1 osteoblasts were exposed to the n-6 PUFA arachidonic acid (AA) and the n-3 PUFA docosahexaenoic acid (DHA); furthermore, the bone-active hormone parathyroid hormone (PTH) and the effects thereof were tested on OPG and RANKL secretion. Prostaglandin E(2) (PGE(2)), a product of AA metabolism that was previously implicated in bone homeostasis, was included in the study. AA (5.0-20 microg/ml) inhibited OPG secretion by 25-30%, which was attenuated by pretreatment with the cyclooxygenase blocker indomethacin, suggesting that the inhibitory effect of AA on OPG could possibly be PGE(2)-mediated. MC3T3-E1 cells secreted very low basal levels of RANKL, but AA stimulated RANKL secretion, thereby decreasing the OPG/RANKL ratio. DHA suppressed OPG secretion to a smaller extent than AA. This could, however, be due to endogenous PGE(2) production. No RANKL could be detected after exposing the MC3T3-E1 cells to DHA. PTH did not affect OPG secretion, but stimulated RANKL secretion. This study demonstrates that AA and PTH reduce the OPG/RANKL ratio and may increase osteoclastogenesis. DHA, however, had no significant effect on OPG or RANKL in this model.
Collapse
Affiliation(s)
- Magdalena Coetzee
- Department of Physiology, University of Pretoria, PO Box 2034, Pretoria 0001, South Africa.
| | | | | |
Collapse
|