1
|
Pragnere S, Essayan L, El-Kholti N, Petiot E, Pailler-Mattei C. In vitrobioprinted 3D model enhancing osteoblast-to-osteocyte differentiation. Biofabrication 2024; 17:015021. [PMID: 39533747 DOI: 10.1088/1758-5090/ad8ca6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
In vitrobone models are pivotal for understanding tissue behavior and cellular responses, particularly in unravelling certain pathologies' mechanisms and assessing the impact of new therapeutic interventions. A desirablein vitrobone model should incorporate primary human cells within a 3D environment that mimics the mechanical properties characteristics of osteoid and faithfully replicate all stages of osteogenic differentiation from osteoblasts to osteocytes. However, to date, no bio-printed model using primary osteoblasts has demonstrated the expression of osteocytic protein markers. This study aimed to develop bio-printedin vitromodel that accurately captures the differentiation process of human primary osteoblasts into osteocytes. Given the considerable impact of hydrogel stiffness and relaxation behavior on osteoblast activity, we employed three distinct cross-linking solutions to fabricate hydrogels. These hydrogels were designed to exhibit either similar elastic behavior with different elastic moduli, or similar elastic moduli with varying relaxation behavior. These hydrogels, composed of gelatin (5% w/v), alginate (1%w/v) and fibrinogen (2%w/v), were designed to be compatible with micro-extrusion bioprinting and proliferative. The modulation of their biomechanical properties, including stiffness and viscoelastic behavior, was achieved by applying various concentrations of cross-linkers targeting both gelatin covalent bonding (transglutaminase) and alginate chains' ionic cross-linking (calcium). Among the conditions tested, the hydrogel with a low elastic modulus of 8 kPa and a viscoelastic behavior over time exhibited promising outcomes regarding osteoblast-to-osteocyte differentiation. The cessation of cell proliferation coincided with a significant increase in alkaline phosphatase activity, the development of dendrites, and the expression of the osteocyte marker PHEX. Within this hydrogel, cells actively influenced their environment, as evidenced by hydrogel contraction and the secretion of collagen I. This bio-printed model, demonstrating primary human osteoblasts expressing an osteocyte-specific protein, marks a significant achievement. We envision its substantial utility in advancing research on bone pathologies, including osteoporosis and bone tumors.
Collapse
Affiliation(s)
- Sarah Pragnere
- Laboratory of Tribology and System Dynamics,, UMR-CNRS 5513-Ecole Centrale Lyon, Ecully, Auvergne-Rhône-Alpes FR 69134, France
| | - Lucie Essayan
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, 3d.FAB Platform-Equipe Gembas-Batiment Lederer-1 rue Victor Grignard, Villeurbanne, Auvergne-Rhône-Alpes FR 69622, France
| | - Naima El-Kholti
- Tissue Biology and Therapeutic Engineering 7 Passage du Vercors UMR 5305 University of Lyon, CNRS, 69367 Lyon, France, Lyon, Auvergne-Rhône-Alpes FR 69367, France
| | - Emma Petiot
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, 3d.FAB Platform-Equipe Gembas-Batiment Lederer-1 rue Victor Grignard, Villeurbanne, Auvergne-Rhône-Alpes FR 69622, France
| | - Cyril Pailler-Mattei
- Laboratory of Tribology and System Dynamics,, UMR-CNRS 5513-Ecole Centrale Lyon, Ecully, Auvergne-Rhône-Alpes FR 69134, France
- ISPB-Faculté de Pharmacie de Lyon, Université Claude Bernard Lyon 1-University of Lyon, Lyon 69008, France
| |
Collapse
|
2
|
Sicard L, Maillard S, Mbita Akoa D, Torrens C, Collignon AM, Coradin T, Chaussain C. Sclerostin Antibody-Loaded Dense Collagen Hydrogels Promote Critical-Size Bone Defect Repair. ACS Biomater Sci Eng 2024; 10:6451-6464. [PMID: 39269225 DOI: 10.1021/acsbiomaterials.4c00883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The management of extensive bone loss remains a clinical challenge. Numerous studies are underway to develop a combination of biomaterials, biomolecules, and stem cells to address this challenge. In particular, the systemic administration of antibodies against sclerostin, a regulator of bone formation, was recently shown to enhance the bone repair efficiency of dense collagen hydrogels (DCHs) hosting murine dental pulp stem cells (mDPSCs). The aim of the present study was to assess whether these antibodies, encapsulated and released from DCHs, could promote craniofacial bone repair by the local inhibition of sclerostin. In vitro studies showed that antibody loading modified neither the hydrogel structure nor the viability of seeded mDPSCs. When implanted in a mouse calvaria critical-size bone defect, antibody-loaded DCHs showed repair capabilities similar to those of acellular unloaded DCHs combined with antibody injections. Importantly, the addition of mDPSCs provided no further benefit. Altogether, the local delivery of antisclerostin antibodies from acellular dense collagen scaffolds is highly effective for bone repair. The drastic reduction in the required amount of antibody compared to systemic injection should reduce the cost of the procedure, making the strategy proposed here a promising therapeutic approach for large bone defect repair.
Collapse
Affiliation(s)
- Ludovic Sicard
- Université Paris Cité, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d'Imagerie du Vivant (PIV), 92120 Montrouge, France
- AP-HP, Dental Medicine Departments, Bretonneau and Louis Mourier Hospitals, GHN-Université Paris Cité, 75018 Paris, France
| | - Sophie Maillard
- Université Paris Cité, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d'Imagerie du Vivant (PIV), 92120 Montrouge, France
| | - Daline Mbita Akoa
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR 7574, 4 Place Jussieu, 75005 Paris, France
| | - Coralie Torrens
- Université Paris Cité, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d'Imagerie du Vivant (PIV), 92120 Montrouge, France
| | - Anne-Margaux Collignon
- Université Paris Cité, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d'Imagerie du Vivant (PIV), 92120 Montrouge, France
- AP-HP, Dental Medicine Departments, Bretonneau and Louis Mourier Hospitals, GHN-Université Paris Cité, 75018 Paris, France
| | - Thibaud Coradin
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR 7574, 4 Place Jussieu, 75005 Paris, France
| | - Catherine Chaussain
- Université Paris Cité, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d'Imagerie du Vivant (PIV), 92120 Montrouge, France
- AP-HP, Dental Medicine Departments, Bretonneau and Louis Mourier Hospitals, GHN-Université Paris Cité, 75018 Paris, France
- AP-HP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Dental Medicine Department, Bretonneau Hospital, GHN-Université Paris Cité, 75018 Paris, France
| |
Collapse
|
3
|
Kim EJ, Kim KH, Kim HY, Lee DJ, Li S, Ngoc Han M, Jung HS. Harnessing the dental cells derived from human induced pluripotent stem cells for hard tissue engineering. J Adv Res 2024; 61:119-131. [PMID: 37619933 PMCID: PMC11258659 DOI: 10.1016/j.jare.2023.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/02/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023] Open
Abstract
INTRODUCTION Most mineralized tissues in our body are present in bones and teeth. Human induced pluripotent stem cells (hiPSCs) are promising candidates for cell therapy to help regenerate bone defects and teeth loss. The extracellular matrix (ECM) is a non-cellular structure secreted by cells. Studies on the dynamic microenvironment of ECM are necessary for stem cell-based therapies. OBJECTIVES We aim to optimize an effective protocol for hiPSC differentiation into dental cells without utilizing animal-derived factors or cell feeders that can be applied to humans and to mineralize differentiated dental cells into hard tissues. METHODS For the differentiation of both dental epithelial cells (DECs) and dental mesenchymal cells (DMCs) from hiPSCs, an embryoid body (EB) was formed from hiPSCs. hiPSC were differentiated into neural crest cells with an induction medium utilized in our previous study, and hiPSC-derived DECs were differentiated with a BMP-modulated customized medium. hiPSC-dental cells were then characterized, analyzed, and validated with transcriptomic analysis, western blotting, and RT-qPCR. To form mineralized tissues, hiPSC-derived DECs were recombined with hiPSC-derived DMCs encapsulated in various biomaterials, including gelatin methacryloyl (GelMA), collagen, and agar matrix. RESULTS These hiPSC-derived dental cells are highly osteogenic and chondro-osteogenic in photocrosslinkable GelMA hydrogel and collagen type I microenvironments. Furthermore, hiPSC-derived dental cells in agar gel matrix induced the formation of a bioengineered tooth. CONCLUSION Our study provides an approach for applying hiPSCs for hard tissue regeneration, including tooth and bone. This study has immense potential to provide a novel technology for bioengineering organs for various regenerative therapies.
Collapse
Affiliation(s)
- Eun-Jung Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea.
| | - Ka-Hwa Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea.
| | | | - Dong-Joon Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea.
| | - Shujin Li
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea.
| | - Mai Ngoc Han
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea.
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea.
| |
Collapse
|
4
|
Mbitta Akoa D, Sicard L, Hélary C, Torrens C, Baroukh B, Poliard A, Coradin T. Role of Physico-Chemical and Cellular Conditions on the Bone Repair Potential of Plastically Compressed Collagen Hydrogels. Gels 2024; 10:130. [PMID: 38391460 PMCID: PMC10887598 DOI: 10.3390/gels10020130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Since their first description nearly 20 years ago, dense collagen hydrogels obtained by plastic compression have become popular scaffolds in tissue engineering. In particular, when seeded with dental pulp stem cells, they have demonstrated a great in vivo potential in cranial bone repair. Here, we investigated how physico-chemical and cell-seeding conditions could influence the formation and in vitro mineralization of these cellularized scaffolds. A qualitative assessment demonstrated that the gel stability before and after compression was highly sensitive to the conditions of fibrillogenesis, especially initial acid acetic and buffer concentrations. Gels with similar rheological properties but different fibrillar structures that exhibited different stabilities when used for the 3D culture of Stem cells from Human Exfoliated Deciduous teeth (SHEDs) could be prepared. Finally, in our optimal physico-chemical conditions, mineralization could be achieved only using human dental pulp stem cells (hDPSCs) at a high cell density. These results highlight the key role of fibrillogenic conditions and cell type/density on the bone repair potential of cell-laden plastically compressed collagen hydrogels.
Collapse
Affiliation(s)
- Daline Mbitta Akoa
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, 75005 Paris, France
| | - Ludovic Sicard
- Université de Paris, UR2496 Pathologies, Imagerie et Biothérapies Orofaciales, FHU-DDS-Net, Dental School, 92120 Montrouge, France
- AP-HP Service de Médecine Bucco-Dentaire, Hôpital Bretonneau, 75018 Paris, France
| | - Christophe Hélary
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, 75005 Paris, France
| | - Coralie Torrens
- Université de Paris, UR2496 Pathologies, Imagerie et Biothérapies Orofaciales, FHU-DDS-Net, Dental School, 92120 Montrouge, France
| | - Brigitte Baroukh
- Université de Paris, UR2496 Pathologies, Imagerie et Biothérapies Orofaciales, FHU-DDS-Net, Dental School, 92120 Montrouge, France
| | - Anne Poliard
- Université de Paris, UR2496 Pathologies, Imagerie et Biothérapies Orofaciales, FHU-DDS-Net, Dental School, 92120 Montrouge, France
| | - Thibaud Coradin
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, 75005 Paris, France
| |
Collapse
|
5
|
Kolahi Azar H, Gharibshahian M, Rostami M, Mansouri V, Sabouri L, Beheshtizadeh N, Rezaei N. The progressive trend of modeling and drug screening systems of breast cancer bone metastasis. J Biol Eng 2024; 18:14. [PMID: 38317174 PMCID: PMC10845631 DOI: 10.1186/s13036-024-00408-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
Bone metastasis is considered as a considerable challenge for breast cancer patients. Various in vitro and in vivo models have been developed to examine this occurrence. In vitro models are employed to simulate the intricate tumor microenvironment, investigate the interplay between cells and their adjacent microenvironment, and evaluate the effectiveness of therapeutic interventions for tumors. The endeavor to replicate the latency period of bone metastasis in animal models has presented a challenge, primarily due to the necessity of primary tumor removal and the presence of multiple potential metastatic sites.The utilization of novel bone metastasis models, including three-dimensional (3D) models, has been proposed as a promising approach to overcome the constraints associated with conventional 2D and animal models. However, existing 3D models are limited by various factors, such as irregular cellular proliferation, autofluorescence, and changes in genetic and epigenetic expression. The imperative for the advancement of future applications of 3D models lies in their standardization and automation. The utilization of artificial intelligence exhibits the capability to predict cellular behavior through the examination of substrate materials' chemical composition, geometry, and mechanical performance. The implementation of these algorithms possesses the capability to predict the progression and proliferation of cancer. This paper reviewed the mechanisms of bone metastasis following primary breast cancer. Current models of breast cancer bone metastasis, along with their challenges, as well as the future perspectives of using these models for translational drug development, were discussed.
Collapse
Affiliation(s)
- Hanieh Kolahi Azar
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maliheh Gharibshahian
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammadreza Rostami
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Food Science and Nutrition Group (FSAN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Vahid Mansouri
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Leila Sabouri
- Department of Tissue Engineering and Applied Cell Sciences, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
6
|
Troka I, Griffanti G, Canaff L, Hendy GN, Goltzman D, Nazhat SN. Effect of Menin Deletion in Early Osteoblast Lineage on the Mineralization of an In Vitro 3D Osteoid-like Dense Collagen Gel Matrix. Biomimetics (Basel) 2022; 7:biomimetics7030101. [PMID: 35892371 PMCID: PMC9329857 DOI: 10.3390/biomimetics7030101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/24/2022] [Accepted: 07/16/2022] [Indexed: 02/05/2023] Open
Abstract
Bone has a complex microenvironment formed by an extracellular matrix (ECM) composed mainly of mineralized type I collagen fibres. Bone ECM regulates signaling pathways important in the differentiation of osteoblast-lineage cells, necessary for bone mineralization and in preserving tissue architecture. Compared to conventional 2D cell cultures, 3D in vitro models may better mimic bone ECM and provide an environment to support osteoblastic differentiation. In this study, a biomimetic 3D osteoid-like dense collagen gel model was used to investigate the role of the nuclear protein menin plays in osteoblastic differentiation and matrix mineralization. Previous in vitro and in vivo studies have shown that when expressed at later stages of osteoblastic differentiation, menin modulates osteoblastogenesis and regulates bone mass in adult mice. To investigate the role of menin when expressed at earlier stages of the osteoblastic lineage, conditional knockout mice in which the Men1 gene is specifically deleted early (i.e., at the level of the pluripotent mesenchymal stem cell lineage), where generated and primary calvarial osteoblasts were cultured in plastically compressed dense collagen gels for 21 days. The proliferation, morphology and differentiation of isolated seeded primary calvarial osteoblasts from knockout (Prx1-Cre; Men1f/f) mice were compared to those isolated from wild-type (Men1f/f) mice. Primary calvarial osteoblasts from knockout and wild-type mice did not show differences in terms of proliferation. However, in comparison to wild-type cells, primary osteoblast cells derived from knockout mice demonstrated deficient mineralization capabilities and an altered gene expression profile when cultured in 3D dense collagen gels. In summary, these findings indicate that when expressed at earlier stages of osteoblast differentiation, menin is important in maintaining matrix mineralization in 3D dense collagen gel matrices, in vitro.
Collapse
Affiliation(s)
- Ildi Troka
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada;
| | - Gabriele Griffanti
- Department of Mining and Materials Engineering, McGill University, Montreal, QC H3A 0C5, Canada;
| | - Lucie Canaff
- Department of Medicine, McGill University and McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (L.C.); (D.G.)
| | - Geoffrey N. Hendy
- Department of Medicine, McGill University and McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (L.C.); (D.G.)
| | - David Goltzman
- Department of Medicine, McGill University and McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (L.C.); (D.G.)
| | - Showan N. Nazhat
- Department of Mining and Materials Engineering, McGill University, Montreal, QC H3A 0C5, Canada;
- Correspondence:
| |
Collapse
|
7
|
Combining sclerostin neutralization with tissue engineering: An improved strategy for craniofacial bone repair. Acta Biomater 2022; 140:178-189. [PMID: 34875361 DOI: 10.1016/j.actbio.2021.11.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023]
Abstract
Scaffolds associated with different types of mesenchymal stromal stem cells (MSC) are extensively studied for the development of novel therapies for large bone defects. Moreover, monoclonal antibodies have been recently introduced for the treatment of cancer-associated bone loss and other skeletal pathologies. In particular, antibodies against sclerostin, a key player in bone remodeling regulation, have demonstrated a real benefit for treating osteoporosis but their contribution to bone tissue-engineering remains uncharted. Here, we show that combining implantation of dense collagen hydrogels hosting wild-type (WT) murine dental pulp stem cells (mDPSC) with weekly systemic injections of a sclerostin antibody (Scl-Ab) leads to increased bone regeneration within critical size calvarial defects performed in WT mice. Furthermore, we show that bone formation is equivalent in calvarial defects in WT mice implanted with Sost knock-out (KO) mDPSC and in Sost KO mice, suggesting that the implantation of sclerostin-deficient MSC similarly promotes new bone formation than complete sclerostin deficiency. Altogether, our data demonstrate that an antibody-based therapy can potentialize tissue-engineering strategies for large craniofacial bone defects and urges the need to conduct research for antibody-enabled local inhibition of sclerostin. STATEMENT OF SIGNIFICANCE: The use of monoclonal antibodies is nowadays broadly spread for the treatment of several conditions including skeletal bone diseases. However, their use to potentialize tissue engineering constructs for bone repair remains unmet. Here, we demonstrate that the neutralization of sclerostin, through either a systemic inhibition by a monoclonal antibody or the implantation of sclerostin-deficient mesenchymal stromal stem cells (MSC) directly within the defect, improves the outcome of a tissue engineering approach, combining dense collagen hydrogels and MSC derived from the dental pulp, for the treatment of large craniofacial bone defects.
Collapse
|
8
|
Alcorta-Sevillano N, Macías I, Infante A, Rodríguez CI. Deciphering the Relevance of Bone ECM Signaling. Cells 2020; 9:E2630. [PMID: 33297501 PMCID: PMC7762413 DOI: 10.3390/cells9122630] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Bone mineral density, a bone matrix parameter frequently used to predict fracture risk, is not the only one to affect bone fragility. Other factors, including the extracellular matrix (ECM) composition and microarchitecture, are of paramount relevance in this process. The bone ECM is a noncellular three-dimensional structure secreted by cells into the extracellular space, which comprises inorganic and organic compounds. The main inorganic components of the ECM are calcium-deficient apatite and trace elements, while the organic ECM consists of collagen type I and noncollagenous proteins. Bone ECM dynamically interacts with osteoblasts and osteoclasts to regulate the formation of new bone during regeneration. Thus, the composition and structure of inorganic and organic bone matrix may directly affect bone quality. Moreover, proteins that compose ECM, beyond their structural role have other crucial biological functions, thanks to their ability to bind multiple interacting partners like other ECM proteins, growth factors, signal receptors and adhesion molecules. Thus, ECM proteins provide a complex network of biochemical and physiological signals. Herein, we summarize different ECM factors that are essential to bone strength besides, discussing how these parameters are altered in pathological conditions related with bone fragility.
Collapse
Affiliation(s)
| | | | - Arantza Infante
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, Barakaldo, 48903 Bizkaia, Spain; (N.A.-S.); (I.M.)
| | - Clara I. Rodríguez
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, Barakaldo, 48903 Bizkaia, Spain; (N.A.-S.); (I.M.)
| |
Collapse
|
9
|
Park H, Collignon AM, Lepry WC, Ramirez-GarciaLuna JL, Rosenzweig DH, Chaussain C, Nazhat SN. Acellular dense collagen-S53P4 bioactive glass hybrid gel scaffolds form more bone than stem cell delivered constructs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111743. [PMID: 33545885 DOI: 10.1016/j.msec.2020.111743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/21/2020] [Accepted: 11/13/2020] [Indexed: 01/07/2023]
Abstract
Dense collagen (DC) gels facilitate the osteoblastic differentiation of seeded dental pulp stem cells (DPSCs) and undergo rapid acellular mineralization when incorporated with bioactive glass particles, both in vitro and subcutaneously in vivo. However, the potential of DC-bioactive glass hybrid gels in delivering DPSCs for bone regeneration in an osseous site has not been investigated. In this study, the efficacies of both acellular and DPSC-seeded DC-S53P4 bioactive glass [(53)SiO2-(23)Na2O-(20)CaO-(4)P2O5, wt%] hybrid gels were investigated in a critical-sized murine calvarial defect. The incorporation of S53P4, an osteostimulative bioactive glass, into DC gels led to its accelerated acellular mineralization in simulated body fluid (SBF), in vitro, where hydroxycarbonated apatite was detected within 1 day. By day 7 in SBF, micro-mechanical analysis demonstrated an 8-fold increase in the compressive modulus of the mineralized gels. The in-situ effect of the bioactive glass on human-DPSCs within DC-S53P4 was evident, by their osteogenic differentiation in the absence of osteogenic supplements. The production of alkaline phosphatase and collagen type I was further increased when cultured in osteogenic media. This osteostimulative effect of DC-S53P4 constructs was confirmed in vivo, where after 8 weeks implantation, both acellular scaffolds and DPSC-seeded DC-S53P4 constructs formed mineralized and vascularized bone matrices with osteoblastic and osteoclastic cell activity. Surprisingly, however, in vivo micro-CT analysis confirmed that the acellular scaffolds generated larger volumes of bone, already visible at week 3 and exhibiting superior trabecular architecture. The results of this study suggest that DC-S53P4 scaffolds negate the need for stem cell delivery for effective bone tissue regeneration and may expedite their path towards clinical applications.
Collapse
Affiliation(s)
- Hyeree Park
- Department of Mining and Materials Engineering, McGill University, Canada
| | - Anne-Margaux Collignon
- Université de Paris, URP 2496 Laboratory Orofacial Pathologies, Imaging, and Biotherapies and Life Imaging Platform (PIV), Montrouge, France; AP-HP, GH Nord Université de Paris (Louis Mourier and Bretonneau hospitals), France
| | - William C Lepry
- Department of Mining and Materials Engineering, McGill University, Canada
| | | | - Derek H Rosenzweig
- Division of Orthopedic Surgery, McGill University, Canada; Injury, Repair and Recovery Program, Research Institute of McGill University Health Centre, Canada
| | - Catherine Chaussain
- Université de Paris, URP 2496 Laboratory Orofacial Pathologies, Imaging, and Biotherapies and Life Imaging Platform (PIV), Montrouge, France; AP-HP, GH Nord Université de Paris (Louis Mourier and Bretonneau hospitals), France
| | - Showan N Nazhat
- Department of Mining and Materials Engineering, McGill University, Canada.
| |
Collapse
|
10
|
Dash BC, Setia O, Gorecka J, Peyvandi H, Duan K, Lopes L, Nie J, Berthiaume F, Dardik A, Hsia HC. A Dense Fibrillar Collagen Scaffold Differentially Modulates Secretory Function of iPSC-Derived Vascular Smooth Muscle Cells to Promote Wound Healing. Cells 2020; 9:E966. [PMID: 32295218 PMCID: PMC7226960 DOI: 10.3390/cells9040966] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/06/2020] [Accepted: 04/11/2020] [Indexed: 12/20/2022] Open
Abstract
The application of human-induced pluripotent stem cells (hiPSCs) to generate vascular smooth muscle cells (hiPSC-VSMCs) in abundance is a promising strategy for vascular regeneration. While hiPSC-VSMCs have already been utilized for tissue-engineered vascular grafts and disease modeling, there is a lack of investigations exploring their therapeutic secretory factors. The objective of this manuscript was to understand how the biophysical property of a collagen-based scaffold dictates changes in the secretory function of hiPSC-VSMCs while developing hiPSC-VSMC-based therapy for durable regenerative wound healing. We investigated the effect of collagen fibrillar density (CFD) on hiPSC-VSMC's paracrine secretion and cytokines via the construction of varying density of collagen scaffolds. Our study demonstrated that CFD is a key scaffold property that modulates the secretory function of hiPSC-VSMCs. This study lays the foundation for developing collagen-based scaffold materials for the delivery of hiPSC-VSMCs to promote regenerative healing through guiding paracrine signaling pathways.
Collapse
Affiliation(s)
- Biraja C. Dash
- Section of Plastic Surgery, Department of Surgery Yale School of Medicine, Yale University, New Haven, CT 06510, USA; (H.P.); (K.D.); (J.N.)
| | - Ocean Setia
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, New Haven, CT 06510, USA; (O.S.); (J.G.); (L.L.); (A.D.)
| | - Jolanta Gorecka
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, New Haven, CT 06510, USA; (O.S.); (J.G.); (L.L.); (A.D.)
| | - Hassan Peyvandi
- Section of Plastic Surgery, Department of Surgery Yale School of Medicine, Yale University, New Haven, CT 06510, USA; (H.P.); (K.D.); (J.N.)
| | - Kaiti Duan
- Section of Plastic Surgery, Department of Surgery Yale School of Medicine, Yale University, New Haven, CT 06510, USA; (H.P.); (K.D.); (J.N.)
| | - Lara Lopes
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, New Haven, CT 06510, USA; (O.S.); (J.G.); (L.L.); (A.D.)
| | - James Nie
- Section of Plastic Surgery, Department of Surgery Yale School of Medicine, Yale University, New Haven, CT 06510, USA; (H.P.); (K.D.); (J.N.)
| | - Francois Berthiaume
- Department of Biomedical Engineering, Rutgers University, The State University New Jersey, Piscataway, NJ 08854, USA;
| | - Alan Dardik
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, New Haven, CT 06510, USA; (O.S.); (J.G.); (L.L.); (A.D.)
| | - Henry C. Hsia
- Section of Plastic Surgery, Department of Surgery Yale School of Medicine, Yale University, New Haven, CT 06510, USA; (H.P.); (K.D.); (J.N.)
| |
Collapse
|
11
|
Miller AE, Hu P, Barker TH. Feeling Things Out: Bidirectional Signaling of the Cell-ECM Interface, Implications in the Mechanobiology of Cell Spreading, Migration, Proliferation, and Differentiation. Adv Healthc Mater 2020; 9:e1901445. [PMID: 32037719 PMCID: PMC7274903 DOI: 10.1002/adhm.201901445] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/10/2020] [Indexed: 12/16/2022]
Abstract
Biophysical cues stemming from the extracellular environment are rapidly transduced into discernible chemical messages (mechanotransduction) that direct cellular activities-placing the extracellular matrix (ECM) as a potent regulator of cell behavior. Dynamic reciprocity between the cell and its associated matrix is essential to the maintenance of tissue homeostasis and dysregulation of both ECM mechanical signaling, via pathological ECM turnover, and internal mechanotransduction pathways contribute to disease progression. This review covers the current understandings of the key modes of signaling used by both the cell and ECM to coregulate one another. By taking an outside-in approach, the inherent complexities and regulatory processes at each level of signaling (ECM, plasma membrane, focal adhesion, and cytoplasm) are captured to give a comprehensive picture of the internal and external mechanoregulatory environment. Specific emphasis is placed on the focal adhesion complex which acts as a central hub of mechanical signaling, regulating cell spreading, migration, proliferation, and differentiation. In addition, a wealth of available knowledge on mechanotransduction is curated to generate an integrated signaling network encompassing the central components of the focal adhesion, cytoplasm and nucleus that act in concert to promote durotaxis, proliferation, and differentiation in a stiffness-dependent manner.
Collapse
Affiliation(s)
- Andrew E Miller
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd. MR5 1225, Charlottesville, VA, 22903, USA
| | - Ping Hu
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd. MR5 1225, Charlottesville, VA, 22903, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd. MR5 1225, Charlottesville, VA, 22903, USA
| |
Collapse
|
12
|
Rao SR, Edwards CM, Edwards JR. Modeling the Human Bone-Tumor Niche: Reducing and Replacing the Need for Animal Data. JBMR Plus 2020; 4:e10356. [PMID: 32258970 PMCID: PMC7117847 DOI: 10.1002/jbm4.10356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/17/2022] Open
Abstract
Bone is the most common site for cancer metastasis. Understanding the interactions within the complex, heterogeneous bone-tumor microenvironment is essential for the development of new therapeutics. Various animal models of tumor-induced bone disease are routinely used to provide valuable information on the relationship between cancer cells and the skeleton. However, new model systems exist that offer an alternative approach to the use of animals and might more accurately reveal the cellular interactions occurring within the human bone-tumor niche. This review highlights replacement models that mimic the bone microenvironment and where cancer metastases and tumor growth might be assessed alongside bone turnover. Such culture models include the use of calcified regions of animal tissue and scaffolds made from bone mineral hydroxyapatite, synthetic polymers that can be manipulated during manufacture to create structures resembling trabecular bone surfaces, gel composites that can be modified for stiffness and porosity to resemble conditions in the tumor-bone microenvironment. Possibly the most accurate model system involves the use of fresh human bone samples, which can be cultured ex vivo in the presence of human tumor cells and demonstrate similar cancer cell-bone cell interactions as described in vivo. In addition, the use of mathematical modeling and computational biology approaches provide an alternative to preliminary animal testing. The use of such models offers the capacity to mimic significant elements of the human bone-tumor environment, and complement, refine, or replace the use of preclinical models. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Srinivasa R Rao
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences University of Oxford Oxford UK.,Nuffield Department of Surgical Sciences University of Oxford Oxford UK
| | - Claire M Edwards
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences University of Oxford Oxford UK.,Nuffield Department of Surgical Sciences University of Oxford Oxford UK
| | - James R Edwards
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences University of Oxford Oxford UK
| |
Collapse
|
13
|
Ashworth JC, Thompson JL, James JR, Slater CE, Pijuan-Galitó S, Lis-Slimak K, Holley RJ, Meade KA, Thompson A, Arkill KP, Tassieri M, Wright AJ, Farnie G, Merry CLR. Peptide gels of fully-defined composition and mechanics for probing cell-cell and cell-matrix interactions in vitro. Matrix Biol 2020; 85-86:15-33. [PMID: 31295578 PMCID: PMC7610915 DOI: 10.1016/j.matbio.2019.06.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/28/2019] [Accepted: 06/24/2019] [Indexed: 01/14/2023]
Abstract
Current materials used for in vitro 3D cell culture are often limited by their poor similarity to human tissue, batch-to-batch variability and complexity of composition and manufacture. Here, we present a "blank slate" culture environment based on a self-assembling peptide gel free from matrix motifs. The gel can be customised by incorporating matrix components selected to match the target tissue, with independent control of mechanical properties. Therefore the matrix components are restricted to those specifically added, or those synthesised by encapsulated cells. The flexible 3D culture platform provides full control over biochemical and physical properties, allowing the impact of biochemical composition and tissue mechanics to be separately evaluated in vitro. Here, we demonstrate that the peptide gels support the growth of a range of cells including human induced pluripotent stem cells and human cancer cell lines. Furthermore, we present proof-of-concept that the peptide gels can be used to build disease-relevant models. Controlling the peptide gelator concentration allows peptide gel stiffness to be matched to normal breast (<1 kPa) or breast tumour tissue (>1 kPa), with higher stiffness favouring the viability of breast cancer cells over normal breast cells. In parallel, the peptide gels may be modified with matrix components relevant to human breast, such as collagen I and hyaluronan. The choice and concentration of these additions affect the size, shape and organisation of breast epithelial cell structures formed in co-culture with fibroblasts. This system therefore provides a means of unravelling the individual influences of matrix, mechanical properties and cell-cell interactions in cancer and other diseases.
Collapse
Affiliation(s)
- J C Ashworth
- Stem Cell Glycobiology Group, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK; Manchester Cancer Research Centre, Division of Molecular & Clinical Cancer Sciences, University of Manchester, UK.
| | - J L Thompson
- Stem Cell Glycobiology Group, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK
| | - J R James
- Stem Cell Glycobiology Group, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK
| | - C E Slater
- Stem Cell Glycobiology Group, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK
| | - S Pijuan-Galitó
- Stem Cell Glycobiology Group, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK; Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, UK
| | - K Lis-Slimak
- Stem Cell Glycobiology Group, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK
| | - R J Holley
- Stem Cell and Neurotherapies Group, University of Manchester, UK
| | - K A Meade
- Office of Business Relations, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - A Thompson
- Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK
| | - K P Arkill
- Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK
| | - M Tassieri
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, UK
| | - A J Wright
- Optics and Photonics Research Group, Faculty of Engineering, University of Nottingham, UK
| | - G Farnie
- Manchester Cancer Research Centre, Division of Molecular & Clinical Cancer Sciences, University of Manchester, UK; SGC, Botnar Research Centre, NDORMS, University of Oxford, UK.
| | - C L R Merry
- Stem Cell Glycobiology Group, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK.
| |
Collapse
|
14
|
Abstract
Nanoparticulate materials displaying enzyme-like properties, so-called nanozymes, are explored as substitutes for natural enzymes in several industrial, energy-related, and biomedical applications. Outstanding high stability, enhanced catalytic activities, low cost, and availability at industrial scale are some of the fascinating features of nanozymes. Furthermore, nanozymes can also be equipped with the unique attributes of nanomaterials such as magnetic or optical properties. Due to the impressive development of nanozymes during the last decade, their potential in the context of tissue engineering and regenerative medicine also started to be explored. To highlight the progress, in this review, we discuss the two most representative nanozymes, namely, cerium- and iron-oxide nanomaterials, since they are the most widely studied. Special focus is placed on their applications ranging from cardioprotection to therapeutic angiogenesis, bone tissue engineering, and wound healing. Finally, current challenges and future directions are discussed.
Collapse
|
15
|
Witt J, Borrelli M, Mertsch S, Geerling G, Spaniol K, Schrader S. Evaluation of Plastic-Compressed Collagen for Conjunctival Repair in a Rabbit Model. Tissue Eng Part A 2019; 25:1084-1095. [DOI: 10.1089/ten.tea.2018.0190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Joana Witt
- Department of Ophthalmology, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Maria Borrelli
- Department of Ophthalmology, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sonja Mertsch
- Department of Ophthalmology, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Gerd Geerling
- Department of Ophthalmology, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Kristina Spaniol
- Department of Ophthalmology, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Stefan Schrader
- Department of Ophthalmology, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
16
|
Development of a 3D Collagen Model for the In Vitro Evaluation of Magnetic-assisted Osteogenesis. Sci Rep 2018; 8:16270. [PMID: 30389949 PMCID: PMC6214996 DOI: 10.1038/s41598-018-33455-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 09/27/2018] [Indexed: 12/19/2022] Open
Abstract
Magnetic stimulation has been applied to bone regeneration, however, the cellular and molecular mechanisms of repair still require a better understanding. A three-dimensional (3D) collagen model was developed using plastic compression, which produces dense, cellular, mechanically strong native collagen structures. Osteoblast cells (MG-63) and magnetic iron oxide nanoparticles (IONPs) were incorporated into collagen gels to produce a range of cell-laden models. A magnetic bio-reactor to support cell growth under static magnetic fields (SMFs) was designed and fabricated by 3D printing. The influences of SMFs on cell proliferation, differentiation, extracellular matrix production, mineralisation and gene expression were evaluated. Polymerase chain reaction (PCR) further determined the effects of SMFs on the expression of runt-related transcription factor 2 (Runx2), osteonectin (ON), and bone morphogenic proteins 2 and 4 (BMP-2 and BMP-4). Results demonstrate that SMFs, IONPs and the collagen matrix can stimulate the proliferation, alkaline phosphatase production and mineralisation of MG-63 cells, by influencing matrix/cell interactions and encouraging the expression of Runx2, ON, BMP-2 and BMP-4. Therefore, the collagen model developed here not only offers a novel 3D bone model to better understand the effect of magnetic stimulation on osteogenesis, but also paves the way for further applications in tissue engineering and regenerative medicine.
Collapse
|
17
|
Chen CL, Tien HW, Chuang CH, Chen YC. A comparison of the bone regeneration and soft-tissue-formation capabilities of various injectable-grafting materials in a rabbit calvarial defect model. J Biomed Mater Res B Appl Biomater 2018; 107:529-544. [PMID: 29722122 DOI: 10.1002/jbm.b.34144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/26/2018] [Accepted: 04/09/2018] [Indexed: 11/09/2022]
Abstract
Restoring adequate blood supply is essential to the success of bone repair and augmentation procedures in craniofacial surgery. Nevertheless, the manner by which the incorporation of collagen gels (which can potentially induce angiogenesis), particulated deproteinized bovine bone grafts, or a combination of both can accelerate or delay bone regeneration in a clinical setting remains controversial. The objective of this study was to evaluate radiographically and histologically the capacity and functionality of particulated bone grafts and collagen gels on bone ossification and soft tissue formation in a rabbit calvarial defect. Bilateral calvarial defects in adult white New Zealand rabbits were filled or left either unfilled with bone grafts (DBBM), collagen gels (Gel), or a combination of both (DBBM + Gel). The defects were allowed to heal for 1, 2, and 6 months postoperatively before termination. Healing and regeneration patterns were assessed by 3D µCT and histological methods, and the biomechanical properties of regenerated tissue constructs were investigated and compared with autogenous calvarial bone. Results show that implanted DBBM and DBBM + Gel significantly enhanced immature bone formation compared with the empty and Gel groups; the latter treatment improved soft tissue formation and impeded immature bone formation but yielded no significant effect on mature bone formation. Implantation of DBBM not only effectively reconstructed 188.83 ± 25.25% of the tissue volume of the original defect, but it also regenerated bone tissue with similar tissue composition and biomechanical properties as the original autogenous bone. We also show that implanting different biomaterials can control the composition of soft and hard tissue in reconstructed tissue constructs in calvarial bone defects. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 529-544, 2019.
Collapse
Affiliation(s)
- Chih-Long Chen
- Department of Dentistry, Shin Kong Wu Ho-Su Memorial Hospital, Taipei City, Taiwan
| | - Han-Wen Tien
- Department of Applied Science, National Tsing-Hua University, Hsinchu, Taiwan
| | - Chia-Hui Chuang
- Department of Applied Science, National Tsing-Hua University, Hsinchu, Taiwan
| | - Ying-Chieh Chen
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan
| |
Collapse
|
18
|
Shojaati G, Khandaker I, Sylakowski K, Funderburgh ML, Du Y, Funderburgh JL. Compressed Collagen Enhances Stem Cell Therapy for Corneal Scarring. Stem Cells Transl Med 2018; 7:487-494. [PMID: 29654654 PMCID: PMC5980128 DOI: 10.1002/sctm.17-0258] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/17/2018] [Indexed: 12/13/2022] Open
Abstract
Stem cells from human corneal stroma (CSSC) suppress corneal stromal scarring in a mouse wound‐healing model and promote regeneration of native transparent tissue (PMID:25504883). This study investigated efficacy of compressed collagen gel (CCG) as a vehicle to deliver CSSC for corneal therapy. CSSC isolated from limbal stroma of human donor corneas were embedded in soluble rat‐tendon collagen, gelled at 37°C, and partially dehydrated to a thickness of 100 µm by passive absorption. The CCG disks were dimensionally stable, easy to handle, and could be adhered securely to de‐epithelialized mouse cornea with fibrin‐based adhesive. CSSC in CCG maintained >80% viability for >1 week in culture media and could be cryopreserved in 20% fetal bovine serum‐10%DMSO in liquid nitrogen. CCG containing as few as 500 CSSC effectively prevented visible scarring and suppressed expression of fibrotic Col3a1 mRNA. CSSC in CCG were more effective at blocking scarring on a per‐cell basis than CSSC delivered directly in a fibrin gel as previously described. Collagen‐embedded cells retained the ability to suppress corneal scarring after conventional cryopreservation. This study demonstrates use of a common biomaterial that can facilitate storage and handling of stem cells in a manner that may provide off‐the‐shelf delivery of stem cells as a therapy for corneal scarring. stemcellstranslationalmedicine2018;7:487–494
Collapse
Affiliation(s)
- Golnar Shojaati
- Department of Ophthalmology, Kantonsspital Winterthur, Zurich, Switzerland.,Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Irona Khandaker
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kyle Sylakowski
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Martha L Funderburgh
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yiqin Du
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - James L Funderburgh
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
19
|
Gao Y, Kong W, Li B, Ni Y, Yuan T, Guo L, Lin H, Fan H, Fan Y, Zhang X. Fabrication and characterization of collagen-based injectable and self-crosslinkable hydrogels for cell encapsulation. Colloids Surf B Biointerfaces 2018; 167:448-456. [PMID: 29709829 DOI: 10.1016/j.colsurfb.2018.04.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 01/01/2023]
Abstract
Injectable and self-crosslinkable hydrogels have drawn much attention for their potential application as cell delivery carriers to deliver cells to the injury site of arbitrary shape. In this study, injectable and self-crosslinkable hydrogels were designed and fabricated based on collagen type I (Col I) and activated chondroitin sulfate (CS-sNHS) by physical and chemical crosslinking without the addition of any catalysts. The physical properties of hydrogels, including mechanical properties, swelling and degradation properties, were investigated. The results demonstrated that the physical properties of hydrogels, especially the stiffness of hydrogels, were readily tuned by varying the degree of substitution (DS) of CS-sNHS without changing the concentration of collagen-based precursor. Chondrocytes were encapsulated into hydrogels to investigate the effects of hydrogels on the survival, proliferation and extracellular matrix (ECM) secretion of cells by FDA/PI staining, CCK-8 test and histological staining. The results suggested that all of these hydrogels supported the survival and ECM secretion of chondrocytes, while there was more ECM secretion around chondrocytes encapsulated in hydrogel Col I/CS-sNHS56% in which the DS of CS-sNHS was 56%. When the neutral precursor solution for hydrogel of Col I or Col I/CS-sNHS56% was subcutaneously injected into SD rats, hydrogels both displayed acceptable biocompatibility in vivo. These results imply that these injectable and self-crosslinkable hydrogels are suitable candidates for applications in the fields of cell delivery and tissue engineering.
Collapse
Affiliation(s)
- Yongli Gao
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, China
| | - Weili Kong
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, China
| | - Bao Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, China
| | - Yilu Ni
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, China
| | - Tun Yuan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, China
| | - Likun Guo
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, China.
| | - Hai Lin
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, China
| |
Collapse
|
20
|
Movilla N, Borau C, Valero C, García-Aznar JM. Degradation of extracellular matrix regulates osteoblast migration: A microfluidic-based study. Bone 2018; 107:10-17. [PMID: 29107125 DOI: 10.1016/j.bone.2017.10.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 10/17/2017] [Accepted: 10/25/2017] [Indexed: 01/06/2023]
Abstract
Bone regeneration is strongly dependent on the capacity of cells to move in a 3D microenvironment, where a large cascade of signals is activated. To improve the understanding of this complex process and to advance in the knowledge of the role of each specific signal, it is fundamental to analyze the impact of each factor independently. Microfluidic-based cell culture is an appropriate technology to achieve this objective, because it allows recreating realistic 3D local microenvironments by taking into account the extracellular matrix, cells and chemical gradients in an independent or combined scenario. The main aim of this work is to analyze the impact of extracellular matrix properties and growth factor gradients on 3D osteoblast movement, as well as the role of cell matrix degradation. For that, we used collagen-based hydrogels, with and without crosslinkers, under different chemical gradients, and eventually inhibiting metalloproteinases to tweak matrix degradation. We found that osteoblast's 3D migratory patterns were affected by the hydrogel properties and the PDGF-BB gradient, although the strongest regulatory factor was determined by the ability of cells to remodel the matrix.
Collapse
Affiliation(s)
- N Movilla
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research, Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Spain
| | - C Borau
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research, Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Spain
| | - C Valero
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research, Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Spain
| | - J M García-Aznar
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research, Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Spain.
| |
Collapse
|
21
|
Liu Z, Yuan X, Liu M, Fernandes G, Zhang Y, Yang S, Ionita CN, Yang S. Antimicrobial Peptide Combined with BMP2-Modified Mesenchymal Stem Cells Promotes Calvarial Repair in an Osteolytic Model. Mol Ther 2017; 26:199-207. [PMID: 28988712 DOI: 10.1016/j.ymthe.2017.09.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 08/08/2017] [Accepted: 09/09/2017] [Indexed: 12/31/2022] Open
Abstract
Repair and regeneration of inflammation-induced bone loss remains a clinical challenge. LL37, an antimicrobial peptide, plays critical roles in cell migration, cytokine production, apoptosis, and angiogenesis. Migration of stem cells to the affected site and promotion of vascularization are essential for tissue engineering therapy, including bone regeneration. However, it is largely unknown whether LL37 affects mesenchymal stem cell (MSC) behavior and bone morphogenetic protein 2 (BMP2)-mediated bone repair during the bone pathologic remodeling process. By performing in vitro and in vivo studies with MSCs and a lipopolysaccharide (LPS)-induced mouse calvarial osteolytic bone defect model, we found that LL37 significantly promotes cell differentiation, migration, and proliferation in both unmodified MSCs and BMP2 gene-modified MSCs. Additionally, LL37 inhibited LPS-induced osteoclast formation and bacterial activity in vitro. Furthermore, the combination of LL37 and BMP2 markedly promoted MSC-mediated angiogenesis and bone repair and regeneration in LPS-induced osteolytic defects in mouse calvaria. These findings demonstrate for the first time that LL37 can be a potential candidate drug for promoting osteogenesis and for inhibiting bacterial growth and osteoclastogenesis, and that the combination of BMP2 and LL37 is ideal for MSC-mediated bone regeneration, especially for inflammation-induced bone loss.
Collapse
Affiliation(s)
- Zunpeng Liu
- Department of Oral Biology, School of Dental Medicine, University of Buffalo, The State University of New York, Buffalo, NY, USA; Department of Orthopedics, Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Xue Yuan
- Department of Oral Biology, School of Dental Medicine, University of Buffalo, The State University of New York, Buffalo, NY, USA
| | - Min Liu
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gabriela Fernandes
- Department of Oral Biology, School of Dental Medicine, University of Buffalo, The State University of New York, Buffalo, NY, USA
| | - Yejia Zhang
- Departments of Physical Medicine and Rehabilitation, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Shuting Yang
- Department of Oral Biology, School of Dental Medicine, University of Buffalo, The State University of New York, Buffalo, NY, USA; Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ciprian N Ionita
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, USA; Toshiba Stroke and Vascular Research Center, State University of New York at Buffalo, Buffalo, NY, USA
| | - Shuying Yang
- Department of Oral Biology, School of Dental Medicine, University of Buffalo, The State University of New York, Buffalo, NY, USA; Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Paiva KBS, Granjeiro JM. Matrix Metalloproteinases in Bone Resorption, Remodeling, and Repair. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 148:203-303. [PMID: 28662823 DOI: 10.1016/bs.pmbts.2017.05.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Matrix metalloproteinases (MMPs) are the major protease family responsible for the cleavage of the matrisome (global composition of the extracellular matrix (ECM) proteome) and proteins unrelated to the ECM, generating bioactive molecules. These proteins drive ECM remodeling, in association with tissue-specific and cell-anchored inhibitors (TIMPs and RECK, respectively). In the bone, the ECM mediates cell adhesion, mechanotransduction, nucleation of mineralization, and the immobilization of growth factors to protect them from damage or degradation. Since the first description of an MMP in bone tissue, many other MMPs have been identified, as well as their inhibitors. Numerous functions have been assigned to these proteins, including osteoblast/osteocyte differentiation, bone formation, solubilization of the osteoid during bone resorption, osteoclast recruitment and migration, and as a coupling factor in bone remodeling under physiological conditions. In turn, a number of pathologies, associated with imbalanced bone remodeling, arise mainly from MMP overexpression and abnormalities of the ECM, leading to bone osteolysis or bone formation. In this review, we will discuss the functions of MMPs and their inhibitors in bone cells, during bone remodeling, pathological bone resorption (osteoporosis and bone metastasis), bone repair/regeneration, and emergent roles in bone bioengineering.
Collapse
Affiliation(s)
- Katiucia B S Paiva
- Laboratory of Extracellular Matrix Biology and Cellular Interaction (LabMec), Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| | - José M Granjeiro
- National Institute of Metrology, Quality and Technology (InMetro), Bioengineering Laboratory, Duque de Caxias, RJ, Brazil; Fluminense Federal University, Dental School, Niterói, RJ, Brazil
| |
Collapse
|
23
|
Eberwein P, Reinhard T. [New biomaterials and alternative stem cell sources for the reconstruction of the limbal stem cell niche]. Ophthalmologe 2017; 114:318-326. [PMID: 28378048 DOI: 10.1007/s00347-017-0463-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Reconstruction of the limbal stem cell niche in patients with limbal stem cell insufficiency remains one of the most challenging tasks in the treatment of ocular surface diseases. Ex vivo expansion of limbal stem cells still has potential for optimization despite positive reports in centers worldwide. New biomaterials as well as alternative cell sources for the reconstruction of the limbal stem cell niche have been published in recent years. The aim of this review is to provide insight into new biomaterials and cell sources which may find their way into clinical routine in the upcoming decades.
Collapse
Affiliation(s)
- P Eberwein
- Klinik für Augenheilkunde, Uniklinikum Freiburg, Killianstr. 5, 79106, Freiburg, Deutschland.
| | - T Reinhard
- Klinik für Augenheilkunde, Uniklinikum Freiburg, Killianstr. 5, 79106, Freiburg, Deutschland
| |
Collapse
|
24
|
Accelerated craniofacial bone regeneration through dense collagen gel scaffolds seeded with dental pulp stem cells. Sci Rep 2016; 6:38814. [PMID: 27934940 PMCID: PMC5146967 DOI: 10.1038/srep38814] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/14/2016] [Indexed: 12/15/2022] Open
Abstract
Therapies using mesenchymal stem cell (MSC) seeded scaffolds may be applicable to various fields of regenerative medicine, including craniomaxillofacial surgery. Plastic compression of collagen scaffolds seeded with MSC has been shown to enhance the osteogenic differentiation of MSC as it increases the collagen fibrillary density. The aim of the present study was to evaluate the osteogenic effects of dense collagen gel scaffolds seeded with mesenchymal dental pulp stem cells (DPSC) on bone regeneration in a rat critical-size calvarial defect model. Two symmetrical full-thickness defects were created (5 mm diameter) and filled with either a rat DPSC-containing dense collagen gel scaffold (n = 15), or an acellular scaffold (n = 15). Animals were imaged in vivo by microcomputer tomography (Micro-CT) once a week during 5 weeks, whereas some animals were sacrificed each week for histology and histomorphometry analysis. Bone mineral density and bone micro-architectural parameters were significantly increased when DPSC-seeded scaffolds were used. Histological and histomorphometrical data also revealed significant increases in fibrous connective and mineralized tissue volume when DPSC-seeded scaffolds were used, associated with expression of type I collagen, osteoblast-associated alkaline phosphatase and osteoclastic-related tartrate-resistant acid phosphatase. Results demonstrate the potential of DPSC-loaded-dense collagen gel scaffolds to benefit of bone healing process.
Collapse
|
25
|
Kishore V, Iyer R, Frandsen A, Nguyen TU. In vitro characterization of electrochemically compacted collagen matrices for corneal applications. ACTA ACUST UNITED AC 2016; 11:055008. [PMID: 27710923 DOI: 10.1088/1748-6041/11/5/055008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Loss of vision due to corneal disease is a significant problem worldwide. Transplantation of donor corneas is a viable treatment option but limitations such as short supply and immune-related complications call for alternative options for the treatment of corneal disease. A tissue engineering-based approach using a collagen scaffold is a promising alternative to develop a bioengineered cornea that mimics the functionality of native cornea. In this study, an electrochemical compaction method was employed to synthesize highly dense and transparent collagen matrices. We hypothesized that chemical crosslinking of electrochemically compacted collagen (ECC) matrices will maintain transparency, improve stability, and enhance the mechanical properties of the matrices to the level of native cornea. Further, we hypothesized that keratocyte cell viability and proliferation will be maintained on crosslinked ECC matrices. The results indicated that uncrosslinked and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide-N-hydroxysuccinimide (EDC-NHS) crosslinked ECC matrices were highly transparent with light transmission measurements comparable to native cornea. Stability tests showed that while the uncrosslinked ECC matrices degraded within 6 h when treated with collagenase, EDC-NHS or genipin crosslinking significantly improved the stability of ECC matrices (192 h for EDC-NHS and 256 h for genipin). Results from the mechanical tests showed that both EDC-NHS and genipin crosslinking significantly improved the strength and modulus of ECC matrices. Cell culture studies showed that keratocyte cell viability and proliferation are maintained on EDC-NHS crosslinked ECC matrices. Overall, results from this study suggest that ECC matrices have the potential to be developed as a functional biomaterial for corneal repair and regeneration.
Collapse
Affiliation(s)
- Vipuil Kishore
- Department of Chemical Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA. Department of Biomedical Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA. Author to whom any correspondence should be addressed. Department of Chemical Engineering, Florida Institute of Technology, 150 W. University Blvd, Melbourne, FL 32901, USA
| | | | | | | |
Collapse
|
26
|
Abstract
Mesenchymal stem cells (MSCs) have great potential as a source of cells for cell-based therapy because of their ability for self-renewal and differentiation into functional cells. Moreover, matrix metalloproteinases (MMPs) have a critical role in the differentiation of MSCs into different lineages. MSCs also interact with exogenous MMPs at their surface, and regulate the pericellular localization of MMP activities. The fate of MSCs is regulated by specific MMPs associated with a key cell lineage. Recent reports suggest the integration of MMPs in the differentiation, angiogenesis, proliferation, and migration of MSCs. These interactions are not fully understood and warrant further investigation, especially for their application as therapeutic tools to treat different diseases. Therefore, overexpression of a single MMP or tissue-specific inhibitor of metalloproteinase in MSCs may promote transdifferentiation into a specific cell lineage, which can be used for the treatment of some diseases. In this review, we critically discuss the identification of various MMPs and the signaling pathways that affect the differentiation, migration, angiogenesis, and proliferation of MSCs.
Collapse
Affiliation(s)
- Sami G Almalki
- Department of Clinical and Translational Science, Creighton University School of Medicine, CRISS II, Room 510, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Devendra K Agrawal
- Department of Clinical and Translational Science, Creighton University School of Medicine, CRISS II, Room 510, 2500 California Plaza, Omaha, NE, 68178, USA.
| |
Collapse
|
27
|
Robin M, Almeida C, Azaïs T, Haye B, Illoul C, Lesieur J, Giraud-Guille MM, Nassif N, Hélary C. Involvement of 3D osteoblast migration and bone apatite during in vitro early osteocytogenesis. Bone 2016; 88:146-156. [PMID: 27150828 DOI: 10.1016/j.bone.2016.04.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 04/11/2016] [Accepted: 04/29/2016] [Indexed: 10/21/2022]
Abstract
The transition from osteoblast to osteocyte is described to occur through passive entrapment mechanism (self-buried, or embedded by neighboring cells). Here, we provide evidence of a new pathway where osteoblasts are "more" active than generally assumed. We demonstrate that osteoblasts possess the ability to migrate and differentiate into early osteocytes inside dense collagen matrices. This step involves MMP-13 simultaneously with IBSP and DMP1 expression. We also show that osteoblast migration is enhanced by the presence of apatite bone mineral. To reach this conclusion, we used an in vitro hybrid model based on both the structural characteristics of the osteoid tissue (including its density, texture and three-dimensional order), and the use of bone-like apatite. This finding highlights the mutual dynamic influence of osteoblast cell and bone extra cellular matrix. Such interactivity extends the role of physicochemical effects in bone morphogenesis complementing the widely studied molecular signals. This result represents a conceptual advancement in the fundamental understanding of bone formation.
Collapse
Affiliation(s)
- Marc Robin
- Sorbonne Universités UPMC Univ Paris 06, CNRS, Collège de France, Laboratoire Chimie de la Matière Condensée de Paris UMR 7574, 11 place Marcelin Berthelot, 75005 Paris, France
| | - Claudia Almeida
- Sorbonne Universités UPMC Univ Paris 06, CNRS, Collège de France, Laboratoire Chimie de la Matière Condensée de Paris UMR 7574, 11 place Marcelin Berthelot, 75005 Paris, France
| | - Thierry Azaïs
- Sorbonne Universités UPMC Univ Paris 06, CNRS, Collège de France, Laboratoire Chimie de la Matière Condensée de Paris UMR 7574, 11 place Marcelin Berthelot, 75005 Paris, France
| | - Bernard Haye
- Sorbonne Universités UPMC Univ Paris 06, CNRS, Collège de France, Laboratoire Chimie de la Matière Condensée de Paris UMR 7574, 11 place Marcelin Berthelot, 75005 Paris, France
| | - Corinne Illoul
- Sorbonne Universités UPMC Univ Paris 06, CNRS, Collège de France, Laboratoire Chimie de la Matière Condensée de Paris UMR 7574, 11 place Marcelin Berthelot, 75005 Paris, France
| | - Julie Lesieur
- EA 2496, Pathologies, Imaging and Biotherapies of the Tooth, UFR Odontologie, University Paris Descartes PRES Sorbonne Paris Cite, Montrouge, France
| | - Marie-Madeleine Giraud-Guille
- Sorbonne Universités UPMC Univ Paris 06, CNRS, Collège de France, Laboratoire Chimie de la Matière Condensée de Paris UMR 7574, 11 place Marcelin Berthelot, 75005 Paris, France
| | - Nadine Nassif
- Sorbonne Universités UPMC Univ Paris 06, CNRS, Collège de France, Laboratoire Chimie de la Matière Condensée de Paris UMR 7574, 11 place Marcelin Berthelot, 75005 Paris, France.
| | - Christophe Hélary
- Sorbonne Universités UPMC Univ Paris 06, CNRS, Collège de France, Laboratoire Chimie de la Matière Condensée de Paris UMR 7574, 11 place Marcelin Berthelot, 75005 Paris, France.
| |
Collapse
|
28
|
Kamranpour NO, Miri AK, James-Bhasin M, Nazhat SN. A gel aspiration-ejection system for the controlled production and delivery of injectable dense collagen scaffolds. Biofabrication 2016; 8:015018. [DOI: 10.1088/1758-5090/8/1/015018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
29
|
Tissue Engineering the Cornea: The Evolution of RAFT. J Funct Biomater 2015; 6:50-65. [PMID: 25809689 PMCID: PMC4384100 DOI: 10.3390/jfb6010050] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 01/13/2015] [Indexed: 12/13/2022] Open
Abstract
Corneal blindness affects over 10 million people worldwide and current treatment strategies often involve replacement of the defective layer with healthy tissue. Due to a worldwide donor cornea shortage and the absence of suitable biological scaffolds, recent research has focused on the development of tissue engineering techniques to create alternative therapies. This review will detail how we have refined the simple engineering technique of plastic compression of collagen to a process we now call Real Architecture for 3D Tissues (RAFT). The RAFT production process has been standardised, and steps have been taken to consider Good Manufacturing Practice compliance. The evolution of this process has allowed us to create biomimetic epithelial and endothelial tissue equivalents suitable for transplantation and ideal for studying cell-cell interactions in vitro.
Collapse
|
30
|
Alekseeva T, Unger RE, Brochhausen C, Brown RA, Kirkpatrick JC. Engineering a microvascular capillary bed in a tissue-like collagen construct. Tissue Eng Part A 2014; 20:2656-65. [PMID: 24684395 PMCID: PMC4195478 DOI: 10.1089/ten.tea.2013.0570] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 03/19/2014] [Indexed: 01/14/2023] Open
Abstract
Previous studies have shown that plastic compression (PC) of collagen gels allows a rapid and controlled fabrication of matrix- and cell-rich constructs in vitro that closely mimic the structure and characteristics of tissues in vivo. Microvascular endothelial cells, the major cell type making up the blood vessels in the body, were added to the PC collagen to determine whether cells attach, survive, grow, and express endothelial cell characteristics when seeded alone or in coculture with other cells. Endothelial cells seeded on the PC collagen containing human foreskin fibroblasts (HFF) or human osteoblasts (HOS) formed vessel-like structures over 3 weeks in culture without the addition of exogenous growth factors in the medium. In contrast, on the PC scaffolds without HFF or HOS, human dermal microvascular endothelial cells (HDMEC) exhibited a typical cobblestone morphology for 21 days under the same conditions. We propose that the coculture of primary endothelial cells with PC collagen constructs, containing a stromal cell population, is a valuable technique for in vitro modeling of proangiogenic responses toward such biomimetic constructs in vivo. A major observation in the cocultures was the absence of gel contraction, even after 3 weeks of fibroblast culture. This collagen form could, for example, be of great value in tissue engineering of the skin, as contractures are both aesthetically and functionally disabling.
Collapse
Affiliation(s)
- Tijna Alekseeva
- REPAIR Lab, Institute of Pathology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Ronald E. Unger
- REPAIR Lab, Institute of Pathology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Christoph Brochhausen
- REPAIR Lab, Institute of Pathology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | | | - James C. Kirkpatrick
- REPAIR Lab, Institute of Pathology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
31
|
The osteogenic differentiation of SSEA-4 sub-population of human adipose derived stem cells using silicate nanoplatelets. Biomaterials 2014; 35:9087-99. [PMID: 25123923 DOI: 10.1016/j.biomaterials.2014.07.052] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/23/2014] [Indexed: 11/24/2022]
Abstract
How to surpass in vitro stem cell differentiation, reducing cell manipulation, and lead the in situ regeneration process after transplantation, remains to be unraveled in bone tissue engineering (bTE). Recently, we showed that the combination of human bone marrow stromal cells with bioactive silicate nanoplatelets (sNPs) promotes the osteogenic differentiation without the use of standard osteogenic inductors. Even more, using SSEA-4(+) cell-subpopulations (SSEA-4(+)hASCs) residing within the adipose tissue, as a single-cellular source to obtain relevant cell types for bone regeneration, was also proposed. Herein, sNPs were used to promote the osteogenic differentiation of SSEA-4(+)hASCs. The interactions between SSEA-4(+)hASCs and sNPs, namely the internalization pathway and effect on cells osteogenic differentiation, were evaluated. SNPs below 100 μg/mL showed high cytocompatibility and fast internalization via clathrin-mediated pathway. SNPs triggered an overexpression of osteogenic-related markers (RUNX2, osteopontin, osteocalcin) accompanied by increased alkaline phosphatase activity and deposition of a predominantly collagen-type I matrix. Consequently, a robust matrix mineralization was achieved, covering >90% of the culturing surface area. Overall, we demonstrated the high osteogenic differentiation potential of SSEA-4(+)hASCs, further enhanced by the addition of sNPs in a dose dependent manner. This strategy endorses the combination of an adipose-derived cell-subpopulation with inorganic compounds to achieve bone matrix-analogs with clinical relevance.
Collapse
|
32
|
Marelli B, Ghezzi CE, Alessandrino A, Freddi G, Nazhat SN. Anionic fibroin-derived polypeptides accelerate MSC osteoblastic differentiation in a three-dimensional osteoid-like dense collagen niche. J Mater Chem B 2014; 2:5339-5343. [DOI: 10.1039/c4tb00477a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
33
|
Tsai CL, Chen WC, Lee IT, Chi PL, Cheng SE, Yang CM. c-Src-dependent transactivation of PDGFR contributes to TNF-α-induced MMP-9 expression and functional impairment in osteoblasts. Bone 2014; 60:186-97. [PMID: 24361597 DOI: 10.1016/j.bone.2013.12.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 12/07/2013] [Accepted: 12/11/2013] [Indexed: 12/26/2022]
Abstract
Matrix metalloproteinases (MMPs), MMP-9 especially, have been shown to be induced by cytokines, including tumor necrosis factor-α (TNF-α) and may contribute to bone inflammatory diseases and postnatal bone modeling and remodeling. However, the mechanisms underlying MMP-9 expression induced by TNF-α in osteoblasts remain unclear. Here, we showed that in MC3T3-E1 cells, TNF-α induced MMP-9 gene expression determined by real-time PCR, zymography, and promoter assay. TNF-α-mediated responses were attenuated by pretreatment with the inhibitor of protein tyrosine kinase (PTK; genistein), c-Src (PP1), PDGFR (AG1296), PI3K (LY294002), Akt (SH-5), MEK1/2 (U0126), p38 MAPK (SB202190), JNK1/2 (SP600125), or AP-1 (Tanshinone IIA) and transfection with siRNA of c-Src, PDGFR, p85, Akt, c-Jun, or ATF2. Moreover, TNF-α also time-dependently stimulated phosphorylation of c-Src and PDGFR and c-Src/PDGFR complex formation, which were reduced by pretreatment with PP1 or AG1296. TNF-α-stimulated Akt phosphorylation was inhibited by genistein, PP1, AG1296, LY294002, or SH5. We further demonstrated that TNF-α stimulated ERK1/2, p38 MAPK, and JNK1/2 phosphorylation via a c-Src-dependent PDGFR/PI3K/Akt pathway. TNF-α stimulated AP-1 activation, including c-Jun and ATF2 phosphorylation and AP-1 transcription activity via MAPK-dependent pathways. In addition, TNF-α-induced MMP-9 promoter activity was mediated through an AP-1 binding domain of the MMP-9 promoter region. Finally, we found that up-regulation of MMP-9 contributes to MMP-mediated type I collagen degradation and osteoblasts detachment. These results suggested that TNF-α-induced MMP-9 expression is mediated through a c-Src-dependent PDGFR transactivation and PI3K/Akt cascade linking to MAPK-mediated activation of AP-1 (c-Jun/ATF2) and leading to functional impairment in osteoblasts.
Collapse
Affiliation(s)
- Chia-Lan Tsai
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan
| | - Wei-Chung Chen
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - I-Ta Lee
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Pei-Ling Chi
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Shin-Ei Cheng
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.
| |
Collapse
|
34
|
Gellynck K, Shah R, Parkar M, Young A, Buxton P, Brett P. Small molecule stimulation enhances bone regeneration but not titanium implant osseointegration. Bone 2013; 57:405-12. [PMID: 24076022 DOI: 10.1016/j.bone.2013.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/10/2013] [Accepted: 09/12/2013] [Indexed: 11/19/2022]
Abstract
The osteogenic and osseointegrative potential of a small molecule was examined to assess its usefulness in regenerative procedures. Purmorphamine was used to stimulate bone growth and repair in an in vitro cell-based assay and an in vivo chick embryo CAM-assay with and without the presence of an implant. Purmorphamine adhered to precipitated hydroxyapatite coating, could activate the sonic hedgehog pathway and thereby stimulated osteodifferentiation. Porous calcium phosphate beads were used to deliver this small molecule in vivo and showed that purmorphamine increased the trabecular bone to bone area significantly. The assay showed purmorphamine failed to induce any significant difference in osseointegration on titanium coated PTFE implants. This suggests that, while a small molecule can enhance osteogenesis and might be useful in regenerative procedures, it failed to enhance the osseointegration of a Ti coated implant, suggesting that this sort of stimulation might be useful for enhancing bone regeneration where bone loss due to disease exists, but not for enhancing early stability of an implant.
Collapse
Affiliation(s)
- Kris Gellynck
- Biomaterials and Tissue engineering, Eastman Dental Institute, University College London, 256 Grays's Inn Road, London WC1X 8LD, UK
| | | | | | | | | | | |
Collapse
|
35
|
Coyac BR, Chicatun F, Hoac B, Nelea V, Chaussain C, Nazhat SN, McKee MD. Mineralization of dense collagen hydrogel scaffolds by human pulp cells. J Dent Res 2013; 92:648-54. [PMID: 23632809 DOI: 10.1177/0022034513488599] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
While advances in biomineralization have been made in recent years, unanswered questions persist on bone- and tooth-cell differentiation, on outside-in signaling from the extracellular matrix, and on the link between protein expression and mineral deposition. In the present study, we validate the use of a bioengineered three-dimensional (3D) dense collagen hydrogel scaffold as a cell-culture model to explore these questions. Dental pulp progenitor/stem cells from human exfoliated deciduous teeth (SHEDs) were seeded into an extracellular matrix-like collagen gel whose fibrillar density was increased through plastic compression. SHED viability, morphology, and metabolic activity, as well as scaffold mineralization, were investigated over 24 days in culture. Additionally, measurements of alkaline phosphatase enzymatic activity, together with immunoblotting for mineralized tissue cell markers ALPL (tissue-non-specific alkaline phosphatase), DMP1 (dentin matrix protein 1), and OPN (osteopontin), demonstrated osteo/odontogenic cell differentiation in the dense collagen scaffolds coincident with mineralization. Analyses of the mineral phase by electron microscopy, including electron diffraction and energy-dispersive x-ray spectroscopy, combined with Fourier-transform infrared spectroscopy and biochemical analyses, were consistent with the formation of apatitic mineral that was frequently aligned along collagen fibrils. In conclusion, use of a 3D dense collagen scaffold promoted SHED osteo/odontogenic cell differentiation and mineralization.
Collapse
Affiliation(s)
- B R Coyac
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
36
|
Abou Neel EA, Bozec L, Knowles JC, Syed O, Mudera V, Day R, Hyun JK. Collagen--emerging collagen based therapies hit the patient. Adv Drug Deliv Rev 2013; 65:429-56. [PMID: 22960357 DOI: 10.1016/j.addr.2012.08.010] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 08/10/2012] [Accepted: 08/28/2012] [Indexed: 12/11/2022]
Abstract
The choice of biomaterials available for regenerative medicine continues to grow rapidly, with new materials often claiming advantages over the short-comings of those already in existence. Going back to nature, collagen is one of the most abundant proteins in mammals and its role is essential to our way of life. It can therefore be obtained from many sources including porcine, bovine, equine or human and offer a great promise as a biomimetic scaffold for regenerative medicine. Using naturally derived collagen, extracellular matrices (ECMs), as surgical materials have become established practice for a number of years. For clinical use the goal has been to preserve as much of the composition and structure of the ECM as possible without adverse effects to the recipient. This review will therefore cover in-depth both naturally and synthetically produced collagen matrices. Furthermore the production of more sophisticated three dimensional collagen scaffolds that provide cues at nano-, micro- and meso-scale for molecules, cells, proteins and bulk fluids by inducing fibrils alignments, embossing and layered configuration through the application of plastic compression technology will be discussed in details. This review will also shed light on both naturally and synthetically derived collagen products that have been available in the market for several purposes including neural repair, as cosmetic for the treatment of dermatologic defects, haemostatic agents, mucosal wound dressing and guided bone regeneration membrane. There are other several potential applications of collagen still under investigations and they are also covered in this review.
Collapse
|
37
|
Uchihashi K, Aoki S, Matsunobu A, Toda S. Osteoblast migration into type I collagen gel and differentiation to osteocyte-like cells within a self-produced mineralized matrix: a novel system for analyzing differentiation from osteoblast to osteocyte. Bone 2013; 52:102-10. [PMID: 22985890 DOI: 10.1016/j.bone.2012.09.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/07/2012] [Accepted: 09/06/2012] [Indexed: 12/29/2022]
Abstract
Osteoblasts are believed to differentiate into osteocytes, becoming embedded in bone, or to undergo apoptosis after the bone formation phase. The regulation of this terminal differentiation seems to be critical for bone homeostasis. However the mechanism remains unclear and there is no assay system currently available to analyze this process. To address this issue, we developed a new model in which osteoblasts are cultured on a type I collagen gel layer with osteogenic supplements β-glycerophosphate and ascorbic acid. Cellular behavior was analyzed by electron microscopy, immunohistochemistry and real-time RT-PCR. Osteoblasts gradually migrated into the gel, produced collagen fibrils, and differentiated to osteocytic cells with bone lacunae- and canaliculi-like mineralization. Osteocalcin, DMP-1 and SOST protein expression was mainly expressed in the migrated cells within the mid-layer of the gel. Osteoblastic (ALP and osteocalcin) and osteocytic (PHEX, DMP-1 and SOST) mRNA expression was significantly increased compared with those of the cells cultured on plastic dishes alone after 21 days. The number of TUNEL-positive apoptotic cells gradually increased, reaching a maximum at 28 days. The cells were distributed at the surface and in the mid-layer of the gel at 7 days and after 14 days of culture, respectively. These data indicate that our model reproduces transition from osteoblasts to osteocytes, suggesting the following: 1) migration of osteoblasts into collagen gel may play a critical role in osteocytic differentiation; and 2) spatiotemporal gene expression and apoptosis may be involved in the terminal differentiation of osteoblasts. Our model will make it possible to study the mechanism of transition from osteoblast to osteocyte, and both cell type-related diseases including osteoporosis and osteonecrosis.
Collapse
Affiliation(s)
- Kazuyoshi Uchihashi
- Department of Pathology & Microbiology, Faculty of Medicine, Saga University, Saga 849-8501, Japan.
| | | | | | | |
Collapse
|
38
|
Serpooshan V, Quinn TM, Muja N, Nazhat SN. Hydraulic permeability of multilayered collagen gel scaffolds under plastic compression-induced unidirectional fluid flow. Acta Biomater 2013; 9:4673-80. [PMID: 22947324 DOI: 10.1016/j.actbio.2012.08.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 08/01/2012] [Accepted: 08/20/2012] [Indexed: 01/07/2023]
Abstract
Under conditions of free fluid flow, highly hydrated fibrillar collagen gels expel fluid and undergo gravity driven consolidation (self-compression; SC). This process can be accelerated by the application of a compressive stress (plastic compression; PC) in order to generate dense collagen scaffolds for tissue engineering. To define the microstructural evolution of collagen gels under PC, this study applied a two-layer micromechanical model that was previously developed to measure hydraulic permeability (k) under SC. Radially confined PC resulted in unidirectional fluid flow through the gel and the formation of a dense lamella at the fluid expulsion boundary which was confirmed by confocal microscopy of collagen immunoreactivity. Gel mass loss due to PC and subsequent SC were measured and applied to Darcy's law to calculate the thickness of the lamella and hydrated layer, as well as their relative permeabilities. Increasing PC level resulted in a significant increase in mass loss fraction and lamellar thickness, while the thickness of the hydrated layer dramatically decreased. Permeability of lamella also decreased from 1.8×10(-15) to 1.0×10(-15) m(2) in response to an increase in PC level. Ongoing SC, following PC, resulted in a uniform decrease in mass loss and k with increasing PC level and as a function SC time. Experimental k data were in close agreement with those estimated by the Happel model. Calculation of average k values for various two-layer microstructures indicated that they each approached 10(-15)-10(-14) m(2) at equilibrium. In summary, the two-layer micromechanical model can be used to define the microstructure and permeability of multi-layered biomimetic scaffolds generated by PC.
Collapse
Affiliation(s)
- Vahid Serpooshan
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
39
|
Nicolaije C, Koedam M, van Leeuwen JPTM. Decreased oxygen tension lowers reactive oxygen species and apoptosis and inhibits osteoblast matrix mineralization through changes in early osteoblast differentiation. J Cell Physiol 2012; 227:1309-18. [PMID: 21604266 DOI: 10.1002/jcp.22841] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Accumulating data show that oxygen tension can have an important effect on cell function and fate. We used the human pre-osteoblastic cell line SV-HFO, which forms a mineralizing extracellular matrix, to study the effect of low oxygen tension (2%) on osteoblast differentiation and mineralization. Mineralization was significantly reduced by 60-70% under 2% oxygen, which was paralleled by lower intracellular levels of reactive oxygen species (ROS) and apoptosis. Following this reduction in ROS the cells switched to a lower level of protection by down-regulating their antioxidant enzyme expression. The downside of this is that it left the cells more vulnerable to a subsequent oxidative challenge. Total collagen content was reduced in the 2% oxygen cultures and expression of matrix genes and matrix-metabolizing enzymes was significantly affected. Alkaline phosphatase activity and RNA expression as well as RUNX2 expression were significantly reduced under 2% oxygen. Time phase studies showed that high oxygen in the first phase of osteoblast differentiation and prior to mineralization is crucial for optimal differentiation and mineralization. Switching to 2% or 20% oxygen only during mineralization phase did not change the eventual level of mineralization. In conclusion, this study shows the significance of oxygen tension for proper osteoblast differentiation, extra cellular matrix (ECM) formation, and eventual mineralization. We demonstrated that the major impact of oxygen tension is in the early phase of osteoblast differentiation. Low oxygen in this phase leaves the cells in a premature differentiation state that cannot provide the correct signals for matrix maturation and mineralization.
Collapse
Affiliation(s)
- Claudia Nicolaije
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | |
Collapse
|
40
|
Barthelemi S, Robinet J, Garnotel R, Antonicelli F, Schittly E, Hornebeck W, Lorimier S. Mechanical forces-induced human osteoblasts differentiation involves MMP-2/MMP-13/MT1-MMP proteolytic cascade. J Cell Biochem 2012; 113:760-72. [DOI: 10.1002/jcb.23401] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
41
|
Schuh E, Hofmann S, Stok K, Notbohm H, Müller R, Rotter N. Chondrocyte redifferentiation in 3D: the effect of adhesion site density and substrate elasticity. J Biomed Mater Res A 2011; 100:38-47. [PMID: 21972220 DOI: 10.1002/jbm.a.33226] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 07/05/2011] [Accepted: 07/21/2011] [Indexed: 12/31/2022]
Abstract
To obtain sufficient cell numbers for cartilage tissue engineering with autologous chondrocytes, cells are typically expanded in monolayer culture. As a result, they lose their chondrogenic phenotype in a process called dedifferentiation, which can be reversed upon transfer into a 3D environment. We hypothesize that the properties of this 3D environment, namely adhesion site density and substrate elasticity, would influence this redifferentiation process. To test this hypothesis, chondrocytes were expanded in monolayer and their phenotypical transition was monitored. Agarose hydrogels manipulated to give different RGD adhesion site densities and mechanical properties were produced, cells were incorporated into the gels to induce redifferentiation, and constructs were analyzed to determine cell number and extracellular matrix production after 2 weeks of 3D culture. The availability of adhesion sites within the gels inhibited cellular redifferentiation. Glycosaminoglycan production per cell was diminished by RGD in a dose-dependent manner and cells incorporated into gels with the highest RGD density, remained positive for collagen type I and produced the least collagen type II. Substrate stiffness, in contrast, did not influence cellular redifferentiation, but softer gels contained higher cell numbers and ECM amounts after 2 weeks of culture. Our results indicate that adhesion site density but not stiffness influences the redifferentiation process of chondrocytes in 3D. This knowledge might be used to optimize the redifferentiation process of chondrocytes and thus the formation of cartilage-like tissue.
Collapse
Affiliation(s)
- Elena Schuh
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
42
|
Marelli B, Ghezzi CE, Mohn D, Stark WJ, Barralet JE, Boccaccini AR, Nazhat SN. Accelerated mineralization of dense collagen-nano bioactive glass hybrid gels increases scaffold stiffness and regulates osteoblastic function. Biomaterials 2011; 32:8915-26. [PMID: 21889796 DOI: 10.1016/j.biomaterials.2011.08.016] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 08/08/2011] [Indexed: 02/07/2023]
Abstract
Plastically compressed dense collagen (DC) gels mimic the microstructural, mechanical, and biological properties of native osteoid. This study investigated the effect of hybridizing DC with osteoinductive nano-sized bioactive glass (nBG) particles in order to potentially produce readily implantable, and mineralizable, cell seeded hydrogel scaffolds for bone tissue engineering. Due to the high surface area of nBG and increased reactivity, calcium phosphate formation was immediately detected within as processed DC-nGB hybrid gel scaffolds. By day 3 in simulated body fluid, accelerated mineralization was confirmed through the homogeneous growth of carbonated hydroxylapatite on the nanofibrillar collagen framework. At day 7, there was a 13 fold increase in the hybrid gel scaffold compressive modulus. MC3T3-E1 pre-osteoblasts, three-dimensionally seeded at the point of nanocomposite self-assembly, were viable up to day 28 in culture. In the absence of osteogenic supplements, MC3T3-E1 metabolic activity and alkaline phosphatase production were affected by the presence of nBG, indicating accelerated osteogenic differentiation. Additionally, no cell-induced contraction of DC-nBG gel scaffolds was detected. The accelerated mineralization of rapidly produced DC-nBG hybrid gels indicates their potential suitability as osteoinductive cell delivery scaffolds for bone regenerative therapy.
Collapse
Affiliation(s)
- Benedetto Marelli
- Department of Mining and Materials Engineering, McGill University, Montreal, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
43
|
Kim K, Dean D, Wallace J, Breithaupt R, Mikos AG, Fisher JP. The influence of stereolithographic scaffold architecture and composition on osteogenic signal expression with rat bone marrow stromal cells. Biomaterials 2011; 32:3750-63. [PMID: 21396709 DOI: 10.1016/j.biomaterials.2011.01.016] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 01/06/2011] [Indexed: 12/18/2022]
Abstract
Scaffold design parameters, especially physical construction factors such as mechanical stiffness of substrate materials, pore size of 3D porous scaffolds, and channel geometry, are known to influence the osteogenic signal expression and subsequent differentiation of a transplanted cell population. In this study of photocrosslinked poly(propylene fumarate) (PPF) and diethyl fumarate (DEF) scaffolds, the effect of DEF incorporation ratio and pore size on the osteogenic signal expression of rat bone marrow stromal cells (BMSCs) was investigated. Results demonstrated that DEF concentrations and pore sizes that led to increased scaffold mechanical stiffness also upregulated osteogenic signal expression, including bone morphogenic protein-2 (BMP-2), fibroblast growth factors-2 (FGF-2), transforming growth factor-β1 (TGF-β1), vascular endothelial growth factor (VEGF), and Runx2 transcriptional factor. Similar scaffold fabrication parameters supported rapid BMSC osteoblastic differentiation, as demonstrated by increased alkaline phosphatase (ALP) and osteocalcin expression. When scaffolds with random architecture, fabricated by porogen leaching, were compared to those with controlled architecture, fabricated by stereolithography (SLA), results showed that SLA scaffolds with the highly permeable and porous channels also have significantly higher expression of FGF-2, TGF-β1, and VEGF. Subsequent ALP expression and osteopontin secretion were also significantly increased in SLA scaffolds. Based upon these results, we conclude that scaffold properties provided by additive manufacturing techniques such as SLA fabrication, particularly increased mechanical stiffness and high permeability, may stimulate dramatic BMSC responses that promote rapid bone tissue regeneration.
Collapse
Affiliation(s)
- Kyobum Kim
- Department of Chemical and Biomolecular Engineering, University of Maryland, 3238 Jeong H. Kim Engineering Building, College Park, MD 20742, United States
| | | | | | | | | | | |
Collapse
|
44
|
Chicatun F, Pedraza CE, Ghezzi CE, Marelli B, Kaartinen MT, McKee MD, Nazhat SN. Osteoid-mimicking dense collagen/chitosan hybrid gels. Biomacromolecules 2011; 12:2946-56. [PMID: 21661759 DOI: 10.1021/bm200528z] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bone extracellular matrix (ECM) is a 3D network, composed of collagen type I and a number of other macromolecules, including glycosaminoglycans (GAGs), which stimulate signaling pathways that regulate osteoblast growth and differentiation. To model the ECM of bone for tissue regenerative approaches, dense collagen/chitosan (Coll/CTS) hybrid hydrogels were developed using different proportions of CTS to mimic GAG components of the ECM. MC3T3-E1 mouse calvaria preosteoblasts were seeded within plastically compressed Coll/CTS hydrogels with solid content approaching that of native bone osteoid. Dense, cellular Coll/CTS hybrids were maintained for up to 8 weeks under either basal or osteogenic conditions. Higher CTS content significantly increased gel resistance to collagenase degradation. The incorporation of CTS to collagen gels decreased the apparent tensile modulus from 1.82 to 0.33 MPa. In contrast, the compressive modulus of Coll/CTS hybrids increased in direct proportion to CTS content exhibiting an increase from 23.50 to 55.25 kPa. CTS incorporation also led to an increase in scaffold resistance to cell-induced contraction. MC3T3-E1 viability, proliferation, and matrix remodeling capability (via matrix metalloproteinase expression) were maintained. Alkaline phosphatase activity was increased up to two-fold, and quantification of phosphate mineral deposition was significantly increased with CTS incorporation. Thus, dense Coll/CTS scaffolds provide osteoid-like models for the study of osteoblast differentiation and bone tissue engineering.
Collapse
Affiliation(s)
- Florencia Chicatun
- Department of Mining and Materials Engineering, Faculty of Engineering, McGill University, Montreal, Quebec, Canada H3A 2B2
| | | | | | | | | | | | | |
Collapse
|
45
|
Ghezzi CE, Muja N, Marelli B, Nazhat SN. Real time responses of fibroblasts to plastically compressed fibrillar collagen hydrogels. Biomaterials 2011; 32:4761-72. [PMID: 21514662 DOI: 10.1016/j.biomaterials.2011.03.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 03/04/2011] [Indexed: 01/04/2023]
Abstract
In vitro reconstituted type I collagen hydrogels are widely utilized for tissue engineering studies. However, highly hydrated collagen (HHC) gels exhibit insufficient mechanical strength and unstable geometrical properties, thereby limiting their therapeutic application. Plastic compression (PC) is a simple and reproducible approach for the immediate production of dense fibrillar collagen (DC) scaffolds which demonstrate multiple improvements for tissue engineered constructs including extracellular matrix (ECM)-like meso scale characteristics, increased mechanical properties (modulus and strength), enhanced cell growth and differentiation, and reduced long-term scaffold deformation. In order to determine at which stage these benefits become apparent, and the underlying mechanisms involved, the immediate response of NIH/3T3 fibroblasts to PC as well as longer-term cell growth within DC scaffolds were examined herein. The real time three-dimensional (3D) distribution of fluorescently labelled cells during PC was sequentially monitored using confocal laser scanning microscopy (CLSM), observing excellent cell retention and negligible numbers of expelled cells. Relative to cells grown in HHC gels, a significant improvement in cell survival within DC scaffolds was evident as early as day 1. Cell growth and metabolic activity within DC gels were significantly increased over the course of one week. While cells within DC scaffolds reached confluency, an inhomogeneous distribution of cells was present in HHC gels, as detected using x-ray computed micro-tomography analysis of phosphotungstic acid labelled cells and CLSM, which both showed a significant cell loss within the HHC core. Therefore, PC generates a DC gel scaffold without detrimental effects towards seeded cells, surpassing HHC gels as a 3D scaffold for tissue engineering.
Collapse
Affiliation(s)
- Chiara E Ghezzi
- Department of Mining and Materials Engineering, McGill University, 3610, University Street, Montreal, Quebec, Canada H3A 2B2
| | | | | | | |
Collapse
|
46
|
Serpooshan V, Muja N, Marelli B, Nazhat SN. Fibroblast contractility and growth in plastic compressed collagen gel scaffolds with microstructures correlated with hydraulic permeability. J Biomed Mater Res A 2011; 96:609-20. [DOI: 10.1002/jbm.a.33008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 10/10/2010] [Accepted: 11/02/2010] [Indexed: 01/07/2023]
|
47
|
Kim K, Yeatts A, Dean D, Fisher JP. Stereolithographic bone scaffold design parameters: osteogenic differentiation and signal expression. TISSUE ENGINEERING PART B-REVIEWS 2011; 16:523-39. [PMID: 20504065 DOI: 10.1089/ten.teb.2010.0171] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Scaffold design parameters including porosity, pore size, interconnectivity, and mechanical properties have a significant influence on osteogenic signal expression and differentiation. This review evaluates the influence of each of these parameters and then discusses the ability of stereolithography (SLA) to be used to tailor scaffold design to optimize these parameters. Scaffold porosity and pore size affect osteogenic cell signaling and ultimately in vivo bone tissue growth. Alternatively, scaffold interconnectivity has a great influence on in vivo bone growth but little work has been done to determine if interconnectivity causes changes in signaling levels. Osteogenic cell signaling could be also influenced by scaffold mechanical properties such as scaffold rigidity and dynamic relationships between the cells and their extracellular matrix. With knowledge of the effects of these parameters on cellular functions, an optimal tissue engineering scaffold can be designed, but a proper technology must exist to produce this design to specification in a repeatable manner. SLA has been shown to be capable of fabricating scaffolds with controlled architecture and micrometer-level resolution. Surgical implantation of these scaffolds is a promising clinical treatment for successful bone regeneration. By applying knowledge of how scaffold parameters influence osteogenic cell signaling to scaffold manufacturing using SLA, tissue engineers may move closer to creating the optimal tissue engineering scaffold.
Collapse
Affiliation(s)
- Kyobum Kim
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA
| | | | | | | |
Collapse
|
48
|
Abstract
Collagen gels provide a versatile and widely used substrate for three-dimensional (3D) cell culture. Here we describe how cell-seeded Type-I collagen gels can be adapted to provide powerful 3D models to support a wide range of research applications where cell/substrate alignment, density, stiffness/compliance, and strain are critical factors. In their fully hydrated form, rectangular collagen gels can be tethered such that endogenous forces generated as resident cells attach to and remodel the fibrillar collagen network can align the substrate in a controllable, predictable, and quantifiable manner. By removing water from collagen gels (plastic compression), their density increases towards that of body tissues, facilitating the engineering of a range of biomimetic constructs with controllable mechanical properties. This dense collagen can be used in combination with other components to achieve a range of functional properties from controlled perfusion, or tensile/compressive strength to new micro-structures. Detailed methodology is provided for the assembly of a range of 3D collagen materials including tethered aligned hydrogels and plastic compressed constructs. A range of techniques for analysing cell behaviour within these models, including microscopy and molecular analyses are described. These systems therefore provide a highly controllable mechanical and chemical micro-environment for investigating a wide range of cellular responses.
Collapse
Affiliation(s)
- James B Phillips
- Department of Life Sciences, The Open University, Milton Keynes, UK
| | | |
Collapse
|
49
|
Hadjipanayi E, Ananta M, Binkowski M, Streeter I, Lu Z, Cui ZF, Brown RA, Mudera V. Mechanisms of structure generation during plastic compression of nanofibrillar collagen hydrogel scaffolds: towards engineering of collagen. J Tissue Eng Regen Med 2010; 5:505-19. [DOI: 10.1002/term.343] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 07/07/2010] [Indexed: 02/03/2023]
|
50
|
Serpooshan V, Julien M, Nguyen O, Wang H, Li A, Muja N, Henderson JE, Nazhat SN. Reduced hydraulic permeability of three-dimensional collagen scaffolds attenuates gel contraction and promotes the growth and differentiation of mesenchymal stem cells. Acta Biomater 2010; 6:3978-87. [PMID: 20451675 DOI: 10.1016/j.actbio.2010.04.028] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 04/28/2010] [Accepted: 04/30/2010] [Indexed: 12/29/2022]
Abstract
Optimal scaffold characteristics are essential for the therapeutic application of engineered tissues. Hydraulic permeability (k) affects many properties of collagen gels, such as mechanical properties, cell-scaffold interactions within three dimensions (3D), oxygen flow and nutrient diffusion. However, the cellular response to 3D gel scaffolds of defined k values has not been investigated. In this study, unconfined plastic compression under increasing load was used to produce collagen gels with increasing solid volume fractions. The Happel model was used to calculate the resulting permeability values in order to study the interaction of k with gel mechanical properties and mesenchymal stem cell (MSC)-induced gel contraction, metabolism and differentiation in both non-osteogenic (basal medium) and osteogenic medium for up to 3 weeks. Collagen gels of fibrillar densities ranging from 0.3 to >4.1 wt.% gave corresponding k values that ranged from 1.00 to 0.03 microm(2). Mechanical testing under compression showed that the collagen scaffold modulus increased with collagen fibrillar density and a decrease in k value. MSC-induced gel contraction decreased as a direct function of decreasing k value. Relative to osteogenic conditions, non-osteogenic MSC cultures exhibited a more than 2-fold increase in gel contraction. MSC metabolic activity increased similarly under both osteogenic and non-osteogenic culture conditions for all levels of plastic compression. Under osteogenic conditions MSC differentiation and mineralization, as indicated by alkaline phosphatase activity and von Kossa staining, respectively, increased in response to an elevation in collagen fibrillar density and decreased gel permeability. In this study, gel scaffolds with higher collagen fibrillar densities and corresponding lower k values provided a greater potential for MSC differentiation and appear most promising for bone grafting purposes. Thus, cell-scaffold interactions can be optimized by defining the 3D properties of collagen scaffolds through k adjustment.
Collapse
|