1
|
Guimarães LB, Machado DPD, Carvalho Versiani Caldeira BF, Vieira LTM, Santos GA, Araújo FR, Machado LT, Gomes DA, Ocarino NDM, Serakides R, Reis AMS. Kisspeptin (Kp-10) inhibits in vitro osteogenic differentiation of multipotent mesenchymal stromal cells extracted from the bone marrow of adult rats. Acta Histochem 2023; 125:152112. [PMID: 37948785 DOI: 10.1016/j.acthis.2023.152112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Kisspeptin (Kp-10) is a neuropeptide that binds to GPR54 receptors, exerting several functions mainly in the nervous and reproductive systems of the body. However, its effects and mechanisms of action on the skeletal system remain poorly understood. This study evaluated the effects of different concentrations of Kp-10 on in vitro osteogenic differentiation of multipotent mesenchymal stromal cells (MSCs) extracted from the bone marrow (BM) of adult Wistar rats. Two-month-old female rats were euthanized to extract BM from long bones to obtain MSCs. Four experimental groups were established in vitro: a control and Kp-10 at concentrations of 0.01, 0.05 and, 0.1 µg/mL. After induction of osteogenic differentiation, cell viability was evaluated using the 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyl tetrazolium bromide (MTT) assay, alkaline phosphatase activity, collagen synthesis, percentage of area covered by MSCs/field and mineralized nodules/field, and immunocytochemistry of the GPR54 receptor tests. Furthermore, evaluation of gene transcripts for type I collagen, Runx-2, Bmp-2, bone sialoprotein, osteocalcin and osteopontin was performed using real-time RT-qPCR. It was observed that MSCs expressed GPR54 receptor to which Kp-10 binds during osteogenic differentiation, promoting a negative effect on osteogenic differentiation. This effect was observed at all the Kp-10 concentrations in a concentration-dependent manner, characterized by a decrease in the activity of alkaline phosphatase, collagen synthesis, mineralized nodules, and decreased expression of gene transcripts for type I collagen, osteocalcin, osteopontin, and Runx-2. Thus, Kp-10 inhibits in vitro osteogenic differentiation of MSCs extracted from the BM of adult Wistar rats.
Collapse
Affiliation(s)
- Laís Bitencourt Guimarães
- Departamento de Patologia Geral do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, CEP: 30.161-970 Belo Horizonte, Minas Gerais, Brazil
| | - Daniel Portela Dias Machado
- Departamento de Farmacologia do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, CEP: 30.161-970 Belo Horizonte, Minas Gerais, Brazil
| | - Beatriz Ferreira Carvalho Versiani Caldeira
- Departamento de Patologia Geral do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, CEP: 30.161-970 Belo Horizonte, Minas Gerais, Brazil
| | - Larissa Tiemi Matuzake Vieira
- Departamento de Patologia Geral do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, CEP: 30.161-970 Belo Horizonte, Minas Gerais, Brazil
| | - Gabriela Alves Santos
- Departamento de Patologia Geral do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, CEP: 30.161-970 Belo Horizonte, Minas Gerais, Brazil
| | - Fabiana Rocha Araújo
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) do Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, campus Pampulha da UFMG, Av. Antônio Carlos 6627, Caixa Postal 567, CEP 30.123-970 Belo Horizonte, Minas Gerais, Brazil
| | - Leonardo Teotônio Machado
- Departamento de Patologia Geral do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, CEP: 30.161-970 Belo Horizonte, Minas Gerais, Brazil
| | - Dawidson Assis Gomes
- Departamento de Bioquímica e Imunologia do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, CEP: 30.161-970 Belo Horizonte, Minas Gerais, Brazil
| | - Natália de Melo Ocarino
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) do Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, campus Pampulha da UFMG, Av. Antônio Carlos 6627, Caixa Postal 567, CEP 30.123-970 Belo Horizonte, Minas Gerais, Brazil
| | - Rogéria Serakides
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) do Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, campus Pampulha da UFMG, Av. Antônio Carlos 6627, Caixa Postal 567, CEP 30.123-970 Belo Horizonte, Minas Gerais, Brazil
| | - Amanda Maria Sena Reis
- Departamento de Patologia Geral do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, CEP: 30.161-970 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Hansen BH, Nordtug T, Farkas J, Khan EA, Oteri E, Kvæstad B, Faksness LG, Daling PS, Arukwe A. Toxicity and developmental effects of Arctic fuel oil types on early life stages of Atlantic cod (Gadus morhua). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 237:105881. [PMID: 34139396 DOI: 10.1016/j.aquatox.2021.105881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 05/18/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
Due to the heavy fuel oil (HFO) ban in Arctic maritime transport and new legislations restricting the sulphur content of fuel oils, new fuel oil types are continuously developed. However, the potential impacts of these new fuel oil types on marine ecosystems during accidental spills are largely unknown. In this study, we studied the toxicity of three marine fuel oils (two marine gas oils with low sulphur contents and a heavy fuel oil) in early life stages of cod (Gadus morhua). Embryos were exposed for 4 days to water-soluble fractions of fuel oils at concentrations ranging from 4.1 - 128.3 µg TPAH/L, followed by recovery in clean seawater until 17 days post fertilization. Exposure to all three fuel oils resulted in developmental toxicity, including severe morphological changes, deformations and cardiotoxicity. To assess underlying molecular mechanisms, we studied fuel oil-mediated activation of aryl hydrocarbon receptor (Ahr) gene battery and genes related to cardiovascular, angiogenesis and osteogenesis pathways. Overall, our results suggest comparable mechanisms of toxicity for the three fuel oils. All fuel oils caused concentration-dependant increases of cyp1a mRNA which paralleled ahrr, but not ahr1b transcript expression. On the angiogenesis and osteogenesis pathways, fuel oils produced concentration-specific transcriptional effects that were either increasing or decreasing, compared to control embryos. Based on the observed toxic responses, toxicity threshold values were estimated for individual endpoints to assess the most sensitive molecular and physiological effects, suggesting that unresolved petrogenic components may be significant contributors to the observed toxicity.
Collapse
Affiliation(s)
| | - Trond Nordtug
- SINTEF Ocean, Climate and Environment, Trondheim, Norway
| | - Julia Farkas
- SINTEF Ocean, Climate and Environment, Trondheim, Norway
| | - Essa A Khan
- Norwegian University of Science and Technology, Department of Biology, Trondheim, Norway
| | - Erika Oteri
- Norwegian University of Science and Technology, Department of Biology, Trondheim, Norway
| | - Bjarne Kvæstad
- SINTEF Ocean, Climate and Environment, Trondheim, Norway
| | | | - Per S Daling
- SINTEF Ocean, Climate and Environment, Trondheim, Norway
| | - Augustine Arukwe
- Norwegian University of Science and Technology, Department of Biology, Trondheim, Norway
| |
Collapse
|
3
|
Li Q, Zhang H, Pan J, Teng B, Zeng Z, Chen Y, Hei Y, Zhang S, Wei S, Sun Y. Tripeptide-based macroporous hydrogel improves the osteogenic microenvironment of stem cells. J Mater Chem B 2021; 9:6056-6067. [PMID: 34278393 DOI: 10.1039/d1tb01175h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to the ability to combine multiple osteogenic induction "cues" at the same time, hydrogels are widely used in the three-dimensional (3D) culture of human mesenchymal stem cells (hMSCs) and osteoinduction. However, the survival and proliferation of stem cells in a 3D culture system are limited, which reduces their osteogenic differentiation efficiency. In addition, the cells inside the hydrogel are prone to apoptosis due to hypoxia, which is a serious challenge for tissue engineering based on stem cells. In this study, a tripeptide-based macroporous alginate hydrogel was prepared to improve the osteogenic microenvironment of stem cells. The arginine-glycine-aspartate (RGD) peptide promoted the adhesion and proliferation of stem cells, and the degradation of gelatin microspheres (GMs) produced a macroporous structure to enhance further the migration and aggregation of stem cells. Mesoporous silica nanoparticles (MSNs) sustained-release bone-forming peptide-1 (BFP-1) induced osteogenic differentiation, and the sustained release of the QK peptide from the GMs promoted angiogenesis. In vitro experiments have shown that this functionalized hydrogel stimulates the proliferation of hMSCs, encourages larger cell cluster formation, and enhances the osteogenic differentiation efficiency. The released QK facilitates the proliferation and migration of endothelial cells. In vivo experiments have also verified that this system has a better osteogenic effect, and more blood vessels were observed inside the hydrogel, than in other systems. In general, this research has led to the development of a tripeptide macroporous hydrogel that can simultaneously promote osteogenesis and angiogenesis, showing great promise for applications of 3D cultures and stem cell-based tissue engineering.
Collapse
Affiliation(s)
- Qian Li
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China and Department of Oral and Maxillofacial Surgery, Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| | - He Zhang
- Department of Oral and Maxillofacial Surgery, Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| | - Jijia Pan
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Binhong Teng
- Department of Oral and Maxillofacial Surgery, Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| | - Ziqian Zeng
- Department of Oral and Maxillofacial Surgery, Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| | - Yang Chen
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yu Hei
- College of Engineering, Peking University, Beijing 100871, China
| | - Siqi Zhang
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Shicheng Wei
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China and Department of Oral and Maxillofacial Surgery, Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| | - Yuhua Sun
- School of Stomatology, Xuzhou Medical University, Xuzhou 221004, China and Department of Stomatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
4
|
McGonnell IM, Akbareian SE. Like a hole in the head: Development, evolutionary implications and diseases of the cranial foramina. Semin Cell Dev Biol 2018; 91:23-30. [PMID: 30385045 DOI: 10.1016/j.semcdb.2018.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 08/11/2018] [Accepted: 08/27/2018] [Indexed: 12/25/2022]
Abstract
Cranial foramina are holes in the skull through which nerves and blood vessels pass to reach both deep and superficial tissues. They are often overlooked in the literature; however they are complex structures that form within the developing cranial bones during embryogenesis and then remain open throughout life, despite the bone surrounding them undergoing constant remodelling. They are invaluable in assigning phylogeny in the fossil record and their size has been used, by some, to imply function of the nerve and/or blood vessel that they contained. Despite this, there are very few studies investigating the development or normal function of the cranial foramina. In this review, we will discuss the development of the cranial foramina and their subsequent maintenance, highlighting key gaps in the knowledge. We consider whether functional interpretations can be made from fossil material given a lack of knowledge regarding their contents and maintenance. Finally, we examine the significant role of malformation of foramina in congenital diseases such as craniosynostosis.
Collapse
Affiliation(s)
- Imelda M McGonnell
- Dept. Comparative Biomedical Sciences, Royal Veterinary College, Royal College St, London, NW1 0TU, United Kingdom.
| | - Sophia E Akbareian
- Dept. Comparative Biomedical Sciences, Royal Veterinary College, Royal College St, London, NW1 0TU, United Kingdom
| |
Collapse
|
5
|
Effects of Bone Marrow Stromal Cell Transplantation on Repair of Bone Defect in Rats. Trauma Mon 2018. [DOI: 10.5812/traumamon.13701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
6
|
Li QS, Meng FY, Zhao YH, Jin CL, Tian J, Yi XJ. Inhibition of microRNA-214-5p promotes cell survival and extracellular matrix formation by targeting collagen type IV alpha 1 in osteoblastic MC3T3-E1 cells. Bone Joint Res 2017; 6:464-471. [PMID: 28784704 PMCID: PMC5579316 DOI: 10.1302/2046-3758.68.bjr-2016-0208.r2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 03/23/2017] [Indexed: 12/18/2022] Open
Abstract
Objectives This study aimed to investigate the functional effects of microRNA (miR)-214-5p on osteoblastic cells, which might provide a potential role of miR-214-5p in bone fracture healing. Methods Blood samples were obtained from patients with hand fracture or intra-articular calcaneal fracture and from healthy controls (HCs). Expression of miR-214-5p was monitored by qRT-PCR at day 7, 14 and 21 post-surgery. Mouse osteoblastic MC3T3-E1 cells were transfected with antisense oligonucleotides (ASO)-miR-214-5p, collagen type IV alpha 1 (COL4A1) vector or their controls; thereafter, cell viability, apoptotic rate, and the expression of collagen type I alpha 1 (COL1A1), type II collagen (COL-II), and type X collagen (COL-X) were determined. Luciferase reporter assay, qRT-PCR, and Western blot were performed to ascertain whether COL4A1 was a target of miR-214-5p. Results Plasma miR-214-5p was highly expressed in patients with bone fracture compared with HCs after fracture (p < 0.05 or p < 0.01). Inhibition of miR-214-5p increased the viability of MC3T3-E1 cells and the expressions of COL1A1 and COL-X, but decreased the apoptotic rate and COL-II expression (p < 0.05 or p < 0.01). COL4A1 was a target of miR-214-5p, and was negatively regulated by miR-214-5p (p < 0.05 or p < 0.01). Overexpression of COL4A1 showed a similar impact on cell viability, apoptotic rate, and COL1A1, COL-II, and COL-X expressions inhibiting miR-214-5p (p < 0.01). Conclusion Inhibition of miR-214-5p promotes cell survival and extracellular matrix (ECM) formation of osteoblastic MC3T3-E1 cells by targeting COL4A1. Cite this article: Q. S. Li, F. Y. Meng, Y. H. Zhao, C. L. Jin, J. Tian, X. J. Yi. Inhibition of microRNA-214-5p promotes cell survival and extracellular matrix formation by targeting collagen type IV alpha 1 in osteoblastic MC3T3-E1 cells. Bone Joint Res 2017;6:464–471. DOI: 10.1302/2046-3758.68.BJR-2016-0208.R2
Collapse
Affiliation(s)
- Q S Li
- Department of Traumatology, Eastern Medical District of Linyi People's Hospital, Linyi, China
| | - F Y Meng
- Department of Traumatology, Lanling People's Hospital, Linyi, China
| | - Y H Zhao
- Department of Traumatology, Eastern Medical District of Linyi People's Hospital, Linyi, China
| | - C L Jin
- Department of Traumatology, Eastern Medical District of Linyi People's Hospital, Linyi, China
| | - J Tian
- Operating Room, Linyi Cancer Hospital, Linyi, China
| | - X J Yi
- Department of Traumatology, Eastern Medical District of Linyi People's Hospital, No.233, Fenghuang Street, Linyi 276000, China
| |
Collapse
|
7
|
Aguilar R, Bustos FJ, Saez M, Rojas A, Allende ML, van Wijnen AJ, van Zundert B, Montecino M. Polycomb PRC2 complex mediates epigenetic silencing of a critical osteogenic master regulator in the hippocampus. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1043-55. [PMID: 27216774 DOI: 10.1016/j.bbagrm.2016.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 12/12/2022]
Abstract
During hippocampal neuron differentiation, the expression of critical inducers of non-neuronal cell lineages must be efficiently silenced. Runx2 transcription factor is the master regulator of mesenchymal cells responsible for intramembranous osteoblast differentiation and formation of the craniofacial bone tissue that surrounds and protects the central nervous system (CNS) in mammalian embryos. The molecular mechanisms that mediate silencing of the Runx2 gene and its downstream target osteogenic-related genes in neuronal cells have not been explored. Here, we assess the epigenetic mechanisms that mediate silencing of osteoblast-specific genes in CNS neurons. In particular, we address the contribution of histone epigenetic marks and histone modifiers on the silencing of the Runx2/p57 bone-related isoform in rat hippocampal tissues at embryonic to adult stages. Our results indicate enrichment of repressive chromatin histone marks and of the Polycomb PRC2 complex at the Runx2/p57 promoter region. Knockdown of PRC2 H3K27-methyltransferases Ezh2 and Ezh1, or forced expression of the Trithorax/COMPASS subunit Wdr5 activates Runx2/p57 mRNA expression in both immature and mature hippocampal cells. Together these results indicate that complementary epigenetic mechanisms progressively and efficiently silence critical osteoblastic genes during hippocampal neuron differentiation.
Collapse
Affiliation(s)
- Rodrigo Aguilar
- Center for Biomedical Research, Universidad Andres Bello, Santiago 8370146, Chile; FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago 8370146, Chile
| | - Fernando J Bustos
- Center for Biomedical Research, Universidad Andres Bello, Santiago 8370146, Chile; FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago 8370146, Chile
| | - Mauricio Saez
- Center for Biomedical Research, Universidad Andres Bello, Santiago 8370146, Chile; FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago 8370146, Chile
| | - Adriana Rojas
- Center for Biomedical Research, Universidad Andres Bello, Santiago 8370146, Chile; FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago 8370146, Chile
| | - Miguel L Allende
- FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago 8370146, Chile; Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago 7800003, Chile
| | | | - Brigitte van Zundert
- Center for Biomedical Research, Universidad Andres Bello, Santiago 8370146, Chile
| | - Martin Montecino
- Center for Biomedical Research, Universidad Andres Bello, Santiago 8370146, Chile; FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago 8370146, Chile.
| |
Collapse
|
8
|
Reis AMS, Ocarino NDM, Boeloni JN, Gomes DA, Goes AM, Ferreira ADF, Serakides R. Inhibition of the osteogenic differentiation of mesenchymal stem cells derived from the offspring of rats treated with caffeine during pregnancy and lactation. Connect Tissue Res 2015; 57:131-42. [PMID: 26634797 DOI: 10.3109/03008207.2015.1117075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Caffeine is an alkaloid that is widely consumed due to its presence in drugs, coffee, tea, and chocolate. This compound passes to offspring through the placenta and milk; can cause teratogenic mutations; and reduces the formation, growth, and mass of bone. Because mesenchymal stem cells (MSCs) are responsible for generating the entire skeleton, we hypothesized that these cells are targets of caffeine. This study evaluated the osteogenic differentiation of MSCs derived from the offspring of rats treated with caffeine during pregnancy and lactation. Twenty-four adult Wistar rats were randomly divided into four groups, including one control group and three experimental groups treated with 25, 50, or 100 mg/kg of caffeine. At weaning, three 21-day-old pups from each dam in each group were euthanized for extraction of bone marrow cells for in vitro tests. Caffeine doses of 50 and 100 mg/kg significantly reduced the activity of alkaline phosphatase at 7, 14, and 21 days and the expression of collagen I at 21 days. However, the expression of gene transcripts for alkaline phosphatase, Runx-2, and bone sialoprotein, as well as the synthesis of mineralization nodules, decreased significantly in all groups treated with caffeine. The expression of osteocalcin was significantly reduced only in the group treated with 50 mg/kg caffeine. The caffeine that passes from the mother to the offspring during pregnancy and lactation reduces the osteogenic differentiation of MSCs. We propose that this reduction in the osteogenic potential of MSCs may be involved in the pathogenesis of osteopenia resulting from caffeine consumption.
Collapse
Affiliation(s)
- Amanda Maria Sena Reis
- a Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) do Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Natália de Melo Ocarino
- a Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) do Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Jankerle Neves Boeloni
- a Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) do Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Dawidson Assis Gomes
- b Laboratório de Imunologia Celular e Biologia Molecular do Departamento de Bioquímica e Imunologia , Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Alfredo Miranda Goes
- b Laboratório de Imunologia Celular e Biologia Molecular do Departamento de Bioquímica e Imunologia , Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Andrea da Fonseca Ferreira
- b Laboratório de Imunologia Celular e Biologia Molecular do Departamento de Bioquímica e Imunologia , Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Rogéria Serakides
- a Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) do Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| |
Collapse
|
9
|
Benítez-Burraco A, Boeckx C. Possible functional links among brain- and skull-related genes selected in modern humans. Front Psychol 2015; 6:794. [PMID: 26136701 PMCID: PMC4468360 DOI: 10.3389/fpsyg.2015.00794] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/26/2015] [Indexed: 12/12/2022] Open
Abstract
The sequencing of the genomes from extinct hominins has revealed that changes in some brain-related genes have been selected after the split between anatomically-modern humans and Neanderthals/Denisovans. To date, no coherent view of these changes has been provided. Following a line of research we initiated in Boeckx and Benítez-Burraco (2014a), we hypothesize functional links among most of these genes and their products, based on the existing literature for each of the gene discussed. The genes we focus on are found mutated in different cognitive disorders affecting modern populations and their products are involved in skull and brain morphology, and neural connectivity. If our hypothesis turns out to be on the right track, it means that the changes affecting most of these proteins resulted in a more globular brain and ultimately brought about modern cognition, with its characteristic generativity and capacity to form and exploit cross-modular concepts, properties most clearly manifested in language.
Collapse
Affiliation(s)
| | - Cedric Boeckx
- Catalan Institute for Research and Advanced Studies , Barcelona, Spain ; Department of Linguistics, Universitat de Barcelona , Barcelona, Spain
| |
Collapse
|
10
|
Reis AMS, Ribeiro LGR, Ocarino NDM, Goes AM, Serakides R. Osteogenic potential of osteoblasts from neonatal rats born to mothers treated with caffeine throughout pregnancy. BMC Musculoskelet Disord 2015; 16:10. [PMID: 25649420 PMCID: PMC4324429 DOI: 10.1186/s12891-015-0467-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 01/15/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Caffeine is an active alkaloid that can cause damage to bones in formation during prenatal life into adulthood. This compound can pass across the placenta and into the mother's milk, causing a reduction in bone formation, growth and mass. The objective of this study was to examine the osteogenic potential of osteoblasts extracted from neonatal rats born to mothers treated with caffeine throughout pregnancy. METHODS Twenty-four adult Wistar rats were randomly divided into four groups, consisting of one control group and three groups that were treated with 25, 50, or 100 mg/kg of caffeine by an oral-gastric probe throughout the duration of the experimental period (pregnancy). At birth, three puppies from each dam in each group were euthanized, and osteoblasts were extracted from the calvaria of these pups for in vitro testing. RESULTS The osteoblasts extracted from the pups of rats that received 50 mg/kg caffeine during pregnancy exhibited increased expression of osteocalcin, osteopontin, sialoprotein, runx-2, alkaline phosphatase and type I collagen transcripts, resulting in increased synthesis of mineralization nodules. CONCLUSIONS Neonates from rats treated with 50 mg/kg caffeine during pregnancy contained osteoblasts with a higher osteogenic potential characterized by increased expression of osteocalcin, osteopontin, sialoprotein, runx-2, alkaline phosphatase and type I collagen and increased synthesis of mineralization nodules.
Collapse
Affiliation(s)
- Amanda Maria Sena Reis
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Caixa Postal 567, campus Pampulha da UFMG, CEP 30123-970, Belo Horizonte, MG, Brazil.
| | - Lorena Gabriela Rocha Ribeiro
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Caixa Postal 567, campus Pampulha da UFMG, CEP 30123-970, Belo Horizonte, MG, Brazil.
| | - Natália de Melo Ocarino
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Caixa Postal 567, campus Pampulha da UFMG, CEP 30123-970, Belo Horizonte, MG, Brazil.
| | - Alfredo Miranda Goes
- Laboratório de Imunologia Celular e Biologia Molecular do Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, CEP: 30.161-970, Belo Horizonte, Minas Gerais, Brazil.
| | - Rogéria Serakides
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Caixa Postal 567, campus Pampulha da UFMG, CEP 30123-970, Belo Horizonte, MG, Brazil.
| |
Collapse
|
11
|
Wu H, Whitfield TW, Gordon JAR, Dobson JR, Tai PWL, van Wijnen AJ, Stein JL, Stein GS, Lian JB. Genomic occupancy of Runx2 with global expression profiling identifies a novel dimension to control of osteoblastogenesis. Genome Biol 2014; 15:R52. [PMID: 24655370 PMCID: PMC4056528 DOI: 10.1186/gb-2014-15-3-r52] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 03/21/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Osteogenesis is a highly regulated developmental process and continues during the turnover and repair of mature bone. Runx2, the master regulator of osteoblastogenesis, directs a transcriptional program essential for bone formation through genetic and epigenetic mechanisms. While individual Runx2 gene targets have been identified, further insights into the broad spectrum of Runx2 functions required for osteogenesis are needed. RESULTS By performing genome-wide characterization of Runx2 binding at the three major stages of osteoblast differentiation--proliferation, matrix deposition and mineralization--we identify Runx2-dependent regulatory networks driving bone formation. Using chromatin immunoprecipitation followed by high-throughput sequencing over the course of these stages, we identify approximately 80,000 significantly enriched regions of Runx2 binding throughout the mouse genome. These binding events exhibit distinct patterns during osteogenesis, and are associated with proximal promoters and also non-promoter regions: upstream, introns, exons, transcription termination site regions, and intergenic regions. These peaks were partitioned into clusters that are associated with genes in complex biological processes that support bone formation. Using Affymetrix expression profiling of differentiating osteoblasts depleted of Runx2, we identify novel Runx2 targets including Ezh2, a critical epigenetic regulator; Crabp2, a retinoic acid signaling component; Adamts4 and Tnfrsf19, two remodelers of the extracellular matrix. We demonstrate by luciferase assays that these novel biological targets are regulated by Runx2 occupancy at non-promoter regions. CONCLUSIONS Our data establish that Runx2 interactions with chromatin across the genome reveal novel genes, pathways and transcriptional mechanisms that contribute to the regulation of osteoblastogenesis.
Collapse
|
12
|
Moreschi E, Biguetti CC, Comparim E, De Andrade Holgado L, Ribeiro-Junior PD, Nary-Filho H, Matsumoto MA. Cyclooxygenase-2 inhibition does not impair block bone grafts healing in rabbit model. J Mol Histol 2013; 44:723-31. [DOI: 10.1007/s10735-013-9519-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 06/14/2013] [Indexed: 10/26/2022]
|
13
|
Sotoca AM, Weber M, van Zoelen EJJ. Gene Expression Regulation underlying Osteo-, Adipo-, and Chondro-Genic Lineage Commitment of Human Mesenchymal Stem Cells. Bioinformatics 2013. [DOI: 10.4018/978-1-4666-3604-0.ch089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Human mesenchymal stem cells have a high potential in regenerative medicine. They can be isolated from a variety of adult tissues, including bone marrow, and can be differentiated into multiple cell types of the mesodermal lineage, including adipocytes, osteocytes, and chondrocytes. Stem cell differentiation is controlled by a process of interacting lineage-specific and multipotent genes. In this chapter, the authors use full genome microarrays to explore gene expression profiles in the process of Osteo-, Adipo-, and Chondro-Genic lineage commitment of human mesenchymal stem cells.
Collapse
|
14
|
Esbrit P, Alcaraz MJ. Current perspectives on parathyroid hormone (PTH) and PTH-related protein (PTHrP) as bone anabolic therapies. Biochem Pharmacol 2013; 85:1417-23. [PMID: 23500550 DOI: 10.1016/j.bcp.2013.03.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 03/01/2013] [Accepted: 03/01/2013] [Indexed: 12/19/2022]
Abstract
Osteoporosis is characterized by low bone mineral density and/or poor bone microarchitecture leading to an increased risk of fractures. The skeletal alterations in osteoporosis are a consequence of a relative deficit of bone formation compared to bone resorption. Osteoporosis therapies have mostly relied on antiresorptive drugs. An alternative therapeutic approach for osteoporosis is currently available, based on the intermittent administration of parathyroid hormone (PTH). Bone anabolism caused by PTH therapy is mainly accounted for by the ability of PTH to increase osteoblastogenesis and osteoblast survival. PTH and PTH-related protein (PTHrP)-an abundant local factor in bone- interact with the common PTH type 1 receptor with similar affinities in osteoblasts. Studies mainly in osteoporosis rodent models and limited data in postmenopausal women suggest that N-terminal PTHrP peptides might be considered a promising bone anabolic therapy. In addition, putative osteogenic actions of PTHrP might be ascribed not only to its N-terminal domain but also to its PTH-unrelated C-terminal region. In this review, we discuss the underlying cellular and molecular mechanisms of the anabolic actions of PTH and the similar potential of PTH-related protein (PTHrP) to increase bone mass and improve bone regeneration.
Collapse
Affiliation(s)
- Pedro Esbrit
- Laboratorio de Metabolismo Mineral y Óseo, Instituto de Investigación Sanitaria-IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain.
| | | |
Collapse
|
15
|
Salinas AJ, Esbrit P, Vallet-Regí M. A tissue engineering approach based on the use of bioceramics for bone repair. Biomater Sci 2013; 1:40-51. [DOI: 10.1039/c2bm00071g] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Biguetti CC, Filho EJM, de Andrade Holgado L, Caviquioli G, Moreschi E, Comparin E, Matsumoto MA. Effect of low-level laser therapy on intramembranous and endochondral autogenous bone grafts healing. Microsc Res Tech 2012; 75:1237-44. [DOI: 10.1002/jemt.22056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 03/19/2012] [Indexed: 11/05/2022]
|
17
|
Baniwal SK, Shah PK, Shi Y, Haduong JH, Declerck YA, Gabet Y, Frenkel B. Runx2 promotes both osteoblastogenesis and novel osteoclastogenic signals in ST2 mesenchymal progenitor cells. Osteoporos Int 2012; 23:1399-413. [PMID: 21881969 PMCID: PMC5771409 DOI: 10.1007/s00198-011-1728-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 06/28/2011] [Indexed: 12/19/2022]
Abstract
UNLABELLED We profiled the global gene expression of a bone marrow-derived mesenchymal pluripotent cell line in response to Runx2 expression. Besides osteoblast differentiation, Runx2 promoted the osteoclastogenesis of co-cultured splenocytes. This was attributable to the upregulation of many novel osteoclastogenic genes and the downregulation of anti-osteoclastogenic genes. INTRODUCTION In addition to being a master regulator for osteoblast differentiation, Runx2 controls osteoblast-driven osteoclastogenesis. Previous studies profiling gene expression during osteoblast differentiation had limited focus on Runx2 or paid little attention to its role in mediating osteoblast-driven osteoclastogenesis. METHODS ST2/Rx2(dox), a bone marrow-derived mesenchymal pluripotent cell line that expresses Runx2 in response to Doxycycline (Dox), was used to profile Runx2-induced gene expression changes. Runx2-induced osteoblast differentiation was assessed based on alkaline phosphatase staining and expression of classical marker genes. Osteoclastogenic potential was evaluated by TRAP staining of osteoclasts that differentiated from primary murine splenocytes co-cultured with the ST2/Rx2(dox) cells. The BeadChip™ platform (Illumina) was used to interrogate genome-wide expression changes in ST2/Rx2(dox) cultures after treatment with Dox or vehicle for 24 or 48 h. Expression of selected genes was also measured by RT-qPCR. RESULTS Dox-mediated Runx2 induction in ST2 cells stimulated their own differentiation along the osteoblast lineage and the differentiation of co-cultured splenocytes into osteoclasts. The latter was attributable to the stimulation of osteoclastogenic genes such as Sema7a, Ltc4s, Efnb1, Apcdd1, and Tnc as well as the inhibition of anti-osteoclastogenic genes such as Tnfrsf11b (OPG), Sema3a, Slco2b1, Ogn, Clec2d (Ocil), Il1rn, and Rspo2. CONCLUSION Direct control of osteoblast differentiation and concomitant indirect control of osteoclast differentiation, both through the activity of Runx2 in pre-osteoblasts, constitute a novel mechanism of coordination with a potential crucial role in coupling bone formation and resorption.
Collapse
Affiliation(s)
- S K Baniwal
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Spachmo B, Arukwe A. Endocrine and developmental effects in Atlantic salmon (Salmo salar) exposed to perfluorooctane sulfonic or perfluorooctane carboxylic acids. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 108:112-124. [PMID: 22265611 DOI: 10.1016/j.aquatox.2011.07.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 07/25/2011] [Accepted: 07/29/2011] [Indexed: 05/31/2023]
Abstract
In this study, we have investigated the effect of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) on endocrine signalling, growth and development in Atlantic salmon (Salmo salar) embryos and larvae. Expression of genes related to the hypothalamic-pituitary-thyroid (HPT) axis, growth-hormone/insulin-like growth factor (GH/IGF) axis and the steroid hormone axis were used as indicators of endocrine disruption. We also studied bone development in larvae, both by observing skeletal structure formation and by investigating expression of genes involved in ossification process. Atlantic salmon embryos, kept in plastic tanks at 5-7°C, were exposed to 100 μg/L PFOA or PFOS from egg stage for a period of 52 days, followed by one-week recovery period. Sampling was performed at day 21, 35, 49 and 56 representing age 549, 597, 679 and 721 dd (dd or day degrees = number of days × temperature in degree Celsius:°C). Note that day 56 or 721 dd is the end of the 1-week recovery period. Larvae were divided into designated head and body regions for the purpose of gene expression analysis, except for genes that regulate ossification that were analyzed in whole larvae. Expression of thyroid receptor α and β (TRα and TRβ), thyroid-stimulating hormone β (TSHβ), T(4) outer-ring deiodinase (T(4)ORD), growth hormone (GH), insulin-like growth factor-I and II (IGF-I and II), insulin-like growth factor I receptor (IGF-IR), and estrogen receptor α and β (ERα and ERβ) were investigated using quantitative PCR. Both PFOS and PFOA exposure produced non-significant alterations in larvae weight (except after the recovery period when a decrease was observed), while larvae length was unaffected. PFOS and PFOA exposure produced body- and head region-specific alterations in expression of all the investigated gene transcripts. Expression of IGF-I and IGF-IR paralleled that of GH, indicating that perturbation of GH expression is a possible end point for disruption of the GH-IGF axis. We did not observe developmental changes related to angiogenesis, ossification and chondrogenesis after exposure to PFOS and PFOA. Transcriptional abnormalities may serve as indicators of chronic exposure, although the concrete mechanisms causing the observed effects remain ambiguous. The implications of these findings for the complete lifecycle, including other developmental and/or reproductive damage, are areas of future study.
Collapse
Affiliation(s)
- Bård Spachmo
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | | |
Collapse
|
19
|
Olufsen M, Arukwe A. Developmental effects related to angiogenesis and osteogenic differentiation in Salmon larvae continuously exposed to dioxin-like 3,3',4,4'-tetrachlorobiphenyl (congener 77). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 105:669-680. [PMID: 21979385 DOI: 10.1016/j.aquatox.2011.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 08/31/2011] [Accepted: 09/11/2011] [Indexed: 05/28/2023]
Abstract
We have studied the effects of dioxin-like 3,3',4,4'-tetrachlorobiphenyl (PCB-77) on developmental effects related to angiogenesis and osteogenesis during early life-stages of salmon. Larvae were kept at 6°C and continuously exposed to waterborne PCB-77 (1 or 10 ng/L) initiated at the egg stage or 416-day degrees (dd) and throughout yolk-sac stage (716 dd) and for a total duration of 50 days (or 300 dd). Gene transcription analysis was performed on whole larvae total RNA at 548, 632, 674 and 716 dd using real-time PCR. Bone morphogenetic protein (bmp2 and bmp4), transforming growth factor β (TGF-β), estrogen receptors (ERα and ERβ), runx2, sox9 and collagen type 2 alpha 1 (col2a1) and vascular endothelial growth factor (VEGF) genes were studied. Effect on VEGF gene transcription was related to observation of heart rate, arrhythmia and anemia, demonstrating effects on vascular system development. Alizarine-red staining and quantification of ossified bone structures showed that PCB-77 produced concentration-dependent increases in the rate of osteogenic tissue formation. PCB-77 produced increases in col2a1 and runx2 transcription with subsequent induction of chondrogenesis and osteogenesis, respectively. The transcription of TGF-β gene was associated with ERβ transcription. Transcripts of AhR gene battery were differentially modulated by PCB-77 and these effects were dependent on concentration and larval age. Evidence of vascular system disruption by PCB-77 was observed as cardiac edema, anemia and arrhythmia in exposed individuals and as decreased level of VEGF gene transcription at early age. In general, our data indicate that PCB-77 produced developmental effects related to angiogenesis and osteogenic differentiation and disruption of vascular system development.
Collapse
Affiliation(s)
- Marianne Olufsen
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, N7491 Trondheim, Norway
| | | |
Collapse
|
20
|
Hwang NS, Zhang C, Hwang YS, Varghese S. Mesenchymal stem cell differentiation and roles in regenerative medicine. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2010; 1:97-106. [PMID: 20835984 DOI: 10.1002/wsbm.26] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adult stem cells with multi or unipotent differentiation potential are present in almost all tissues of adult organisms. The main function of these stem cells is to support normal repair and rejuvenation of diseased and aging tissues. Mesenchymal stem cells (MSCs) isolated from the bone marrow have the potential to differentiate into multiple connective tissues. Advancements in understanding tissue specific differentiation of MSCs in conjunction with global genomic and proteomic profiling of MSCs have not only provided insights into their biology but also made MSC based clinical trials a reality for treating various debilitating diseases and genetic disorders. The emerging evidence that MSCs are immunosuppressive makes them an even more attractive candidate for regenerative medicine as rejections of transplants by the recipient could be a limiting step for moving the stem cells based therapies from "bedside to bed side." To a large extent the therapeutic potential of MSCs is attributed to their differentiation ability. The fate and commitment of MSCs are regulated by various instructive signals from their immediate vicinity or microenvironment, which comprises many biological molecules (soluble and insoluble) and biomechanical forces. These biochemical and biophysical factors play a pivotal role in determining the efficacy of MSC differentiation and their contribution to the repair process. In this review, we discuss the characteristics of MSCs, their differentiation potential toward different skeletal tissues (cartilage and bone), and their emerging role in regenerative medicine.
Collapse
Affiliation(s)
- Nathaniel S Hwang
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA
| | - Chao Zhang
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA
| | - Yong-Sung Hwang
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA
| | - Shyni Varghese
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA
| |
Collapse
|
21
|
Baniwal SK, Khalid O, Gabet Y, Shah RR, Purcell DJ, Mav D, Kohn-Gabet AE, Shi Y, Coetzee GA, Frenkel B. Runx2 transcriptome of prostate cancer cells: insights into invasiveness and bone metastasis. Mol Cancer 2010; 9:258. [PMID: 20863401 PMCID: PMC2955618 DOI: 10.1186/1476-4598-9-258] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 09/23/2010] [Indexed: 02/07/2023] Open
Abstract
Background Prostate cancer (PCa) cells preferentially metastasize to bone at least in part by acquiring osteomimetic properties. Runx2, an osteoblast master transcription factor, is aberrantly expressed in PCa cells, and promotes their metastatic phenotype. The transcriptional programs regulated by Runx2 have been extensively studied during osteoblastogenesis, where it activates or represses target genes in a context-dependent manner. However, little is known about the gene regulatory networks influenced by Runx2 in PCa cells. We therefore investigated genome wide mRNA expression changes in PCa cells in response to Runx2. Results We engineered a C4-2B PCa sub-line called C4-2B/Rx2dox, in which Doxycycline (Dox) treatment stimulates Runx2 expression from very low to levels observed in other PCa cells. Transcriptome profiling using whole genome expression array followed by in silico analysis indicated that Runx2 upregulated a multitude of genes with prominent cancer associated functions. They included secreted factors (CSF2, SDF-1), proteolytic enzymes (MMP9, CST7), cytoskeleton modulators (SDC2, Twinfilin, SH3PXD2A), intracellular signaling molecules (DUSP1, SPHK1, RASD1) and transcription factors (Sox9, SNAI2, SMAD3) functioning in epithelium to mesenchyme transition (EMT), tissue invasion, as well as homing and attachment to bone. Consistent with the gene expression data, induction of Runx2 in C4-2B cells enhanced their invasiveness. It also promoted cellular quiescence by blocking the G1/S phase transition during cell cycle progression. Furthermore, the cell cycle block was reversed as Runx2 levels declined after Dox withdrawal. Conclusions The effects of Runx2 in C4-2B/Rx2dox cells, as well as similar observations made by employing LNCaP, 22RV1 and PC3 cells, highlight multiple mechanisms by which Runx2 promotes the metastatic phenotype of PCa cells, including tissue invasion, homing to bone and induction of high bone turnover. Runx2 is therefore an attractive target for the development of novel diagnostic, prognostic and therapeutic approaches to PCa management. Targeting Runx2 may prove more effective than focusing on its individual downstream genes and pathways.
Collapse
Affiliation(s)
- Sanjeev K Baniwal
- Department of Biochemistry & Molecular Biology, University of Southern California, Los Angeles, CA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hill DP, Berardini TZ, Howe DG, Van Auken KM. Representing ontogeny through ontology: a developmental biologist's guide to the gene ontology. Mol Reprod Dev 2010; 77:314-29. [PMID: 19921742 DOI: 10.1002/mrd.21130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Developmental biology, like many other areas of biology, has undergone a dramatic shift in the perspective from which developmental processes are viewed. Instead of focusing on the actions of a handful of genes or functional RNAs, we now consider the interactions of large functional gene networks and study how these complex systems orchestrate the unfolding of an organism, from gametes to adult. Developmental biologists are beginning to realize that understanding ontogeny on this scale requires the utilization of computational methods to capture, store and represent the knowledge we have about the underlying processes. Here we review the use of the Gene Ontology (GO) to study developmental biology. We describe the organization and structure of the GO and illustrate some of the ways we use it to capture the current understanding of many common developmental processes. We also discuss ways in which gene product annotations using the GO have been used to ask and answer developmental questions in a variety of model developmental systems. We provide suggestions as to how the GO might be used in more powerful ways to address questions about development. Our goal is to provide developmental biologists with enough background about the GO that they can begin to think about how they might use the ontology efficiently and in the most powerful ways possible.
Collapse
|
23
|
de Castro LF, Lozano D, Dapía S, Portal-Núñez S, Caeiro JR, Gómez-Barrena E, Esbrit P. Role of the N- and C-terminal Fragments of Parathyroid-Hormone-Related Protein as Putative Therapies to Improve Bone Regeneration Under High Glucocorticoid Treatment. Tissue Eng Part A 2010; 16:1157-68. [DOI: 10.1089/ten.tea.2009.0355] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
| | - Daniel Lozano
- Bone and Mineral Metabolism Laboratory, Jiménez Díaz Foundation (Capio Group), Madrid, Spain
| | - Sonia Dapía
- Trabeculae®, San Cibrao das Viñas, Ourense, Spain
| | - Sergio Portal-Núñez
- Bone and Mineral Metabolism Laboratory, Jiménez Díaz Foundation (Capio Group), Madrid, Spain
| | | | - Enrique Gómez-Barrena
- Orthopedic Department, Jiménez Díaz Foundation and Autonomous University of Madrid, Madrid, Spain
| | - Pedro Esbrit
- Bone and Mineral Metabolism Laboratory, Jiménez Díaz Foundation (Capio Group), Madrid, Spain
| |
Collapse
|
24
|
Piek E, Sleumer LS, van Someren EP, Heuver L, de Haan JR, de Grijs I, Gilissen C, Hendriks JM, van Ravestein-van Os RI, Bauerschmidt S, Dechering KJ, van Zoelen EJ. Osteo-transcriptomics of human mesenchymal stem cells: accelerated gene expression and osteoblast differentiation induced by vitamin D reveals c-MYC as an enhancer of BMP2-induced osteogenesis. Bone 2010; 46:613-27. [PMID: 19857615 DOI: 10.1016/j.bone.2009.10.024] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 10/16/2009] [Accepted: 10/17/2009] [Indexed: 01/21/2023]
Abstract
Bone marrow-derived human mesenchymal stem cells (hMSCs) have the in vitro capacity to differentiate into osteoblasts, chondrocytes or adipocytes, depending on the applied stimulus. In order to identify novel regulators of osteogenesis in hMSCs, osteo-transcriptomics was performed whereby differentiation induced by dexamethasone (DEX), DEX+ bone morphogenetic protein 2 (BMP2), and DEX+ Vitamin D(3) (1,25(OH)(2)D(3)) was studied over a course of 12 days. Microarray analysis revealed that 2095 genes were significantly regulated by DEX+ 1,25(OH)(2)D(3), of which 961 showed accelerated expression kinetics compared to treatment by DEX alone. The majority of these genes were accelerated 24-48 h after onset of osteogenic treatment. Gene ontology (GO) analysis of these 1,25(OH)(2)D(3)-accelerated genes indicated their involvement in biological processes related to cellular differentiation and cell cycle regulation. When compared to cells treated with DEX or DEX+BMP2, treatment with DEX+ 1,25(OH)(2)D(3) clearly accelerated osteoprogenitor commitment and osteoblast maturation, as measured by alkaline phosphatase (ALP) activity and calcification of the matrix. Cell cycle progression, as observed after initial growth arrest, was not significantly accelerated by 1,25(OH)(2)D(3) and was not required for onset and progression of osteogenesis. However, expression of c-Myc was accelerated by 1,25(OH)(2)D(3), and binding sites for c-MYC were enriched in promoters of genes accelerated by 1,25(OH)(2)D(3). Lentiviral overexpression of c-MYC strongly promoted DEX+ BMP2-induced osteoblast differentiation and matrix maturation. In conclusion, our studies show for the first time that 1,25(OH)(2)D(3) strongly accelerates expression of genes involved in differentiation of hMSCs and, moreover, identify c-MYC as a novel regulator of osteogenesis.
Collapse
Affiliation(s)
- Ester Piek
- Department of Applied Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Fernandes H, Dechering K, Van Someren E, Steeghs I, Apotheker M, Leusink A, Bank R, Janeczek K, Van Blitterswijk C, de Boer J. The role of collagen crosslinking in differentiation of human mesenchymal stem cells and MC3T3-E1 cells. Tissue Eng Part A 2010; 15:3857-67. [PMID: 19694522 DOI: 10.1089/ten.tea.2009.0011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Collagen is the main protein component of the extracellular matrix of bone, and it has structural and instructive properties. Collagen undergoes many post-translational modifications, including extensive crosslinking. Although defective crosslinking has been implicated in human syndromes (e.g., osteogenesis imperfecta or Ehlers-Danlos syndrome), it is not clear to what extent crosslinking is necessary for collagen's instructive properties during bone formation. Here we report that inhibition of collagen crosslinking in the mouse pre-osteoblast cell line MC3T3-E1 impairs the osteogenic program. Genome-wide expression profiling of beta-aminopropionitrile-treated and control cells revealed that matrix deposition by MC3T3-E1 cells provides a feed back signal, driving cells through the differentiation process, that is strongly impaired when crosslinking is inhibited. Inhibition of crosslinking did not affect osteogenic differentiation of human mesenchymal stem cells (hMSCs), shown by the expression of alkaline phosphatase and genome-wide gene expression analysis, although it enhances matrix mineralization. In conclusion, collagen crosslinking harbors instructive properties in MC3T3-E1 differentiation but plays a more-passive role in differentiation of bone marrow-derived hMSCs.
Collapse
Affiliation(s)
- Hugo Fernandes
- Department of Tissue Regeneration, University of Twente, Enschede, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Runx2 controls the commitment of mesenchymal cells to the osteoblastic lineage. Distinct promoters, designated P1 and P2, give rise to functionally similar Runx2-II and Runx2-I isoforms. We postulate that this dual promoter gene structure permits temporal and spatial adjustments in the amount of Runx2 isoforms necessary for optimal bone development. To evaluate the gene dose-dependent effect of Runx2 isoforms on bone development, we intercrossed selective Runx2-II(+/-) with nonselective Runx2-II(+/-)/Runx2-I(+/-) mice to create compound mutant mice: Runx2-II(+/-), Runx2-II(+/-)/Runx2-I(+/-), Runx2-II(-/-), Runx2-II(-/-)/Runx2-I(+/-), Runx2-II(-/-)/Runx2-I(-/-). Analysis of the different Runx2-deficient genotypes showed gene dose-dependent differences in the level of expression of the Runx2 isoforms. In addition, we found that Runx2-I is predominately expressed in the perichondrium and proliferating chondrocytes, whereas Runx2-II is expressed in hypertrophic chondrocytes and metaphyseal osteoblasts. Newborn mice showed impaired development of a mineralized skeleton, bone length, and widening of the hypertrophic zone that were proportionate to the reduction in total Runx2 protein expression. Osteoblast differentiation ex vivo was also proportionate to total amount of Runx2 expression that correlated with reduced Runx2 binding to the osteocalcin promoter by quantitative chromatin immunoprecipitation analysis. Functional analysis of P1 and P2 promoters showed differential regulation of the two promoters in osteoblastic cell lines. These findings support the possibility that the total amount of Runx2 derived from two isoforms and the P1 and P2 promoters, by regulating the time, place, and amount of Runx2 in response to changing environmental cues, impacts on bone development.
Collapse
|
27
|
Liu S, Tang W, Fang J, Ren J, Li H, Xiao Z, Quarles LD. Novel regulators of Fgf23 expression and mineralization in Hyp bone. Mol Endocrinol 2009; 23:1505-18. [PMID: 19556340 PMCID: PMC2737552 DOI: 10.1210/me.2009-0085] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 06/12/2009] [Indexed: 12/20/2022] Open
Abstract
We used gene array analysis of cortical bone to identify Phex-dependent gene transcripts associated with abnormal Fgf23 production and mineralization in Hyp mice. We found evidence that elevation of Fgf23 expression in osteocytes is associated with increments in Fgf1, Fgf7, and Egr2 and decrements in Sost, an inhibitor in the Wnt-signaling pathway, were observed in Hyp bone. beta-Catenin levels were increased in Hyp cortical bone, and TOPflash luciferase reporter assay showed increased transcriptional activity in Hyp-derived osteoblasts, consistent with Wnt activation. Moreover, activation of Fgf and Wnt-signaling stimulated Fgf23 promoter activity in osteoblasts. We also observed reductions in Bmp1, a metalloproteinase that metabolizes the extracellular matrix protein Dmp1. Alterations were also found in enzymes regulating the posttranslational processing and stability of Fgf23, including decrements in the glycosyltransferase Galnt3 and the proprotein convertase Pcsk5. In addition, we found that the Pcsk5 and the glycosyltransferase Galnt3 were decreased in Hyp bone, suggesting that reduced posttranslational processing of FGF23 may also contribute to increased Fgf23 levels in Hyp mice. With regard to mineralization, we identified additional candidates to explain the intrinsic mineralization defect in Hyp osteoblasts, including increases in the mineralization inhibitors Mgp and Thbs4, as well as increases in local pH-altering factors, carbonic anhydrase 12 (Car12) and 3 (Car3) and the sodium-dependent citrate transporter (Slc13a5). These studies demonstrate the complexity of gene expression alterations in bone that accompanies inactivating Phex mutations and identify novel pathways that may coordinate Fgf23 expression and mineralization of extracellular matrix in Hyp bone.
Collapse
Affiliation(s)
- Shiguang Liu
- The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Lozano D, de Castro LF, Dapía S, Andrade-Zapata I, Manzarbeitia F, Alvarez-Arroyo MV, Gómez-Barrena E, Esbrit P. Role of parathyroid hormone-related protein in the decreased osteoblast function in diabetes-related osteopenia. Endocrinology 2009; 150:2027-35. [PMID: 19196804 DOI: 10.1210/en.2008-1108] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A deficit in bone formation is a major factor in diabetes-related osteopenia. We examined here whether diabetes-associated changes in osteoblast phenotype might in part result from a decrease in PTH-related protein (PTHrP). We used a bone marrow ablation model in diabetic mice by multiple streptozotocin injections. PTHrP (1-36) (100 microg/kg, every other day) or vehicle was administered to mice for 13 d starting 1 wk before marrow ablation. Diabetic mice showed bone loss in both the intact femur and the regenerating tibia on d 6 after ablation; in the latter, this was related to decreased bone-forming cells, osteoid surface, and blood vessels, and increased marrow adiposity. Moreover, a decrease in matrix mineralization occurred in ex vivo bone marrow cultures from the unablated tibia from diabetic mice. These skeletal alterations were associated with decreased gene expression (by real-time PCR) of Runx2, osterix, osteocalcin, PTHrP, the PTH type 1 receptor, vascular endothelial growth factor and its receptors, and osteoprotegerin to receptor activator of nuclear factor-kappaB ligand mRNA ratio, and increased peroxisome proliferator-activated receptor-gamma2 mRNA levels. Similar changes were induced by hyperosmotic (high glucose or mannitol) medium in osteoblastic MC3T3-E1 cells, which were mimicked by adding a neutralizing anti-PTHrP antibody or PTH type 1 receptor antagonists to these cells in normal glucose medium. PTHrP (1-36) administration reversed these changes in both intact and regenerating bones from diabetic mice in vivo, and in MC3T3-E1 cells exposed to high glucose. These findings strongly suggest that PTHrP has an important role in the altered osteoblastic function related to diabetes.
Collapse
Affiliation(s)
- Daniel Lozano
- Laboratorio de Metabolismo Mineral y Oseo, Fundación Jiménez Díaz (Capio Group), Avenida. Reyes Católicos, 2, 28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Baniwal SK, Khalid O, Sir D, Buchanan G, Coetzee GA, Frenkel B. Repression of Runx2 by androgen receptor (AR) in osteoblasts and prostate cancer cells: AR binds Runx2 and abrogates its recruitment to DNA. Mol Endocrinol 2009; 23:1203-14. [PMID: 19389811 DOI: 10.1210/me.2008-0470] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Runx2 and androgen receptor (AR) are master transcription factors with pivotal roles in bone metabolism and prostate cancer (PCa). We dissected AR-mediated repression of Runx2 in dihydrotestosterone (DHT)-treated osteoblastic and PCa cells using reporter assays and endogenous Runx2 target genes. Repression required DHT, but not AR's transactivation function, and was associated with nuclear colocalization of the two proteins. Runx2 and AR coimmunoprecipitated and interacted directly in glutathione-S-transferase pull-down assays. Interaction was ionic in nature. Intact AR DNA-binding domain (DBD) was necessary and sufficient for both interaction with Runx2 and its repression. Runx2 sequences required for interaction were the C-terminal 132 amino acid residues together with the Runt DBD. Runx2 DNA binding was abrogated by endogenous AR in chromatin immunoprecipitation assays and by recombinant AR-DBD in gel shift assays. Furthermore, AR caused increased nuclear mobility of Runx2 as indicated by faster fluorescence recovery after photobleaching. Thus, AR binds Runx2 and abrogates its binding to DNA and possibly to other nuclear components. Clinical relevance of our results was suggested by an inverse correlation between expression of AR-responsive prostate-specific antigen and osteocalcin genes in PCa biopsies. Given the tumor suppressor properties of Runx2, its repression by AR may constitute a mechanism of hormone carcinogenesis. Attenuation of Runx2 by AR in osteoblasts may play a role in skeletal metabolism: the bone-sparing effect of androgens is attributable, in part, to keeping Runx2 activity in check and preventing high-turnover bone disease such as seen after castration and in transgenic mice overexpressing Runx2 in osteoblasts.
Collapse
Affiliation(s)
- Sanjeev K Baniwal
- Department Biochemistry and Molecular Biology, Institute of Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | |
Collapse
|
30
|
Wolf LV, Yang Y, Wang J, Xie Q, Braunger B, Tamm ER, Zavadil J, Cvekl A. Identification of pax6-dependent gene regulatory networks in the mouse lens. PLoS One 2009; 4:e4159. [PMID: 19132093 PMCID: PMC2612750 DOI: 10.1371/journal.pone.0004159] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 11/21/2008] [Indexed: 11/20/2022] Open
Abstract
Lineage-specific DNA-binding transcription factors regulate development by activating and repressing particular set of genes required for the acquisition of a specific cell type. Pax6 is a paired domain and homeodomain-containing transcription factor essential for development of central nervous, olfactory and visual systems, as well as endocrine pancreas. Haploinsufficiency of Pax6 results in perturbed lens development and homeostasis. Loss-of-function of Pax6 is incompatible with lens lineage formation and results in abnormal telencephalic development. Using DNA microarrays, we have identified 559 genes expressed differentially between 1-day old mouse Pax6 heterozygous and wild type lenses. Of these, 178 (31.8%) were similarly increased and decreased in Pax6 homozygous embryonic telencephalon [Holm PC, Mader MT, Haubst N, Wizenmann A, Sigvardsson M, Götz M (2007) Loss- and gain-of-function analyses reveals targets of Pax6 in the developing mouse telencephalon. Mol Cell Neurosci 34: 99–119]. In contrast, 381 (68.2%) genes were differently regulated between the lens and embryonic telencephalon. Differential expression of nine genes implicated in lens development and homeostasis: Cspg2, Igfbp5, Mab21l2, Nrf2f, Olfm3, Spag5, Spock1, Spon1 and Tgfb2, was confirmed by quantitative RT-PCR, with five of these genes: Cspg2, Mab21l2, Olfm3, Spag5 and Tgfb2, identified as candidate direct Pax6 target genes by quantitative chromatin immunoprecipitation (qChIP). In Mab21l2 and Tgfb2 promoter regions, twelve putative individual Pax6-binding sites were tested by electrophoretic mobility shift assays (EMSAs) with recombinant Pax6 proteins. This led to the identification of two and three sites in the respective Mab21l2 and Tgfb2 promoter regions identified by qChIPs. Collectively, the present studies represent an integrative genome-wide approach to identify downstream networks controlled by Pax6 that control mouse lens and forebrain development.
Collapse
Affiliation(s)
- Louise V. Wolf
- The Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Ying Yang
- The Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jinhua Wang
- NYU Cancer Institute, New York University Langone Medical Center, New York, New York, United States of America
| | - Qing Xie
- The Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Barbara Braunger
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Ernst R. Tamm
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Jiri Zavadil
- NYU Cancer Institute, New York University Langone Medical Center, New York, New York, United States of America
- Department of Pathology, New York University Langone Medical Center, New York, New York, United States of America
| | - Ales Cvekl
- The Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
31
|
Hopwood B, Tsykin A, Findlay DM, Fazzalari NL. Gene expression profile of the bone microenvironment in human fragility fracture bone. Bone 2009; 44:87-101. [PMID: 18840552 DOI: 10.1016/j.bone.2008.08.120] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2008] [Revised: 08/06/2008] [Accepted: 08/15/2008] [Indexed: 11/30/2022]
Abstract
Osteoporosis (OP) is a common age-related systemic skeletal disease, with a strong genetic component, characterised by loss of bone mass and strength, which leads to increased bone fragility and susceptibility to fracture. Although some progress has been made in identifying genes that may contribute to OP disease, much of the genetic component of OP has yet to be accounted for. Therefore, to investigate the molecular basis for the changes in bone causally involved in OP and fragility fracture, we have used a microarray approach. We have analysed altered gene expression in human OP fracture bone by comparing mRNA in bone from individuals with fracture of the neck of the proximal femur (OP) with that from age-matched individuals with osteoarthritis (OA), and control (CTL) individuals with no known bone pathology. The OA sample set was included because an inverse association, with respect to bone density, has been reported between OA and the OP individuals. Compugen H19K oligo human microarray slides were used to compare the gene expression profiles of three sets of female samples comprising, 10 OP-CTL, 10 OP-OA, and 10 OA-CTL sample pairs. Using linear models for microarray analysis (Limma), 150 differentially expressed genes in OP bone with t scores >5 were identified. Differential expression of 32 genes in OP bone was confirmed by real time PCR analysis (p<0.01). Many of the genes identified have known or suspected roles in bone metabolism and in some cases have been implicated previously in OP pathogenesis. Three major sets of differentially expressed genes in OP bone were identified with known or suspected roles in either osteoblast maturation (PRRX1, ANXA2, ST14, CTSB, SPARC, FST, LGALS1, SPP1, ADM, and COL4A1), myelomonocytic differentiation and osteoclastogenesis (TREM2, ANXA2, IL10, CD14, CCR1, ADAM9, CCL2, CTGF, and KLF10), or adipogenesis, lipid and/or glucose metabolism (IL10, MARCO, CD14, AEBP1, FST, CCL2, CTGF, SLC14A1, ANGPTL4, ADM, TAZ, PEA15, and DOK4). Altered expression of these genes and others in these groups is consistent with previously suggested underlying molecular mechanisms for OP that include altered osteoblast and osteoclast differentiation and function, and an imbalance between osteoblastogenesis and adipogenesis.
Collapse
Affiliation(s)
- B Hopwood
- Division of Tissue Pathology, Institute of Medical and Veterinary Science, Adelaide, South Australia, Australia.
| | | | | | | |
Collapse
|
32
|
Khalid O, Baniwal SK, Purcell DJ, Leclerc N, Gabet Y, Stallcup MR, Coetzee GA, Frenkel B. Modulation of Runx2 activity by estrogen receptor-alpha: implications for osteoporosis and breast cancer. Endocrinology 2008; 149:5984-95. [PMID: 18755791 PMCID: PMC2613062 DOI: 10.1210/en.2008-0680] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The transcription factors Runx2 and estrogen receptor-alpha (ERalpha) are involved in numerous normal and disease processes, including postmenopausal osteoporosis and breast cancer. Using indirect immunofluorescence microscopy and pull-down techniques, we found them to colocalize and form complexes in a ligand-dependent manner. Estradiol-bound ERalpha strongly interacted with Runx2 directly through its DNA-binding domain and only indirectly through its N-terminal and ligand-binding domains. Runx2's amino acids 417-514, encompassing activation domain 3 and the nuclear matrix targeting sequence, were sufficient for interaction with ERalpha's DNA-binding domain. As a consequence of the interaction, Runx2's transcriptional activation activity was strongly repressed, as shown by reporter assays in COS7 cells, breast cancer cells, and late-stage MC3T3-E1 osteoblast cultures. Metaanalysis of gene expression in 779 breast cancer biopsies indicated negative correlation between the expression of ERalpha and Runx2 target genes. Selective ER modulators (SERM) induced ERalpha-Runx2 interactions but led to various functional outcomes. The regulation of Runx2 by ERalpha may play key roles in osteoblast and breast epithelial cell growth and differentiation; hence, modulation of Runx2 by native and synthetic ERalpha ligands offers new avenues in selective ER modulator evaluation and development.
Collapse
Affiliation(s)
- Omar Khalid
- Department of Urology, Preventive Medicine, Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Roelofsen T, Akkers R, Beumer W, Apotheker M, Steeghs I, van de Ven J, Gelderblom C, Garritsen A, Dechering K. Sphingosine-1-phosphate acts as a developmental stage specific inhibitor of platelet-derived growth factor-induced chemotaxis of osteoblasts. J Cell Biochem 2008; 105:1128-38. [DOI: 10.1002/jcb.21915] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Coussens AK, Hughes IP, Wilkinson CR, Morris CP, Anderson PJ, Powell BC, van Daal A. Identification of genes differentially expressed by prematurely fused human sutures using a novel in vivo – in vitro approach. Differentiation 2008; 76:531-45. [DOI: 10.1111/j.1432-0436.2007.00244.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
35
|
Fowlkes JL, Bunn RC, Liu L, Wahl EC, Coleman HN, Cockrell GE, Perrien DS, Lumpkin CK, Thrailkill KM. Runt-related transcription factor 2 (RUNX2) and RUNX2-related osteogenic genes are down-regulated throughout osteogenesis in type 1 diabetes mellitus. Endocrinology 2008; 149:1697-704. [PMID: 18162513 PMCID: PMC2276714 DOI: 10.1210/en.2007-1408] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 12/18/2007] [Indexed: 12/12/2022]
Abstract
Type 1 diabetes mellitus is associated with a number of disorders of skeletal health, conditions that rely, in part, on dynamic bone formation. A mouse model of distraction osteogenesis was used to study the consequences of streptozotocin-induced diabetes and insulin treatment on bone formation and osteoblastogenesis. In diabetic mice compared with control mice, new bone formation was decreased, and adipogenesis was increased in and around, respectively, the distraction gaps. Although insulin treatment restored bone formation to levels observed in nondiabetic control mice, it failed to significantly decrease adipogenesis. Molecular events altered during de novo bone formation in untreated type 1 diabetes mellitus, yet restored with insulin treatment were examined so as to clarify specific osteogenic genes that may contribute to diabetic bone disease. RNA from distraction gaps was analyzed by gene microarray and quantitative RT-PCR for osteogenic genes of interest. Runt-related transcription factor 2 (RUNX2), and several RUNX2 target genes, including matrix metalloproteinase-9, Akp2, integrin binding sialoprotein, Dmp1, Col1a2, Phex, Vdr, osteocalcin, and osterix, were all significantly down-regulated in the insulin-deficient, hyperglycemic diabetic animals; however, insulin treatment of diabetic animals significantly restored their expression. Expression of bone morphogenic protein-2, transcriptional coactivator with PDZ-binding motif, and TWIST2, all important regulators of RUNX2, were not impacted by the diabetic condition, suggesting that the defect in osteogenesis resides at the level of RUNX2 expression and its activity. Together, these data demonstrate that insulin and/or glycemic status can regulate osteogenesis in vivo, and systemic insulin therapy can, in large part, rescue the diabetic bone phenotype at the tissue and molecular level.
Collapse
Affiliation(s)
- John L Fowlkes
- Arkansas Children's Hospital, 800 Marshall Street, Little Rock, AR 72202, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Guo Y, Yang TL, Pan F, Xu XH, Dong SS, Deng HW. Molecular genetic studies of gene identification for osteoporosis. Expert Rev Endocrinol Metab 2008; 3:223-267. [PMID: 30764094 DOI: 10.1586/17446651.3.2.223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review comprehensively summarizes the most important and representative molecular genetics studies of gene identification for osteoporosis published up to the end of September 2007. It is intended to constitute a sequential update of our previously published reviews covering the available data up to the end of 2004. Evidence from candidate gene-association studies, genome-wide linkage and association studies, as well as functional genomic studies (including gene-expression microarray and proteomics) on osteogenesis and osteoporosis, are reviewed separately. Studies of transgenic and knockout mice models relevant to osteoporosis are summarized. The major results of all studies are tabulated for comparison and ease of reference. Comments are made on the most notable findings and representative studies for their potential influence and implications on our present understanding of genetics of osteoporosis. The format adopted by this review should be ideal for accommodating future new advances and studies.
Collapse
Affiliation(s)
- Yan Guo
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Tie-Lin Yang
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Feng Pan
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xiang-Hong Xu
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Shan-Shan Dong
- a The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Hong-Wen Deng
- b The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China and Departments of Orthopedic Surgery and Basic Medical Sciences, University of Missouri - Kansas City, Kansas City, MO 64108, USA.
| |
Collapse
|
37
|
Diagnosis of Osteoporosis with Vitamin K as a New Biochemical Marker. VITAMINS AND HORMONES 2008; 78:417-34. [DOI: 10.1016/s0083-6729(07)00017-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
|
38
|
Bibliography. Current world literature. Parathyroids, bone and mineral metabolism. Curr Opin Endocrinol Diabetes Obes 2007; 14:494-501. [PMID: 17982358 DOI: 10.1097/med.0b013e3282f315ef] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Knippenberg M, Helder MN, de Blieck-Hogervorst JMA, Wuisman PIJM, Klein-Nulend J. Prostaglandins differentially affect osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells. ACTA ACUST UNITED AC 2007; 13:2495-503. [PMID: 17655490 DOI: 10.1089/ten.2006.0420] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Adipose tissue-derived mesenchymal stem cells (AT-MSCs) are currently used for bone tissue engineering. AT-MSCs undergoing osteogenic differentiation respond to mechanical loading with increased cyclooxygenase-2 gene expression, a key enzyme in prostaglandin (PG) synthesis. PGs are potent multifunctional regulators in bone, exhibiting stimulatory and inhibitory effects on bone formation and resorption. PGE(2), but not PGI(2) or PGF(2), recruits osteoprogenitors from the bone marrow space and influences their differentiation. We hypothesize that PGE(2), PGI(2), and PGF(2) may differentially regulate osteogenic differentiation of human AT-MSCs. PGE(2), PGI(2), and PGF(2) (0.01-10 microM) affected osteogenic differentiation, but not proliferation of AT-MSCs after 4-14 days. Only PGF(2) (0.01-10 microM) increased alkaline phosphatase (ALP) activity at day 4. PGE(2) (10 microM), PGI(2) (0.01-10 microM), and PGF(2) (10 microM) decreased ALP activity, whereas PGF(2) (0.1 microM) increased ALP activity at day 14. PGF(2) (0.01-0.1 microM) and PGI(2) (0.01 microM) upregulated osteopontin gene expression, and PGF(2) (0.01 microM) upregulated alpha1(I)procollagen gene expression at day 4. PGE(2) and PGF(2) (10 microM) at day 4 and PGF(2) (1 microM) at day 14 downregulated runt-related transcription factor-2 gene expression. We conclude that PGE(2), PGI(2), and PGF(2) differentially affect osteogenic differentiation of AT-MSCs, with PGF(2) being the most potent. Thus, locally produced PGF(2) might be most beneficial in promoting osteogenic differentiation of AT-MSCs, resulting in enhanced bone formation for bone tissue engineering.
Collapse
Affiliation(s)
- M Knippenberg
- Department of Oral Cell Biology, Academic Center of Dentistry Amsterdam (ACTA)-Universiteit van Amsterdam and Vrije Universiteit, Research Institute MOVE, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
40
|
Handrigan GR, Buchtová M, Richman JM. Gene discovery in craniofacial development and disease--cashing in your chips. Clin Genet 2007; 71:109-19. [PMID: 17250659 DOI: 10.1111/j.1399-0004.2007.00761.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
An unbiased, polygenic approach is needed to unravel the complex molecular bases of craniofacial development and disease. DNA microarrays, the current paradigm of genome-wide analysis, permit the simultaneous study of many thousands of genes, the ready identification of candidate molecules and pathways, and the compilation of gene expression profiles for whole systems--pathologic and embryonic alike. We survey the existing literature applying microarrays to craniofacial biology and highlight the value of animal models, particularly mice and chickens, to understanding molecular regulation in the craniofacial complex. We also emphasize the importance of functional studies and high-throughput assays to extracting useful data from microarray output. It is our goal to help put researchers and clinicians on the same page as microarray technology moves into the forefront of craniofacial biology.
Collapse
Affiliation(s)
- G R Handrigan
- Department of Oral Health Sciences, Life Sciences Institute, University of British Columbia, Vancouver, B.C., Canada
| | | | | |
Collapse
|
41
|
Pregizer S, Barski A, Gersbach CA, García AJ, Frenkel B. Identification of novel Runx2 targets in osteoblasts: Cell type-specific BMP-dependent regulation of Tram2. J Cell Biochem 2007; 102:1458-71. [PMID: 17486635 DOI: 10.1002/jcb.21366] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Runx2 is an osteoblast master transcription factor and a target for bone morphogenetic protein (BMP) signaling, but our knowledge of events downstream of Runx2 is limited. In this study, we used ChIP Display to discover seven novel genomic regions occupied by Runx2 in living MC3T3-E1 osteoblastic cells. Six of these regions are found within or up to 1-kb away from annotated genes, but only two are found within 5'-gene flanking sequences. One of the newly identified Runx2 target genes is Tram2, whose product facilitates proper folding of type I collagen. We demonstrate that Tram2 mRNA is suppressed in non-osteoblasts when Runx2 is over-expressed, and that this suppression is alleviated upon treatment with BMP-2. Moreover, we show that BMP-induced Runx2 expression in the C3H10T1/2, ST2, C2C12, and MC3T3-E1 cell lines coincides with an increase in Tram2 mRNA levels. Thus, Runx2 may regulate Tram2 expression in a BMP-dependent manner, and Tram2 may participate in the overall osteogenic function of Runx2. Among the other Runx2 target genes discovered in this study are Lnx2, an intracellular scaffolding protein that may play a role in Notch signaling, and Tnfrsf12a, a Tumor Necrosis Factor receptor family member that influences both osteoblast and osteoclast differentiation. Expanding our knowledge of Runx2 target genes, and manipulation of these genes, are warranted to better understand the regulation of osteoblast function and to provide opportunities for the development of new bone anabolics.
Collapse
Affiliation(s)
- Steven Pregizer
- Department of Biochemistry & Molecular Biology, Institute for Genetic Medicine, Keck School of Medicine at the University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | |
Collapse
|