1
|
Immune Modulatory Effects of Nonsteroidal Anti-inflammatory Drugs in the Perioperative Period and Their Consequence on Postoperative Outcome. Anesthesiology 2022; 136:843-860. [PMID: 35180291 DOI: 10.1097/aln.0000000000004141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nonsteroidal anti-inflammatory drugs are among the most commonly administered drugs in the perioperative period due to their prominent role in pain management. However, they potentially have perioperative consequences due to immune-modulating effects through the inhibition of prostanoid synthesis, thereby affecting the levels of various cytokines. These effects may have a direct impact on the postoperative outcome of patients since the immune system aims to restore homeostasis and plays an indispensable role in regeneration and repair. By affecting the immune response, consequences can be expected on various organ systems. This narrative review aims to highlight these potential immune system-related consequences, which include systemic inflammatory response syndrome, acute respiratory distress syndrome, immediate and persistent postoperative pain, effects on oncological and neurologic outcome, and wound, anastomotic, and bone healing.
Collapse
|
2
|
Wright CS, Robling AG, Farach-Carson MC, Thompson WR. Skeletal Functions of Voltage Sensitive Calcium Channels. Curr Osteoporos Rep 2021; 19:206-221. [PMID: 33721180 PMCID: PMC8216424 DOI: 10.1007/s11914-020-00647-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 12/15/2022]
Abstract
Voltage-sensitive calcium channels (VSCCs) are ubiquitous multimeric protein complexes that are necessary for the regulation of numerous physiological processes. VSCCs regulate calcium influx and various intracellular processes including muscle contraction, neurotransmission, hormone secretion, and gene transcription, with function specificity defined by the channel's subunits and tissue location. The functions of VSCCs in bone are often overlooked since bone is not considered an electrically excitable tissue. However, skeletal homeostasis and adaptation relies heavily on VSCCs. Inhibition or deletion of VSCCs decreases osteogenesis, impairs skeletal structure, and impedes anabolic responses to mechanical loading. RECENT FINDINGS: While the functions of VSCCs in osteoclasts are less clear, VSCCs have distinct but complementary functions in osteoblasts and osteocytes. PURPOSE OF REVIEW: This review details the structure, function, and nomenclature of VSCCs, followed by a comprehensive description of the known functions of VSCCs in bone cells and their regulation of bone development, bone formation, and mechanotransduction.
Collapse
Affiliation(s)
- Christian S Wright
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN, 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA
| | - Alexander G Robling
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA
- Department of Anatomy & Cell Biology, Indiana University, Indianapolis, IN, 46202, USA
| | - Mary C Farach-Carson
- Department of Diagnostic & Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, 77054, USA
| | - William R Thompson
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN, 46202, USA.
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, 46202, USA.
- Department of Anatomy & Cell Biology, Indiana University, Indianapolis, IN, 46202, USA.
| |
Collapse
|
3
|
Abstract
Hemophilia is caused by a lack of antihemophilic factor(s), for example, factor VIII (FVIII; hemophilia A) and factor IX (FIX; hemophilia B). Low bone mass is widely reported in epidemiological studies of hemophilia, and patients with hemophilia are at an increased risk of fracture. The detailed etiology of bone homeostasis imbalance in hemophilia is unclear. Clinical and experimental studies show that FVIII and FIX are involved in bone remodeling. However, it is likely that antihemophilic factors affect bone biology through thrombin pathways rather than via their own intrinsic properties. In addition, among patients with hemophilia, there are pathophysiological processes in several systems that might contribute to bone loss. This review summarizes studies on the association between hemophilia and bone remodeling, and might shed light on the challenges facing the care and prevention of osteoporosis and fracture in patients with hemophilia.
Collapse
Affiliation(s)
- Hanshi Wang
- Department of Sports Medicine and Joint Surgery, The People's Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xizhuang Bai
- Department of Sports Medicine and Joint Surgery, The People's Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
4
|
Chiarito M, Brunetti G, D'Amato G, Faienza MF. Monitoring and maintaining bone health in patients with Turner syndrome. Expert Rev Endocrinol Metab 2020; 15:431-438. [PMID: 33074770 DOI: 10.1080/17446651.2020.1834846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Subjects affected with Turner Syndrome (TS) suffer low bone mineral density and high risk of fracture from a young age. Estrogen deficiency is considered the main risk factor but other factors, such as intrinsic bone abnormalities, enhanced osteoclastogenesis, vitamin D deficiency and other comorbidities may contribute to the exalted bone fragility. AREAS COVERED The authors performed a literature search in PubMed and EMBASE, using selected key words. They focused their search on pathogenetic mechanisms of osteoporosis in TS and updated the diagnosis, prevention and therapeutic interventions. EXPERT OPINION Bone health is a concern in subjects with TS, and strategies to prevent osteoporosis and fractures should be considered from childhood. Advice on how to live a healthy lifestyle, including physical activity and correct nutrition, should be given during childhood in order to prevent bone impairment later in life. The screening for vitamin D deficiency should be performed between the ages of 9 and 11, and every 2-3 years thereafter. Early initiation of estrogen replacement therapy (ERT) between 11-12 years of age, prompt titration to the adult dose after 2 years, and long-term follow-up to guarantee compliance with ERT, are the key points of osteoporosis prevention in women with TS.
Collapse
Affiliation(s)
- Mariangela Chiarito
- Department of Biomedical Sciences and Human Oncology, University "A.Moro" , Bari, Italy
| | - Giacomina Brunetti
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Human Anatomy and Histology, University "A. Moro" , Bari, Italy
| | - Gabriele D'Amato
- Department of Women's and Children's Health, ASL Bari, Neonatal Intensive Care Unit, Di Venere Hospital , Bari, Italy
| | - Maria Felicia Faienza
- Department of Biomedical Sciences and Human Oncology, University "A.Moro" , Bari, Italy
| |
Collapse
|
5
|
Lisowska B, Kosson D, Domaracka K. Lights and shadows of NSAIDs in bone healing: the role of prostaglandins in bone metabolism. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1753-1758. [PMID: 29950809 PMCID: PMC6014392 DOI: 10.2147/dddt.s164562] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this review, we discuss the current data about the anatomy and function of bone tissue with particular regard to influence of prostaglandins. Bone tissue dynamics are characterized by a constant remodeling process that involves all bone tissue cells. The communication between bone component cells and other organs is necessary for bone remodeling equilibrium and confirms the dynamic character of bone tissue. Remodeling is also a vital element of healing processes and in adapting bone tissue to stress responses. Therefore, in our review we present the role and significance of bone cells and signaling pathways enabling maintenance of bone homeostasis and remodeling process stability. Cyclooxygenase (COX) is a crucial enzyme in the production of prostaglandins and thromboxane. We focus on the role of COX isoenzymes with highlighting their connection with bone formation, resorption and repair. Prostaglandins are known as arachidonic acid metabolites acting through specific membrane receptors and play an important role in the regulation of osteoblast and osteoclast functions. Prostaglandin PGE2 with its four defined receptors (EP1R, EP2R, EP3R and EP4R) is crucial to maintain balanced bone turnover. Their stimulatory or inhibitory effects appear to depend on different structure-activity relations and signaling pathways. We have described the role of these receptors in bone metabolism and healing. We conclude that the activity of prostaglandins in bone tissue is defined by maintaining bone remodeling balance and its reactions to humoral mediators and mechanical stress. Most data confirm that among prostaglandins, PGE2 takes part in all processes of trauma response, including homeostasis, inflammation and healing, and plays a key role in bone physiology.
Collapse
Affiliation(s)
- Barbara Lisowska
- Department of Anesthesiology and Intensive Care, John Paul II Western Hospital in Grodzisk Mazowiecki, Grodzisk Mazowiecki, Poland
| | - Dariusz Kosson
- Division of Teaching, Department of Anaesthesiology and Intensive Care, Medical University of Warsaw, Warsaw, Poland
| | - Karolina Domaracka
- Department of Anaesthesiology and Intensive Care, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
6
|
Faienza MF, Ventura A, Colucci S, Cavallo L, Grano M, Brunetti G. Bone Fragility in Turner Syndrome: Mechanisms and Prevention Strategies. Front Endocrinol (Lausanne) 2016; 7:34. [PMID: 27199891 PMCID: PMC4844601 DOI: 10.3389/fendo.2016.00034] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/11/2016] [Indexed: 01/18/2023] Open
Abstract
Bone fragility is recognized as one of the major comorbidities in Turner syndrome (TS). The mechanisms underlying bone impairment in affected patients are not clearly elucidated, but estrogen deficiency and X-chromosomal abnormalities represent important factors. Moreover, although many girls with TS undergo recombinant growth hormone therapy to treat short stature, the efficacy of this treatment on bone mineral density is controversial. The present review will focus on bone fragility in subjects with TS, providing an overview on the pathogenic mechanisms and some prevention strategies.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Pediatrics Unit, Department of Biomedical Sciences and Human Oncology, University of Bari “A. Moro”, Bari, Italy
| | - Annamaria Ventura
- Pediatrics Unit, Department of Biomedical Sciences and Human Oncology, University of Bari “A. Moro”, Bari, Italy
| | - Silvia Colucci
- Section of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “A. Moro”, Bari, Italy
| | - Luciano Cavallo
- Pediatrics Unit, Department of Biomedical Sciences and Human Oncology, University of Bari “A. Moro”, Bari, Italy
| | - Maria Grano
- Department of Emergency and Organ Transplantation (DETO), University of Bari “A. Moro”, Bari, Italy
| | - Giacomina Brunetti
- Section of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “A. Moro”, Bari, Italy
- *Correspondence: Giacomina Brunetti,
| |
Collapse
|
7
|
Rajpathak SN, Vellarikkal SK, Patowary A, Scaria V, Sivasubbu S, Deobagkar DD. Human 45,X fibroblast transcriptome reveals distinct differentially expressed genes including long noncoding RNAs potentially associated with the pathophysiology of Turner syndrome. PLoS One 2014; 9:e100076. [PMID: 24932682 PMCID: PMC4059722 DOI: 10.1371/journal.pone.0100076] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 05/21/2014] [Indexed: 01/09/2023] Open
Abstract
Turner syndrome is a chromosomal abnormality characterized by the absence of whole or part of the X chromosome in females. This X aneuploidy condition is associated with a diverse set of clinical phenotypes such as gonadal dysfunction, short stature, osteoporosis and Type II diabetes mellitus, among others. These phenotypes differ in their severity and penetrance among the affected individuals. Haploinsufficiency for a few X linked genes has been associated with some of these disease phenotypes. RNA sequencing can provide valuable insights to understand molecular mechanism of disease process. In the current study, we have analysed the transcriptome profiles of human untransformed 45,X and 46,XX fibroblast cells and identified differential expression of genes in these two karyotypes. Functional analysis revealed that these differentially expressing genes are associated with bone differentiation, glucose metabolism and gonadal development pathways. We also report differential expression of lincRNAs in X monosomic cells. Our observations provide a basis for evaluation of cellular and molecular mechanism(s) in the establishment of Turner syndrome phenotypes.
Collapse
Affiliation(s)
- Shriram N Rajpathak
- Centre of Advanced Studies, Department of Zoology, University of Pune, Pune, India
| | - Shamsudheen Karuthedath Vellarikkal
- Genomics and Molecular medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, India
| | - Ashok Patowary
- GN Ramachandran Knowledge Centre for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, Delhi, India
| | - Vinod Scaria
- GN Ramachandran Knowledge Centre for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, India
| | - Sridhar Sivasubbu
- Genomics and Molecular medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, India
| | - Deepti D Deobagkar
- Centre of Advanced Studies, Department of Zoology, University of Pune, Pune, India
| |
Collapse
|
8
|
Affiliation(s)
- Sigbjørn Dimmen
- Orthopaedic Department, Ullevaal Hospital, Oslo University Hospital, Kirkeveien 166, 0407 Oslo, Norway.
| |
Collapse
|
9
|
Xu M, Choudhary S, Voznesensky O, Gao Q, Adams D, Diaz-Doran V, Wu Q, Goltzman D, Raisz LG, Pilbeam CC. Basal bone phenotype and increased anabolic responses to intermittent parathyroid hormone in healthy male COX-2 knockout mice. Bone 2010; 47:341-52. [PMID: 20471507 PMCID: PMC3056501 DOI: 10.1016/j.bone.2010.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 04/26/2010] [Accepted: 05/06/2010] [Indexed: 01/09/2023]
Abstract
Cyclooxygenase-2 (COX-2) knockout (KO) mice in inbred strains can have renal dysfunction with secondary hyperparathyroidism (HPTH), making direct effects of COX-2 KO on bone difficult to assess. COX-2 KO mice in an outbred CD-1 background did not have renal dysfunction but still had two-fold elevated PTH compared to wild type (WT) mice. Compared to WT mice, KO mice had increased serum markers of bone turnover, decreased femoral bone mineral density (BMD) and cortical bone thickness, but no differences in trabecular bone volume by microCT or dynamic histomorphometry. Because PTH is a potent inducer of COX-2 and prostaglandin (PG) production, we examined the effects of COX-2 KO on bone responses after 3 weeks of intermittent PTH. Intermittent PTH increased femoral BMD and cortical bone area more in KO mice than in WT mice and increased trabecular bone volume in the distal femur in both WT and KO mice. Although not statistically significant, PTH-stimulated increases in trabecular bone tended to be greater in KO mice than in WT mice. PTH increased serum markers of bone formation and resorption more in KO than in WT mice but increased the ratio of osteoblastic surface-to-osteoclastic surface only in KO mice. PTH also increased femoral mineral apposition rates and bone formation rates in KO mice more than in WT mice. Acute mRNA responses to PTH of genes that might mediate some anabolic and catabolic effects of PTH tended to be greater in KO than WT mice. We conclude that (1) the basal bone phenotype in male COX-2 KO mice might reflect HPTH, COX-2 deficiency or both, and (2) increased responses to intermittent PTH in COX-2 KO mice, despite the presence of chronic HPTH, suggest that absence of COX-2 increased sensitivity to PTH. It is possible that manipulation of endogenous PGs could have important clinical implications for anabolic therapy with PTH.
Collapse
Affiliation(s)
- Manshan Xu
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Blackwell KA, Raisz LG, Pilbeam CC. Prostaglandins in bone: bad cop, good cop? Trends Endocrinol Metab 2010; 21:294-301. [PMID: 20079660 PMCID: PMC2862787 DOI: 10.1016/j.tem.2009.12.004] [Citation(s) in RCA: 200] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 12/10/2009] [Accepted: 12/11/2009] [Indexed: 02/01/2023]
Abstract
Prostaglandins (PGs) are multifunctional regulators of bone metabolism that stimulate both bone resorption and formation. PGs have been implicated in bone resorption associated with inflammation and metastatic bone disease, and also in bone formation associated with fracture healing and heterotopic ossification. Recent studies have identified roles for inducible cyclooxygenase (COX)-2 and PGE(2) receptors in these processes. Although the effects of PGs have been most often associated with cAMP production and protein kinase A activation, PGs can engage an extensive G-protein signaling network. Further analysis of COX-2 and PG receptors and their downstream G-protein signaling in bone could provide important clues to the regulation of skeletal cell growth in both health and disease.
Collapse
Affiliation(s)
- Katherine A Blackwell
- New England Musculoskeletal Institute, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT, USA
| | | | | |
Collapse
|
11
|
Liedert A, Wagner L, Seefried L, Ebert R, Jakob F, Ignatius A. Estrogen receptor and Wnt signaling interact to regulate early gene expression in response to mechanical strain in osteoblastic cells. Biochem Biophys Res Commun 2010; 394:755-9. [DOI: 10.1016/j.bbrc.2010.03.065] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 03/10/2010] [Indexed: 11/17/2022]
|
12
|
Cottrell JA, O'Connor JP. Pharmacological inhibition of 5-lipoxygenase accelerates and enhances fracture-healing. J Bone Joint Surg Am 2009; 91:2653-65. [PMID: 19884440 DOI: 10.2106/jbjs.h.01844] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Loss of cyclooxygenase-2 activity is known to impair fracture-healing in animal models and to inhibit heterotopic ossification in humans. Cyclooxygenase-2 is the rate-limiting enzyme involved in the conversion of arachidonic acid into prostaglandins. Arachidonic acid also is a substrate for 5-lipoxygenase, which catalyzes the initial steps in leukotriene synthesis. In contrast to cyclooxygenase-2, genetic ablation of 5-lipoxygenase accelerates and enhances fracture-healing in mice. The goal of this study was to determine if systemic inhibition of 5-lipoxygenase with an orally delivered drug could accelerate fracture-healing. METHODS Closed femoral fractures were made in Sprague-Dawley rats. The rats were treated with oral doses of vehicle (ninety-five rats), celecoxib (fifty-nine rats), or AA-861 (a 5-lipoxygenase inhibitor; eighty-nine rats). Fracture-healing was measured with use of radiographs, histomorphometry, and biomechanical testing. Effects of drug treatments on callus cell proliferation and gene expression were determined by incorporation of bromodeoxyuridine and quantitative polymerase chain reactions, respectively. RESULTS AA-861 treatment decreased fracture-bridging time, significantly increased early callus cartilage (5.6-fold; p < 0.001) and bone formation (4.2-fold; p = 0.015), and significantly increased callus mechanical properties compared with the vehicle-treated rat fractures. Callus cell proliferation rate was increased by AA-861 treatment, compared with vehicle, at day 2 after fracture (3.68% compared with 2.08%; p < 0.001; 95% confidence interval, -2.81 to -0.039) but was reduced by celecoxib treatment at day 4 after fracture (4.22% compared with 1.84%; p < 0.001; 95% confidence interval, 2.27 to 4.07). At day 10 after fracture, AA-861 and celecoxib treatment increased Type-II collagen mRNA levels (16.0-fold and 6.1-fold, respectively; p < 0.001 for both), but only AA-861 treatment caused an increase in Type-X collagen mRNA (6.3-fold; p < 0.001). AA-861 treatment significantly increased cyclooxygenase-2 (4.0-fold at day 10; p < 0.001) and osteopontin mRNA levels (3.6-fold at day 7; p = 0.024), while decreasing 5-lipoxygenase mRNA levels (5.6-fold at day 4; p < 0.001). CONCLUSIONS Systemic inhibition of 5-lipoxygenase with an orally delivered drug significantly accelerated and enhanced fracture-healing in this rat model. Gene expression analysis indicates that cyclooxygenase-2 is necessary for callus chondrocytes to progress into hypertrophy so as to complete endochondral ossification. Conversely, inhibition of 5-lipoxygenase alters the inflammatory response, which enhances callus chondrocyte hypertrophy and accelerates endochondral ossification.
Collapse
Affiliation(s)
- Jessica A Cottrell
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, MSB E-659/Biochem, 185 South Orange Avenue, Newark, NJ 07103, USA
| | | |
Collapse
|
13
|
Yamakawa K, Kamekura S, Kawamura N, Saegusa M, Kamei D, Murakami M, Kudo I, Uematsu S, Akira S, Chung UI, Nakamura K, Kawaguchi H. Association of microsomal prostaglandin E synthase 1 deficiency with impaired fracture healing, but not with bone loss or osteoarthritis, in mouse models of skeletal disorders. ACTA ACUST UNITED AC 2008; 58:172-83. [PMID: 18163499 DOI: 10.1002/art.23158] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Prostaglandin E synthase (PGES) functions as the terminal enzyme in the biosynthesis of prostaglandin E(2) (PGE(2)) and is a potent regulator of bone and cartilage metabolism. Among the 3 isozymes of PGES, microsomal PGES-1 (mPGES-1) is known to play the most critical role in the production of PGE(2) in pathophysiologic events. This study investigated the roles of mPGES-1 under normal physiologic and pathophysiologic conditions in the skeletons of mPGES-1-deficient (mPGES-1(-/-)) mice. METHODS Skeletons of mPGES-1(-/-) mice and their wild-type littermates were compared by radiologic and histologic analyses. Four models of skeletal disorders were created: bone loss induced by ovariectomy, bone loss induced by hind limb unloading, osteoarthritis (OA) induced by instability in the knee joint, and bone fracture by osteotomy at the tibial midshaft. Expression of the PGES enzymes was examined by immunohistochemistry and real-time reverse transcription-polymerase chain reaction. The cellular mechanism of fracture healing was examined in ex vivo cultures of costal cartilage chondrocytes. RESULTS Microsomal PGES-1(-/-) mice had unaffected skeletal phenotypes under normal physiologic conditions. In the bone fracture model, fracture healing was impaired by the mPGES-1 deficiency, with half of the mice remaining in a non-bone union state even after 21 days; normal fracture healing was restored by adenoviral reintroduction of mPGES-1. The other skeletal disorders were not affected by the mPGES-1 deficiency. In vivo and ex vivo analyses revealed an impaired proliferation of chondrocytes in cartilage with the mPGES-1 deficiency, at an early stage of fracture healing. CONCLUSION In these mouse models of skeletal disorders, mPGES-1 was indispensable for bone repair through chondrocyte proliferation, but was not essential for the skeleton under normal physiologic conditions, nor did it play a role in the pathophysiologic conditions of bone loss due to ovariectomy, bone loss due to unloading, or stress-induced OA.
Collapse
|
14
|
Xu Z, Choudhary S, Okada Y, Voznesensky O, Alander C, Raisz L, Pilbeam C. Cyclooxygenase-2 gene disruption promotes proliferation of murine calvarial osteoblasts in vitro. Bone 2007; 41:68-76. [PMID: 17467356 PMCID: PMC1993538 DOI: 10.1016/j.bone.2007.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 02/21/2007] [Accepted: 03/12/2007] [Indexed: 12/31/2022]
Abstract
Cyclooxygenase-2 (COX-2) is highly expressed in osteoblasts, and COX-2 produced prostaglandins (PGs) can increase osteoblastic differentiation in vitro. The goal of this study was to examine effects of COX-2 expression on calvarial osteoblastic proliferation and apoptosis. Primary osteoblasts (POBs) were cultured from calvariae of COX-2 wild-type (WT) and knockout (KO) mice. POB proliferation was evaluated by (3)H-thymidine incorporation and analysis of cell replication and cell cycle distribution by flow cytometry. POB apoptosis was evaluated by annexin and PI staining on flow cytometry. As expected, PGE(2) production and alkaline phosphatase (ALP) activity were increased in WT cultures compared to KO cultures. In contrast, cell numbers were decreased in WT compared to KO cells by day 4 of culture. Proliferation, measured on days 3-7 of culture, was 2-fold greater in KO than in WT POBs and associated with decreased Go/G1 and increased S cell cycle distribution. There was no significant effect of COX-2 genotype on apoptosis under basal culture conditions on day 5 of culture. Cell growth was decreased in KO POBs by the addition of PGE(2) or a protein kinase A agonist and increased in WT POBs by the addition of NS398, a selective COX-2 inhibitor. In contrast, differentiation and cell growth in marrow stromal cell (MSC) cultures, evaluated by ALP and crystal violet staining respectively, were increased in MSCs from WT mice compared to MSCs from KO mice, and exogenous PGE(2) increased cell growth in KO MSC cultures. We conclude that PGs secondary to COX-2 expression decrease osteoblastic proliferation in cultured calvarial cells but increase growth of osteoblastic precursors in MSC cultures.
Collapse
Affiliation(s)
- Zheng Xu
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Shilpa Choudhary
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Yosuke Okada
- First department of Internal Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555 Japan
| | - Olga Voznesensky
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Cynthia Alander
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Lawrence Raisz
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Carol Pilbeam
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| |
Collapse
|
15
|
Krieger NS, Frick KK, LaPlante Strutz K, Michalenka A, Bushinsky DA. Regulation of COX-2 mediates acid-induced bone calcium efflux in vitro. J Bone Miner Res 2007; 22:907-17. [PMID: 17352658 DOI: 10.1359/jbmr.070316] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
UNLABELLED Chronic metabolic acidosis induces net Ca efflux from bone; this osteoclastic bone resorption is mediated by increased osteoblastic prostaglandin synthesis. Cyclooxygenase, the rate-limiting enzyme in prostaglandin synthesis, is present in both constitutive (COX-1) and inducible (COX-2) forms. We report here that acidosis increases both osteoblastic RNA and protein levels for COX-2 and that genetic deficiency or pharmacologic inhibition of COX-2 significantly reduces acid-induced Ca efflux from bone. INTRODUCTION Incubation of neonatal mouse calvariae in medium simulating physiologic metabolic acidosis induces an increase in osteoblastic prostaglandin E2 (PGE2) release and net calcium (Ca) efflux from bone. Increased PGE2 is necessary for acid-induced bone resorption, because inhibition of cyclooxygenase activity with indomethacin significantly decreases not only PGE2 production but also Ca release. Cyclooxygenase is present in both constitutive (COX-1) and inducible (COX-2) forms. Because COX-2 activity has been implicated in several forms of pathological bone resorption, we tested the hypothesis that COX-2 is critical for acid-induced, cell-mediated bone Ca efflux. MATERIALS AND METHODS To determine the effect of metabolic acidosis on COX-2 RNA and protein, primary cells isolated from neonatal CD-1 mouse calvariae were cultured in neutral (Ntl) or physiologically acidic medium (Met). RNA levels for COX-2 and COX-1 were measured by quantitative real-time PCR. Levels of COX-2 and COX-1 protein were measured by immunoblot analysis. To determine the effect of acidosis on bone Ca efflux in genetically deficient COX-2 mice, mice heterozygous for the COX-2 knockout (strain B6;129S7-Ptgs2(tm1Jed)/J) were used as breeders, and neonatal calvariae were cultured in Ntl or Met. To determine the effects of the specific COX-2 inhibitor, NS398, on acid-induced bone resorption, CD-1 calvariae were incubated in Ntl or Met with or without NS398 (1 microM). Medium PGE2 was assayed by ELISA. RESULTS Incubation of mouse calvarial cells in Met significantly increased COX-2 RNA and protein levels without a change in COX-1. Increased COX-2 protein levels in response to Met were also observed in cultured calvariae. Acid-induced, cell-mediated Ca efflux from B6;129S7-Ptgs2(tm1Jed)/J calvariae was dependent on genotype. From 0 to 24 h, when physicochemical Ca efflux predominates, Met significantly increased net Ca efflux in all genotypes. After 24 h, when cell-mediated Ca efflux predominates, Met induced greater Ca efflux from (+/+) than from (+/-), and there was no increase from (-/-). In calvariae from CD-1 mice, NS398 significantly inhibited both the acid-induced increase in PGE2 and Ca release. CONCLUSIONS The specific acid-induced increase in COX-2 RNA and protein levels and the dependency of the increased Ca efflux on COX-2 activity, as determined by both genetic deficiency and pharmacologic inhibition, show that COX-2 is critical for acid-induced, cell-mediated bone resorption.
Collapse
Affiliation(s)
- Nancy S Krieger
- Department of Medicine, Division of Nephrology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|