1
|
Chavez MB, Chu EY, Kram V, de Castro LF, Somerman MJ, Foster BL. Guidelines for Micro-Computed Tomography Analysis of Rodent Dentoalveolar Tissues. JBMR Plus 2021; 5:e10474. [PMID: 33778330 PMCID: PMC7990153 DOI: 10.1002/jbm4.10474] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/16/2021] [Accepted: 02/09/2021] [Indexed: 12/21/2022] Open
Abstract
Micro–computed tomography (μCT) has become essential for analysis of mineralized as well as nonmineralized tissues and is therefore widely applicable in the life sciences. However, lack of standardized approaches and protocols for scanning, analyzing, and reporting data often makes it difficult to understand exactly how analyses were performed, how to interpret results, and if findings can be broadly compared with other models and studies. This problem is compounded in analysis of the dentoalveolar complex by the presence of four distinct mineralized tissues: enamel, dentin, cementum, and alveolar bone. Furthermore, these hard tissues interface with adjacent soft tissues, the dental pulp and periodontal ligament (PDL), making for a complex organ. Drawing on others' and our own experience analyzing rodent dentoalveolar tissues by μCT, we introduce techniques to successfully analyze dentoalveolar tissues with similar or disparate compositions, densities, and morphological characteristics. Our goal is to provide practical guidelines for μCT analysis of rodent dentoalveolar tissues, including approaches to optimize scan parameters (filters, voltage, voxel size, and integration time), reproducibly orient samples, define regions and volumes of interest, segment and subdivide tissues, interpret findings, and report methods and results. We include illustrative examples of analyses performed on genetically engineered mouse models with phenotypes in enamel, dentin, cementum, and alveolar bone. The recommendations are designed to increase transparency and reproducibility, promote best practices, and provide a basic framework to apply μCT analysis to the dentoalveolar complex that can also be extrapolated to a variety of other tissues of the body. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Michael B Chavez
- Division of Biosciences, College of Dentistry The Ohio State University Columbus OH USA
| | - Emily Y Chu
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) National Institutes of Health (NIH) Bethesda MD USA
| | - Vardit Kram
- National Institute of Dental and Craniofacial Research (NIDCR)National Institutes of Health (NIH) Bethesda MD USA
| | - Luis F de Castro
- National Institute of Dental and Craniofacial Research (NIDCR)National Institutes of Health (NIH) Bethesda MD USA
| | - Martha J Somerman
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) National Institutes of Health (NIH) Bethesda MD USA
| | - Brian L Foster
- Division of Biosciences, College of Dentistry The Ohio State University Columbus OH USA
| |
Collapse
|
2
|
Holzer L, Kraiger M, Talakic E, Fritz G, Avian A, Hofmeister A, Leithner A, Holzer G. Microstructural analysis of subchondral bone in knee osteoarthritis. Osteoporos Int 2020; 31:2037-2045. [PMID: 32472294 PMCID: PMC7497490 DOI: 10.1007/s00198-020-05461-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/07/2020] [Indexed: 01/27/2023]
Abstract
UNLABELLED The results of this study show increased formation of bone in the subchondral areas in advanced stages of osteoarthritis of the knee. These changes seem to be influenced by mechanical factors. INTRODUCTION Subchondral bone changes seem to contribute to the progression of knee osteoarthritis (OA). This study aimed to analyze subchondral bone microstructure in specimens of late-stage knee OA in respect to articular cartilage damage, meniscus integrity, and knee joint alignment. METHODS Thirty proximal tibiae of 30 patients (20 female and 10 male) with late-stage OA retrieved during total knee arthroplasty were scanned using a high-resolution micro-computed tomography. The scans were semi-automatically segmented into five volumes of interest. The volumes of interest were then further analyzed using commercially available software. The degree of articular cartilage damage was assessed semi-quantitatively by magnetic resonance imaging before surgery. RESULTS The mean bone fraction volume (bone volume/total volume (BV/TV)) in all weight-bearing locations was significantly higher compared to the non-weight-bearing reference point below the anterior cruciate ligament (p = 0.000). The mean BV/TV in the medial compartment was significantly higher compared to the lateral compartment (p = 0.007). As for the BV/TV in intact menisci, there was a significantly lower subchondral bone fraction volume compared to subluxated or luxated menisci in the medial (p = 0.020) and lateral compartment (p = 0.005). Varus alignment had a significantly higher subchondral BV/TV in the medial compartment, whereas valgus alignment had a significantly higher subchondral BV/TV in the lateral compartment (p = 0.011). CONCLUSIONS The results show significant differences of subchondral bone microstructural parameters in respect to cartilage damage, meniscus' structural integrity, and knee joint alignment. Therefore, subchondral bone changes seem to be a secondary process in the late-stage OA of the knee caused by mechanical changes.
Collapse
Affiliation(s)
- L.A. Holzer
- grid.11598.340000 0000 8988 2476Department of Orthopaedics and Trauma, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria
- AUVA Trauma Center Klagenfurt, Waidmannsdorfer Straße 35, Klagenfurt am Wörthersee, Austria
| | - M. Kraiger
- grid.410413.30000 0001 2294 748XInstitute of Medical Engineering, Graz University of Technology, Graz, Austria
| | - E. Talakic
- grid.11598.340000 0000 8988 2476Division of General Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - G.A. Fritz
- grid.11598.340000 0000 8988 2476Division of General Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - A. Avian
- grid.11598.340000 0000 8988 2476Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - A. Hofmeister
- grid.11598.340000 0000 8988 2476PreClinical Imaging Group, Center for Biomedical Research, Medical University Graz, Graz, Austria
| | - A. Leithner
- grid.11598.340000 0000 8988 2476Department of Orthopaedics and Trauma, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria
| | - G. Holzer
- grid.22937.3d0000 0000 9259 8492Department of Orthopaedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Wu PH, Gupta T, Chang H, Petrenko D, Schafer A, Kazakia G. Soft tissue variations influence HR-pQCT density measurements in a spatially dependent manner. Bone 2020; 138:115505. [PMID: 32599223 PMCID: PMC7428203 DOI: 10.1016/j.bone.2020.115505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/02/2020] [Accepted: 06/11/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Significant weight loss following treatments for obesity undermines bone metabolism and increases bone turnover and fracture incidence. High resolution peripheral quantitative computed tomography (HR-pQCT) is widely used in skeletal heath assessment research to provide noninvasive bone parameter measurement (e.g. volumetric bone mineral density (vBMD)) with minimal radiation exposure. However, variation in body composition among study groups or longitudinal variations within individuals undergoing significant weight change will generate artifacts and errors in HR-pQCT data. The purpose of this study is to determine the influence of these artifacts on the measurement of vBMD. METHODS We designed a custom-made hydroxyapatite (HA)-polymer phantom surrounded by layers of reusable gel pack and hydrogenated fat to mimic the distal tibia and the surrounding lean and fat tissue. Four different thicknesses of fat were used to mimic the soft tissue of increasingly overweight individuals. We then evaluated how a change in soft tissue thickness influenced image quality and vBMD quantification within total, trabecular, and cortical bone compartments. Based on these data, we applied a data correction to previously acquired clinical data in a cohort of gastric bypass patients. RESULTS In the phantom measurements, total, trabecular, and cortical vBMD increased as soft tissue thickness decreased. The impact of soft tissue thickness on vBMD varied by anatomic quadrant. When applying the soft tissue data correction to a set of clinical data, we found that soft tissue reduction following bariatric surgery can lead to a clinically significant underestimation of bone loss in longitudinal data, and that the effect is most severe in the cortical compartment. CONCLUSION HR-pQCT-based vBMD measurement accuracy is influenced by soft tissue thickness and is spatially inhomogeneous. Our results suggest that variations in soft tissue thickness must be considered in HR-pQCT studies, particularly in studies enrolling cohorts with differing body composition or in studies of longitudinal weight change.
Collapse
Affiliation(s)
- Po-Hung Wu
- Department of Radiology and Biomedical Imaging at China Basin, University of California - San Francisco, 185 Berry Street, Suite 190, Lobby 6, San Francisco, CA 94107, USA.
| | - Tanvi Gupta
- Department of Radiology and Biomedical Imaging at China Basin, University of California - San Francisco, 185 Berry Street, Suite 190, Lobby 6, San Francisco, CA 94107, USA.
| | - Hanling Chang
- Department of Medicine, University of California - San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA; Endocrine Research Unit, San Francisco Veterans Affairs Health Care System, 4150 Clement St, San Francisco, CA 94121, USA
| | - Dimitry Petrenko
- Department of Medicine, University of California - San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA; Endocrine Research Unit, San Francisco Veterans Affairs Health Care System, 4150 Clement St, San Francisco, CA 94121, USA
| | - Anne Schafer
- Department of Medicine, University of California - San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA; Endocrine Research Unit, San Francisco Veterans Affairs Health Care System, 4150 Clement St, San Francisco, CA 94121, USA; Department of Epidemiology and Biostatistics, University of California -San Francisco, 550 16th St 2nd floor, San Francisco, CA 94158, USA.
| | - Galateia Kazakia
- Department of Radiology and Biomedical Imaging at China Basin, University of California - San Francisco, 185 Berry Street, Suite 190, Lobby 6, San Francisco, CA 94107, USA.
| |
Collapse
|
4
|
Gaêta-Araujo H, Nascimento EHL, Brasil DM, Madlum DV, Haiter-Neto F, Oliveira-Santos C. Influence of reconstruction parameters of micro-computed tomography on the analysis of bone mineral density. Imaging Sci Dent 2020; 50:153-159. [PMID: 32601590 PMCID: PMC7314611 DOI: 10.5624/isd.2020.50.2.153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/12/2019] [Accepted: 12/30/2019] [Indexed: 12/17/2022] Open
Abstract
Purpose This study was conducted evaluate the influence of reconstruction parameters of micro-computed tomography (micro-CT) images on bone mineral density (BMD) analyses. Materials and Methods The sample consisted of micro-CT images of the maxillae of 5 Wistar rats, acquired using a SkyScan 1174 unit (Bruker, Kontich, Belgium). Each acquisition was reconstructed following the manufacturer's recommendations (standard protocol; SP) for the application of artifact correction tools (beam hardening correction [BHC], 45%; smoothing filter, degree 2; and ring artifact correction [RAC], level 5). Additionally, images were reconstructed with 36 protocols combining different settings of artifact correction tools (P0 to P35). BMD analysis was performed for each reconstructed image. The BMD values obtained for each protocol were compared to those obtained using the SP through repeated-measures analysis of variance with the Dunnett post hoc test (α=0.05). Results The BMD values obtained from all protocols that used a BHC of 45% did not significantly differ from those obtained using the SP (P>0.05). The other protocols all yielded significantly different BMD values from the SP (P<0.05). The smoothing and RAC tools did not affect BMD values. Conclusion BMD values measured on micro-CT images were influenced by the BHC level. Higher levels of BHC induced higher values of BMD.
Collapse
Affiliation(s)
- Hugo Gaêta-Araujo
- Department of Oral Diagnosis, Division of Oral Radiology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sao Paulo, Brazil
| | - Eduarda Helena Leandro Nascimento
- Department of Oral Diagnosis, Division of Oral Radiology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sao Paulo, Brazil
| | - Danieli Moura Brasil
- Department of Oral Diagnosis, Division of Oral Radiology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sao Paulo, Brazil
| | - Daniela Verardi Madlum
- Department of Oral Diagnosis, Division of Oral Radiology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sao Paulo, Brazil
| | - Francisco Haiter-Neto
- Department of Oral Diagnosis, Division of Oral Radiology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sao Paulo, Brazil
| | - Christiano Oliveira-Santos
- Department of Stomatology, Public Oral Health, Forensic Dentistry, Division of Oral Radiology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
5
|
Baker EA, Vara AD, Salisbury MR, Fleischer MM, Baker KC, Fortin PT, Roberts RV, Friedrich CR. Titania nanotube morphologies for osseointegration via models of in vitro osseointegrative potential and in vivo intramedullary fixation. J Biomed Mater Res B Appl Biomater 2020; 108:1483-1493. [DOI: 10.1002/jbm.b.34496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/12/2019] [Accepted: 09/16/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Erin A. Baker
- Department of Orthopaedic SurgeryBeaumont Health Royal Oak Michigan
- Department of Mechanical Engineering‐Engineering MechanicsMichigan Technological University Houghton Michigan
- Department of Orthopaedic SurgeryOakland University William Beaumont School of Medicine Rochester Michigan
| | | | | | | | - Kevin C. Baker
- Department of Orthopaedic SurgeryBeaumont Health Royal Oak Michigan
- Department of Orthopaedic SurgeryOakland University William Beaumont School of Medicine Rochester Michigan
| | - Paul T. Fortin
- Department of Orthopaedic SurgeryBeaumont Health Royal Oak Michigan
- Department of Orthopaedic SurgeryOakland University William Beaumont School of Medicine Rochester Michigan
| | | | - Craig R. Friedrich
- Department of Mechanical Engineering‐Engineering MechanicsMichigan Technological University Houghton Michigan
| |
Collapse
|
6
|
Lin CC, Chang WHS, Cheng TM, Chiu LH, Wang YH, Lin CAJ, Ho YS, Zuo CS, Wang YM, Lai WFT. Two new, near-infrared, fluorescent probes as potential tools for imaging bone repair. Sci Rep 2020; 10:2580. [PMID: 32054952 PMCID: PMC7018698 DOI: 10.1038/s41598-020-59522-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 01/14/2020] [Indexed: 11/30/2022] Open
Abstract
A precise imaging technique to evaluate osteogenesis, osteodifferentiation, and osseointegration following peri-implant surgery is in high clinical demand. Herein, we report the generation of two new, near-infrared (NIR) fluorescent probes for use in the molecular imaging of bone repair. The first probe aims to monitor the in vitro differentiation of human mesenchymal stem cells (MSCs) into osteoblasts. A NIR fluorochrome was conjugated to a cyclic peptide that binds to integrin α5β1, a factor that promotes osteogenesis in MSCs and therefore functioned as an osteoblast-specific marker. The second probe aims to monitor osteogenesis, and was generated by conjugating the drug pamidronate to a NIR fluorescent gold nanocluster. Pamidronate specifically binds to hydroxyapatite (HA), a mineral present in bone that is produced by osteoblasts, and therefore provides a functional marker for new bone formation. Our results show that both probes bind to their specific targets in vitro-differentiated osteoblasts, and not to undifferentiated MSCs, and emit NIR fluorescence for functional detection. This in vitro work demonstrates the ability of these probes to bind to active osteoblasts and their mineral deposits and highlight their potential utility as clinical tools for the imaging of the osseointegration process at the molecular level.
Collapse
Affiliation(s)
- Chien-Chou Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | - Tsai-Mu Cheng
- Ph.D. Program for Translational Medicine, College of Medicine and Technology, Taipei Medical University, Taipei, Taiwan
| | - Li-Hsuan Chiu
- McLean Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Department of Research and Department of Dentistry, Taipei Medical University/Shuang-Ho Hospital, New Taipei City, Taiwan
| | - Yen-Hsun Wang
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu, Taiwan
| | - Cheng-An J Lin
- Department of Biomedical Engineering, Chung Yuan Christian University, Chung-Li, Taiwan
| | - Yuan-Soon Ho
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun S Zuo
- McLean Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Yun-Ming Wang
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu, Taiwan.
| | - Wen-Fu Thomas Lai
- McLean Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA, USA.
- Institute of Graduate Clinical Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Research and Department of Dentistry, Taipei Medical University/Shuang-Ho Hospital, New Taipei City, Taiwan.
| |
Collapse
|
7
|
Giaze TR, Shuid AN, Soelaiman IN, Muhammad N, Jamal JA, Fauzi MB, Mohamed N. Comparative anti-osteoporotic properties of the leaves and roots of Marantodes pumilum var. alata in postmenopausal rat model. J Tradit Complement Med 2019; 9:393-400. [PMID: 31453136 PMCID: PMC6702132 DOI: 10.1016/j.jtcme.2019.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 12/31/2018] [Accepted: 01/04/2019] [Indexed: 11/08/2022] Open
Abstract
Background Marantodes pumilum var. alata (MPva), popularly known as Kacip Fatimah, is widely used to maintain female reproductive health, facilitate post-partum recovery and manage symptoms of menopause and osteoporosis in South-East Asia. This study aims to further evaluate the osteoprotective potential of MPva in view of reports of its bone-protective properties in postmenopausal condition. Methods Thirty female Sprague-Dawley rats were sorted into 5 groups (n = 6) namely: MPv (leaf treatment); MPr (root treatment); ERT (estrogen treatment); OVXC (untreated ovariectomized control) and Sham (untreated sham-operated control). All rats (except the Sham) were ovariectomized to induce a state of estrogen deficiency that simulates menopause. Two weeks after ovariectomy, the rats were treated for 8 weeks with oral gavages of estrogen and plant extracts. The ERT group received 64.5 μg/kg/day dose of estrogen while MPv and MPr groups received 20 mg/kg/day dose of leaf and root extracts, respectively. At the end of treatment, left femora were excised from euthanized rats and investigated for changes in bone micro-architecture, mineral density, and biomechanical properties. Results Bone volume fraction, degree of anisotropy and structure-model-index of bone were significantly improved (p < 0.05) in the MPv group compared to OVXC. Breaking force and maximum stress of bone were also significantly higher (p < 0.05) in the MPv group compared to the OVXC. Conclusion Treatment with MPva leaf protected bone microarchitecture and density against osteoporosis-related changes in postmenopausal rats. Similar to estrogen, the protective effects of MPva leaf translated into better-enhanced bone mechanical properties compared to the root treatment.
Collapse
Affiliation(s)
- Tijjani Rabiu Giaze
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Ahmad Nazrun Shuid
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Ima Nirwana Soelaiman
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Norliza Muhammad
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Jamia Azdina Jamal
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mh Busra Fauzi
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Norazlina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Fiedler IAK, Zeveleva S, Duarte A, Zhao X, Depalle B, Cardoso L, Jin S, Berteau JP. Microstructure, mineral and mechanical properties of teleost intermuscular bones. J Biomech 2019; 94:59-66. [PMID: 31427091 DOI: 10.1016/j.jbiomech.2019.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 06/12/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022]
Abstract
There is an increasing interest in understanding teleost bone biomechanics in several scientific communities, for instance as interesting biomaterials with specific structure-function relationships. Intermuscular bones of teleost fish have previously been described to play a role in the mechanical force transmission between muscle and bone, but their biomechanical properties are not yet fully described. Here, we have investigated intermuscular bones (IBs) of the North Atlantic Herring with regard to their structure and micro-architecture, mineral-related properties, and micro-mechanical tensile properties. A total of 115 IBs from 18 fish were investigated. One cohort of IBs, containing 20 bones from 2 smaller fish and 23 bones of 3 larger fish, was used for mechanical testing, wide-angle X-ray scattering, and scanning electron microscopy. Another cohort, containing 36 bones from 7 smaller fish and 36 bones from 6 larger fish, was used for microCT. Results show some astonishing properties of the IBs: (i) IBs present higher ductility, lower Young's modulus but similar strength and TMD (Tissue Mineral Density) compared to mammalian bone, and (ii) IBs from small fish were 49% higher in Young's modulus than fish bones from larger fish while their TMD was not statistically different and crystal length was 8% higher in large fish bones. Our results revealed that teleost IB presents a hybrid nature of soft and hard tissue that differs from other bone types, which might be associated with their evolution from mineralized tendons. This study provides new data regarding teleost fish bone biomechanical and micro-structural properties.
Collapse
Affiliation(s)
- I A K Fiedler
- Department of Physical Therapy, City University of New York - College of Staten Island, USA; Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, DE, Germany
| | - S Zeveleva
- Department of Physical Therapy, City University of New York - College of Staten Island, USA
| | - A Duarte
- Department of Physical Therapy, City University of New York - College of Staten Island, USA
| | - X Zhao
- Department of Chemistry, City University of New York - College of Staten Island, USA
| | - B Depalle
- Department of Materials, Imperial College London, UK
| | - L Cardoso
- Department of Biomedical Engineering, City University of New York - City College of New York, USA
| | - S Jin
- Department of Chemistry, City University of New York - College of Staten Island, USA
| | - J P Berteau
- Department of Physical Therapy, City University of New York - College of Staten Island, USA; New York Center for Biomedical Engineering, City University of New York - City College of New York, USA; Nanoscience Initiative, Advanced Science Research Center, City University of New York, USA.
| |
Collapse
|
9
|
Normal trabecular vertebral bone is formed via rapid transformation of mineralized spicules: A high-resolution 3D ex-vivo murine study. Acta Biomater 2019; 86:429-440. [PMID: 30605771 DOI: 10.1016/j.actbio.2018.12.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/01/2018] [Accepted: 12/30/2018] [Indexed: 12/13/2022]
Abstract
At birth, mouse vertebrae have a reticular fine spongy morphology, yet in the adult animal they exhibit elaborate trabecular architectures. Here, we characterize the physiological microstructural transformations in growing young female mice of the widely used C57BL/6 strain. Extensive architectural changes lead to the establishment of mature cancellous bone in the spine. Vertebrae were mapped in 3D by high resolution microcomputed tomography (µCT), backed by conventional histology. Three different phases are observed in the natural bony biomaterial: In a prenatal templating phase, early vertebrae are composed of foamy, loosely-packed mineralized spicules. During a consolidation phase in the first 7 days after birth, bone material condenses into struts and forms primitive trabeculae accompanied by a significant (>50%) reduction in bone volume/tissue volume ratio (BV/TV). After day 7, the trabeculae expand, reorient and increase in mineral density. Swift growth ensues such that by day 14 the young lumbar spine exhibits all morphological features observed in the mature animal. The greatly varied micro-morphologies of normal trabecular bone observed in 3D within a short timespan are typical for rodent and presumably for other mammalian forming spines. This suggests that fully structured cancellous bone emerges through rapid post-natal restructuring of a foamy mineralized scaffold. STATEMENT OF SIGNIFICANCE: Cancellous bone develops in stages that are not well documented. Using a mouse model, we provide an observer-independent quantification of normal bone formation in the spine. We find that within 14 days, the cancellous bone transforms in 3 phases from a scaffold of spicules into well organized, fully mineralized trabeculae in a functional spine. Detailed knowledge of the physiological restructuring of mineralized material may help to better understand bone formation and may serve as a blueprint for studies of pharmaceuticals effects, tissue healing and regeneration.
Collapse
|
10
|
Rabiu Giaz T, Nazrun Shu A, Nirwana So I, Muhammad N, Busra Fauz M, Mohd Arlam A, Mohamed N. Marantodes pumilum Leaves Promote Repair of Osteoporotic fracture In Postmenopausal Sprague-Dawley Rats. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2018.973.980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Correlative Detection of Isolated Single and Multi-Cellular Calcifications in the Internal Elastic Lamina of Human Coronary Artery Samples. Sci Rep 2018; 8:10978. [PMID: 30030502 PMCID: PMC6054664 DOI: 10.1038/s41598-018-29379-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/26/2018] [Indexed: 01/05/2023] Open
Abstract
Histopathology protocols often require sectioning and processing of numerous microscopy slides to survey a sample. Trade-offs between workload and sampling density means that small features can be missed. Aiming to reduce the workload of routine histology protocols and the concern over missed pathology in skipped sections, we developed a prototype x-ray tomographic scanner dedicated to rapid scouting and identification of regions of interest in pathology specimens, thereby allowing targeted histopathology analysis to replace blanket searches. In coronary artery samples of a deceased HIV patient, the scanner, called Tomopath, obtained depth-resolved cross-sectional images at 15 µm resolution in a 15-minute scan, which guided the subsequent histological sectioning and microscopy. When compared to a commercial tabletop micro-CT scanner, the prototype provided several-fold contrast-to-noise ratio in 1/11th the scan time. Correlated tomographic and histological images revealed two types of micro calcifications: scattered loose calcifications typically found in atherosclerotic lesions; isolated focal calcifications in one or several cells in the internal elastic lamina and occasionally in the tunica media, which we speculate were the initiation of medial calcification linked to kidney disease, but rarely detected at this early stage due to their similarity to particle contaminants introduced during histological processing, if not for the evidence from the tomography scan prior to sectioning. Thus, in addition to its utility as a scouting tool, in this study it provided complementary information to histological microscopy. Overall, the prototype scanner represents a step toward a dedicated scouting and complementary imaging tool for routine use in pathology labs.
Collapse
|
12
|
Mashiatulla M, Ross RD, Sumner DR. Validation of cortical bone mineral density distribution using micro-computed tomography. Bone 2017; 99:53-61. [PMID: 28363808 PMCID: PMC5481667 DOI: 10.1016/j.bone.2017.03.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 03/16/2017] [Accepted: 03/24/2017] [Indexed: 01/06/2023]
Abstract
Changes in the bone mineral density distribution (BMDD), due to disease or drugs, can alter whole bone mechanical properties such as strength, stiffness and toughness. The methods currently available for assessing BMDD are destructive and two-dimensional. Micro-computed tomography (μCT) has been used extensively to quantify the three-dimensional geometry of bone and to measure the mean degree of mineralization, commonly called the tissue mineral density (TMD). The TMD measurement has been validated to ash density; however parameters describing the frequency distribution of TMD have not yet been validated. In the current study we tested the ability of μCT to estimate six BMDD parameters: mean, heterogeneity (assessed by the full-width-at-half-maximum (FWHM) and the coefficient of variation (CoV)), the upper and lower 5% cutoffs of the frequency distribution, and peak mineralization) in rat sized femoral cortical bone samples. We used backscatter scanning electron microscopy (bSEM) as the standard. Aluminum and hydroxyapatite phantoms were used to identify optimal scanner settings (70kVp, and 57μA, with a 1500ms integration time). When using hydroxyapatite samples that spanned a broad range of mineralization levels, high correlations were found between μCT and bSEM for all BMDD parameters (R2≥0.92, p<0.010). When using cortical bone samples from rats and various species machined to mimic rat cortical bone geometry, significant correlations between μCT and bSEM were found for mean mineralization (R2=0.65, p<0.001), peak mineralization (R2=0.61, p<0.001) the lower 5% cutoff (R2=0.62, p<0.001) and the upper 5% cutoff (R2=0.33, p=0.021), but not for heterogeneity, measured by FWHM (R2=0.05, p=0.412) and CoV (R2=0.04, p=0.469). Thus, while mean mineralization and most parameters used to characterize the BMDD can be assessed with μCT in rat sized cortical bone samples, caution should be used when reporting the heterogeneity.
Collapse
Affiliation(s)
- Maleeha Mashiatulla
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, USA; Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Ryan D Ross
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, USA
| | - D Rick Sumner
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, USA; Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
13
|
Bissinger O, Probst FA, Wolff KD, Jeschke A, Weitz J, Deppe H, Kolk A. Comparative 3D micro-CT and 2D histomorphometry analysis of dental implant osseointegration in the maxilla of minipigs. J Clin Periodontol 2017; 44:418-427. [DOI: 10.1111/jcpe.12693] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Oliver Bissinger
- Department of Oral and Maxillofacial Surgery; Klinikum rechts der Isar der Technischen Universität München; Munich Germany
| | - Florian Andreas Probst
- Department of Oral and Maxillofacial Surgery; Ludwig-Maximilians-University of Munich; Munich Germany
| | - Klaus-Dietrich Wolff
- Department of Oral and Maxillofacial Surgery; Klinikum rechts der Isar der Technischen Universität München; Munich Germany
| | - Anke Jeschke
- Department of Osteology and Biomechanics; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Jochen Weitz
- Department of Oral and Maxillofacial Surgery; Klinikum rechts der Isar der Technischen Universität München; Munich Germany
| | - Herbert Deppe
- Department of Oral and Maxillofacial Surgery; Klinikum rechts der Isar der Technischen Universität München; Munich Germany
| | - Andreas Kolk
- Department of Oral and Maxillofacial Surgery; Klinikum rechts der Isar der Technischen Universität München; Munich Germany
- Institute of Molecular Immunology - Experimental Oncology; Klinikum rechts der Isar der Technischen Universität München; Munich Germany
| |
Collapse
|
14
|
BARUFFALDI FABIO, STOICO ROSSELLA, TASSANI SIMONE, MECOZZI LAURA, FALCIONI STEFANO, FERSINI CHIARA. VALIDATION OF A BONE MINERAL DENSITY CALIBRATION PROTOCOL FOR MICRO-COMPUTED TOMOGRAPHY. J MECH MED BIOL 2017. [DOI: 10.1142/s0219519417500154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Micro-computed tomography (micro-CT) is widely used for in vitro studies to characterize bone structure at the resolution of 10–100 microns. However, a densitometric calibration protocol is necessary to convert the X-ray attenuation coefficient provided by micro-CT in bone mineral density (BMD). The lastest one has an important role to improve the accuracy of subject-specific finite element models. This work presents a simple calibration protocol based on the use of solid hydroxyapatite phantoms with the correction of the beam hardening effect. The method was validated in comparison to ashing measures of cortical and trabecular human bone. In addition, bone samples tissue mineral density (TMD) was calculated with two different methods. The correlation between ash density and BMD was linear both for cortical ([Formula: see text]) and trabecular bone ([Formula: see text]). The analysis stratified by tissue type versus the pooled analysis confirmed the validity of a common linear model for both types of tissue ([Formula: see text]). Despite its simplicity, the correlation obtained in this work does not depend on the acquisition settings of the micro-CT. TMD was shown to be dependent on the tissue investigated, with values in the range of 1.15–1.21[Formula: see text]mg/mm3 for trabecular bone, and 1.19–1.29[Formula: see text]mg/mm3 for cortical bone. Results are of some interest for generating micro finite elements models.
Collapse
Affiliation(s)
- FABIO BARUFFALDI
- Laboratorio di Tecnologia Medica, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - ROSSELLA STOICO
- Laboratorio di Tecnologia Medica, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - SIMONE TASSANI
- Universitat Pompeu Fabra, Department of Informatics and Communication Technologies, Barcelona, Spain
| | - LAURA MECOZZI
- Laboratorio di Tecnologia Medica, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - STEFANO FALCIONI
- Laboratorio di Tecnologia Medica, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - CHIARA FERSINI
- Laboratorio di Tecnologia Medica, Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
15
|
|
16
|
Kaynia N, Soohoo E, Keaveny TM, Kazakia GJ. Effect of intraspecimen spatial variation in tissue mineral density on the apparent stiffness of trabecular bone. J Biomech Eng 2015; 137:1944612. [PMID: 25412197 DOI: 10.1115/1.4029178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 12/10/2014] [Indexed: 11/08/2022]
Abstract
This study investigated the effects of intraspecimen variations in tissue mineral density(TMD) on the apparent-level stiffness of human trabecular bone. High-resolution finite element (FE) models were created for each of 12 human trabecular bone specimens,using both microcomputed tomography (lCT) and “gold-standard” synchrotron radiation lCT (SRlCT) data. Our results confirm that incorporating TMD spatial variation reduces the calculated apparent stiffness compared to homogeneous TMD models. This effect exists for both lCT- and SRlCT-based FE models, but is exaggerated in lCT based models. This study provides a direct comparison of lCT to SRlCT data and is thereby able to conclude that the influence of including TMD heterogeneity is overestimated in lCT-based models.
Collapse
|
17
|
Biomechanics of low-modulus and standard acrylic bone cements in simulated vertebroplasty: A human ex vivo study. J Biomech 2015; 48:3258-66. [DOI: 10.1016/j.jbiomech.2015.06.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 05/30/2015] [Accepted: 06/21/2015] [Indexed: 11/21/2022]
|
18
|
Bigham-Sadegh A, Oryan A. Selection of animal models for pre-clinical strategies in evaluating the fracture healing, bone graft substitutes and bone tissue regeneration and engineering. Connect Tissue Res 2015; 56:175-94. [PMID: 25803622 DOI: 10.3109/03008207.2015.1027341] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In vitro assays can be useful in determining biological mechanism and optimizing scaffold parameters, however translation of the in vitro results to clinics is generally hard. Animal experimentation is a better approximation than in vitro tests, and usage of animal models is often essential in extrapolating the experimental results and translating the information in a human clinical setting. In addition, usage of animal models to study fracture healing is useful to answer questions related to the most effective method to treat humans. There are several factors that should be considered when selecting an animal model. These include availability of the animal, cost, ease of handling and care, size of the animal, acceptability to society, resistance to surgery, infection and disease, biological properties analogous to humans, bone structure and composition, as well as bone modeling and remodeling characteristics. Animal experiments on bone healing have been conducted on small and large animals, including mice, rats, rabbits, dogs, pigs, goats and sheep. This review also describes the molecular events during various steps of fracture healing and explains different means of fracture healing evaluation including biomechanical, histopathological and radiological assessments.
Collapse
Affiliation(s)
- Amin Bigham-Sadegh
- Faculty of Veterinary Medicine, Department of Veterinary Surgery and Radiology, Shahrekord University , Shahrekord , Iran and
| | | |
Collapse
|
19
|
Salmon PL, Liu X. MicroCT Bone Densitometry: Context Sensitivity, Beam Hardening Correction and the Effect of Surrounding Media. ACTA ACUST UNITED AC 2014. [DOI: 10.11131/2014/101142] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
| | - Xuan Liu
- Bruker-microCT, Kartuizersweg 3B, 2550 Kontich, Belgium
| |
Collapse
|
20
|
Treece GM, Gee AH. Independent measurement of femoral cortical thickness and cortical bone density using clinical CT. Med Image Anal 2014; 20:249-64. [PMID: 25541355 DOI: 10.1016/j.media.2014.11.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/31/2014] [Accepted: 11/28/2014] [Indexed: 11/25/2022]
Abstract
The local structure of the proximal femoral cortex is of interest since both fracture risk, and the effects of various interventions aimed at reducing that risk, are associated with cortical properties focused in particular regions rather than dispersed over the whole bone. Much of the femoral cortex is less than 3mm thick, appearing so blurred in clinical CT that its actual density is not apparent in the data, and neither thresholding nor full-width half-maximum techniques are capable of determining its width. Our previous work on cortical bone mapping showed how to produce more accurate estimates of cortical thickness by assuming a fixed value of the cortical density for each hip. However, although cortical density varies much less over the proximal femur than thickness, what little variation there is leads to errors in thickness measurement. In this paper, we develop the cortical bone mapping technique by exploiting local estimates of imaging blur to correct the global density estimate, thus providing a local density estimate as well as more accurate estimates of thickness. We also consider measurement of cortical mass surface density and the density of trabecular bone immediately adjacent to the cortex. Performance is assessed with ex vivo clinical QCT scans of proximal femurs, with true values derived from high resolution HRpQCT scans of the same bones. We demonstrate superior estimation of thickness than is possible with alternative techniques (accuracy 0.12 ± 0.39 mm for cortices in the range 1-3mm), and that local cortical density estimation is feasible for densities >800 mg/cm(3).
Collapse
Affiliation(s)
- G M Treece
- University of Cambridge, Department of Engineering, Trumpington Street, Cambridge CB2 1PZ, UK.
| | - A H Gee
- University of Cambridge, Department of Engineering, Trumpington Street, Cambridge CB2 1PZ, UK.
| |
Collapse
|
21
|
Tu J, Henneicke H, Zhang Y, Stoner S, Cheng TL, Schindeler A, Chen D, Tuckermann J, Cooper MS, Seibel MJ, Zhou H. Disruption of glucocorticoid signaling in chondrocytes delays metaphyseal fracture healing but does not affect normal cartilage and bone development. Bone 2014; 69:12-22. [PMID: 25193158 PMCID: PMC4284102 DOI: 10.1016/j.bone.2014.08.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 08/18/2014] [Accepted: 08/23/2014] [Indexed: 01/23/2023]
Abstract
States of glucocorticoid excess are associated with defects in chondrocyte function. Most prominently there is a reduction in linear growth but delayed healing of fractures that require endochondral ossification to also occur. In contrast, little is known about the role of endogenous glucocorticoids in chondrocyte function. As glucocorticoids exert their cellular actions through the glucocorticoid receptor (GR), we aimed to elucidate the role of endogenous glucocorticoids in chondrocyte function in vivo through characterization of tamoxifen-inducible chondrocyte-specific GR knockout (chGRKO) mice in which the GR was deleted at various post-natal ages. Knee joint architecture, cartilage structure, growth plates, intervertebral discs, long bone length and bone micro-architecture were similar in chGRKO and control mice at all ages. Analysis of fracture healing in chGRKO and control mice demonstrated that in metaphyseal fractures, chGRKO mice formed a larger cartilaginous callus at 1 and 2 week post-surgery, as well as a smaller amount of well-mineralized bony callus at the fracture site 4 week post-surgery, when compared to control mice. In contrast, chondrocyte-specific GR knockout did not affect diaphyseal fracture healing. We conclude that endogenous GC signaling in chondrocytes plays an important role during metaphyseal fracture healing but is not essential for normal long bone growth.
Collapse
Affiliation(s)
- Jinwen Tu
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, Australia
| | - Holger Henneicke
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, Australia
| | - Yaqing Zhang
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, Australia
| | - Shihani Stoner
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, Australia
| | - Tegan L Cheng
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, Australia
| | - Aaron Schindeler
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, Australia
| | - Di Chen
- Tissue Department of Biochemistry, Rush University Medical Center, USA
| | - Jan Tuckermann
- Institute of General Zoology and Endocrinology, University of Ulm, Ulm, Germany
| | - Mark S Cooper
- Department of Endocrinology & Metabolism, Concord Hospital, Sydney, Australia
| | - Markus J Seibel
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, Australia; Department of Endocrinology & Metabolism, Concord Hospital, Sydney, Australia
| | - Hong Zhou
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, Australia.
| |
Collapse
|
22
|
Pugach MK, Gibson CW. Analysis of enamel development using murine model systems: approaches and limitations. Front Physiol 2014; 5:313. [PMID: 25278900 PMCID: PMC4166228 DOI: 10.3389/fphys.2014.00313] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/01/2014] [Indexed: 11/24/2022] Open
Abstract
A primary goal of enamel research is to understand and potentially treat or prevent enamel defects related to amelogenesis imperfecta (AI). Rodents are ideal models to assist our understanding of how enamel is formed because they are easily genetically modified, and their continuously erupting incisors display all stages of enamel development and mineralization. While numerous methods have been developed to generate and analyze genetically modified rodent enamel, it is crucial to understand the limitations and challenges associated with these methods in order to draw appropriate conclusions that can be applied translationally, to AI patient care. We have highlighted methods involved in generating and analyzing rodent enamel and potential approaches to overcoming limitations of these methods: (1) generating transgenic, knockout, and knockin mouse models, and (2) analyzing rodent enamel mineral density and functional properties (structure and mechanics) of mature enamel. There is a need for a standardized workflow to analyze enamel phenotypes in rodent models so that investigators can compare data from different studies. These methods include analyses of gene and protein expression, developing enamel histology, enamel pigment, degree of mineralization, enamel structure, and mechanical properties. Standardization of these methods with regard to stage of enamel development and sample preparation is crucial, and ideally investigators can use correlative and complementary techniques with the understanding that developing mouse enamel is dynamic and complex.
Collapse
Affiliation(s)
- Megan K Pugach
- Department of Mineralized Tissue Biology, The Forsyth Institute, Harvard School of Dental Medicine, Harvard University Cambridge, MA, USA
| | - Carolyn W Gibson
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
23
|
Schmitz JE, Teepe JD, Hu Y, Smith CE, Fajardo RJ, Chun YHP. Estimating mineral changes in enamel formation by ashing/BSE and microCT. J Dent Res 2014; 93:256-62. [PMID: 24470541 DOI: 10.1177/0022034513520548] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Enamel formation produces the most highly mineralized tissue in the human body. The growth of enamel crystallites is assisted by enamel proteins and proteinases. As enamel formation progresses from secretory to maturation stages, the composition of the matrix with its mineral and non-mineral components dynamically changes in an inverse fashion. We hypothesized that appropriately calibrated micro-computed tomography (µCT) technology is suitable to estimate the mineral content (weight and/or density) and volume comparable in accuracy with that for directly weighed and sectioned enamel. Different sets of mouse mandibular incisors of C57BL/6 mice were used for dissections and µCT reconstructions. Calibration phantoms corresponding to the range of enamel mineral densities were used. Secretory-stage enamel contained little mineral and was consequently too poor in contrast for enamel volumes to be accurately estimated by µCT. Maturation-stage enamel, however, showed remarkable correspondence for total mineral content per volume where comparisons were possible between and among the different analytical techniques used. The main advantages of the µCT approach are that it is non-destructive, time-efficient, and can monitor changes in mineral content of the most mature enamel, which is too physically hard to dissect away from the tooth.
Collapse
Affiliation(s)
- J E Schmitz
- Department of Orthopaedics, RAYO, Carlisle Center for Bone and Mineral Imaging, School of Medicine, University of Texas Health Science Center at San Antonio, USA
| | | | | | | | | | | |
Collapse
|
24
|
Lukas C, Ruffoni D, Lambers FM, Schulte FA, Kuhn G, Kollmannsberger P, Weinkamer R, Müller R. Mineralization kinetics in murine trabecular bone quantified by time-lapsed in vivo micro-computed tomography. Bone 2013; 56:55-60. [PMID: 23684803 DOI: 10.1016/j.bone.2013.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 05/02/2013] [Accepted: 05/04/2013] [Indexed: 11/26/2022]
Abstract
Trabecular bone is a highly dynamic tissue due to bone remodeling, mineralization and demineralization. The mineral content and its spatial heterogeneity are main contributors to bone quality. Using time-lapsed in vivo micro-computed tomography (micro-CT), it is now possible to resolve in three dimensions where bone gets resorbed and deposited over several weeks. In addition, the gray values in the micro-CT images contain quantitative information about the local tissue mineral density (TMD). The aim of this study was to measure how TMD increases with time after new bone formation and how this mineralization kinetics is influenced by mechanical stimulation. Our analysis of changes in TMD was based on an already reported experiment on 15-week-old female mice (C57BL/6), where in one group the sixth caudal vertebra was mechanically loaded with 8N, while in the control group no loading was applied. Comparison of two consecutive images allows the categorization of bone into newly formed, resorbed, and quiescent bone for different time points. Gray values of bone in these categories were compared layer-wise to minimize the effects of beam hardening artifacts. Quiescent bone in the control group was found to mineralize with a rate of 8 ± 1 mgHA/cm(3) per week, which is about half as fast as observed for newly formed bone. Mechanical loading increased the rate of mineral incorporation by 63% in quiescent bone. The week before bone resorption, demineralization could be observed with a drop of TMD by 36 ± 4 mgHA/cm(3) in the control and 34 ± 3 mgHA/cm(3) in the loaded group. In conclusion, this study shows how time-lapsed in vivo micro-CT can be used to assess changes in TMD of bone with high spatial and temporal resolution. This will allow a quantification of how bone diseases and pharmaceutical interventions influence not only microarchitecture of trabecular bone, but also its material quality.
Collapse
Affiliation(s)
- Carolin Lukas
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Piccinini M, Cugnoni J, Botsis J, Zacchetti G, Ammann P, Wiskott A. Factors affecting subject-specific finite element models of implant-fitted rat bone specimens: critical analysis of a technical protocol. Comput Methods Biomech Biomed Engin 2013; 17:1403-17. [DOI: 10.1080/10255842.2012.736502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Zebaze R, Ghasem-Zadeh A, Mbala A, Seeman E. A new method of segmentation of compact-appearing, transitional and trabecular compartments and quantification of cortical porosity from high resolution peripheral quantitative computed tomographic images. Bone 2013; 54:8-20. [PMID: 23334082 DOI: 10.1016/j.bone.2013.01.007] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 12/25/2012] [Accepted: 01/03/2013] [Indexed: 10/27/2022]
Abstract
A transitional or cortico-trabecular junctional zone exists at any location composed of both cortical and trabecular bones such as the metaphyses of tubular bones and short bones like the femoral neck. The transitional zone comprises the inner cortex adjacent to the medullary canal and trabeculae abutting against the cortex contiguous with the endocortical surface. This is a site of vigorous remodeling. Intracortical remodeling cavitates the inner cortex expanding this transitional zone at the price of compact-appearing cortex so that it contains porosity, cortical fragments that resemble trabeculae, and trabeculae abutting the eroding cortex. The porosity of the transitional zone is an important source of bone loss. It reduces bone strength exponentially and is a quantifiable `fingerprint' of structural deterioration. A new automated method of segmentation of bone from background and bone into its compact-appearing cortex, transitional zone, and trabecular compartment is described, with a new approach to quantification of cortical porosity. Segmentation is achieved by automatically selecting attenuation profile curves perpendicular to the periosteal surface. Local bone edges are identified as the beginning and the end of the rising and falling S-shaped portions of the curve enabling the delineation of the compartments. Analyzing ~3600 consecutive overlapping profiles around the perimeter of each cross-sectional slice segments the compartments. Porosity is quantified as the average void volume fraction of all voxels within each compartment. To assess accuracy at the distal radius and tibia, μCT images of cadaveric specimens imaged at 19 μm voxel size served as the gold standard. To assess accuracy at the proximal femur, scanning electron microscopy (SEM) images of specimens collected at 2.5 μm resolution served as the gold standard. Agreement between HRpQCT and the gold standards for segmentation and quantification of porosity at the distal radius and tibia ranged from R(2)=0.87 to 0.99, and for the proximal femur ranged from 0.93 to 0.99. The precision error in vivo for segmentation and quantification of porosity in HRpQCT images at the distal radius, given by the root mean square error of the coefficient of variation, ranged from 0.54% for porosity of the transitional zone to 3.98% for area of the compact-appearing cortex. Segmentation of the transitional zone minimizes errors in apportioning cortical fragments and cortical porosity to the medullary compartment and so is likely to allow accurate assessment of fracture risk and the morphological effects of growth, aging, diseases and therapies.
Collapse
Affiliation(s)
- R Zebaze
- Dept Endocrinology and Medicine, Austin Health, University of Melbourne, Melbourne, Australia.
| | | | | | | |
Collapse
|
27
|
Tjong W, Kazakia GJ, Burghardt AJ, Majumdar S. The effect of voxel size on high-resolution peripheral computed tomography measurements of trabecular and cortical bone microstructure. Med Phys 2012; 39:1893-903. [PMID: 22482611 DOI: 10.1118/1.3689813] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Accurate quantification of bone microstructure plays a significant role in understanding bone mechanics and response to disease or treatment. High-resolution peripheral quantitative computed tomography (HR-pQCT) allows for the quantification of trabecular and cortical structure in vivo, with the capability of generating images at multiple voxel sizes (41, 82, and 123 μm). The aim of this study was to characterize the effect of voxel size on structural measures of trabecular and cortical bone and to determine accuracy in reference to micro-CT ([micro sign]CT), the gold standard for bone microstructure quantification. METHODS Seventeen radii from human cadaver specimens were imaged at each HR-pQCT voxel size and subsequently imaged using [micro sign]CT. Bone density and microstructural assessment was performed in both the trabecular and cortical compartments, including cortical porosity quantification. Two distinct analysis techniques were applied to the 41 μm HR-pQCT data: the standard clinical indirect analysis and a direct analysis requiring no density or structural model assumptions. Analysis parameters were adjusted to enable segmentation and structure extraction at each voxel size. RESULTS For trabecular microstructural measures, the 41 μm HR-pQCT data displayed the strongest correlations and smallest errors compared to [micro sign]CT data. The direct analysis technique applied to the 41 μm data yielded an additional improvement in accuracy, especially for measures of trabecular thickness. The 123 μm data performed poorly, with all microstructural measures either having moderate or nonsignificant correlations with [micro sign]CT data. Trabecular densitometric measures showed strong correlations to [micro sign]CT data across all voxel sizes. Cortical thickness was strongly correlated with [micro sign]CT values across all HR-pQCT voxel sizes. The accuracy of cortical porosity parameters was highly dependent on voxel size; again, the 41 μm data was most strongly correlated. Measures of cortical density and pore diameter at all HR-pQCT voxel sizes had either weak or nonsignificant correlations. CONCLUSIONS This study demonstrates the effect of voxel size on the accuracy of HR-pQCT measurements of trabecular and cortical microstructure and presents parameters for HR-pQCT analysis at nonstandard resolutions. For all parameters measured, correlations were strongest at 41 μm. Weak correlations for porosity measures indicate that a better understanding of pore structure and resolution dependence is needed.
Collapse
Affiliation(s)
- Willy Tjong
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94107, USA.
| | | | | | | |
Collapse
|
28
|
González-García R, Monje F. Is micro-computed tomography reliable to determine the microstructure of the maxillary alveolar bone? Clin Oral Implants Res 2012; 24:730-7. [DOI: 10.1111/j.1600-0501.2012.02478.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2012] [Indexed: 11/29/2022]
|
29
|
Entezari V, Vartanians V, Zurakowski D, Patel N, Fajardo RJ, Müller R, Snyder BD, Nazarian A. Further improvements on the factors affecting bone mineral density measured by quantitative micro-computed tomography. Bone 2012; 50:611-8. [PMID: 22044640 DOI: 10.1016/j.bone.2011.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 09/29/2011] [Accepted: 10/04/2011] [Indexed: 11/24/2022]
Abstract
The effects of imaging parameters and special configuration of objects within the reconstruction space on the micro computed tomography (μCT) based mineral density have been explored, and a series of density correction curves have been presented. A manufacturer-provided calibration phantom (0, 100, 200, 400, 800 mg HA/cm(3)) was imaged at all possible imaging conditions (n=216) based on energy, resolution, vial diameter, beam hardening correction factor and averaging. For each imaging condition, a linear regression model was fitted to the observed versus expected densities, and the intercepts (β(0)) and slopes (β(1)) of the regression lines and each density level were modeled using multiple regression modeling. Additionally, a custom made phantom (0, 50, 150, 500, 800, 1000 and 1500 mg HA/cm(3)) was scanned in order to study the effects of location and orientation of an object within the reconstruction space and presence of surrounding objects on μCT based mineral density. The energy, vial diameter and beam hardening correction factor were significant predictors of cumineral density (P values<0.001), while averaging and resolution did not have a significant effect on the observed density values (P values>0.1) except for 0.0 density (P values<0.04). Varying the location of an object within the reconstruction space from the center to the periphery resulted in a drop in observed mineral density up to 10% (P values<0.005). The presence of surrounding densities resulted in decreased observed mineral density up to 17% at the center and up to 14% at the periphery of the reconstruction space (P values<0.001 for all densities). Changing the orientation of the sample also had a significant effect on the observed mineral density, resulting in up to 16% lower observed mineral density for vertical vs. horizontal orientation at the center of the reconstruction space (P value<0.001). We conclude that energy, resolution and post processing correction factor are significant predictors of the observed mineral density in μCT.
Collapse
Affiliation(s)
- Vahid Entezari
- Center for Advanced Orthopedic Studies, Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
González-García R, Monje F. The reliability of cone-beam computed tomography to assess bone density at dental implant recipient sites: a histomorphometric analysis by micro-CT. Clin Oral Implants Res 2012; 24:871-9. [DOI: 10.1111/j.1600-0501.2011.02390.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2011] [Indexed: 11/30/2022]
|
31
|
Wagner DW, Lindsey DP, Beaupre GS. Deriving tissue density and elastic modulus from microCT bone scans. Bone 2011; 49:931-8. [PMID: 21820094 DOI: 10.1016/j.bone.2011.07.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 07/13/2011] [Accepted: 07/14/2011] [Indexed: 11/20/2022]
Abstract
Tissue level density and elastic modulus are intrinsic properties that can be used to quantify bone material and analyses incorporating those quantities have been used to evaluate bone on a macroscopic scale. Micro-computed tomography (microCT) technology has been used to construct tissue level finite element models to simulate macroscopic fracture strength, however, a single method for assigning voxel-specific tissue density and elastic modulus based on those data has not been universally accepted. One method prevalent in the literature utilizes an empirical relationship that derives tissue stiffness as a function of bone calcium content weight fraction. To derive calcium content weight fraction from microCT scans, a measure of tissue density is required and a constant value is traditionally used. However, experimental data suggest a non-trivial amount of tissue heterogeneity suggesting a constant tissue density may not be appropriate. A theoretical derivation for determining the relationship between voxel-specific tissue density and microCT scan data (i.e., microCT derived tissue mineral density (TMD), mgHA/cm(3)) and bone constituent properties is proposed. Constant model parameters used in the derivation include the density of water, ash, and organics (i.e., bone constituents) and the volume fraction of the organics constituent. The effect of incorporating the theoretically derived tissue density (instead of a constant value) in determining voxel-specific elastic modulus resulted in a maximum observed increase of 12GPa (5.9GPa versus 17.9GPa, for the constant value and derived tissue density formulations, respectively) for a measured TMD of 1.02gHA/cm(3). Average and bounding quantities for the four constant model parameters were defined from the literature and the influence of those values on the derived tissue density and elastic modulus relationships were also evaluated. The theoretical relationships of tissue density and elastic modulus, with the average constant model parameters applied, were consistent with previously published empirical relationships derived from experimental data. Tissue density as a function of microCT TMD was formulated as a linear relationship and the density of water and ash was shown to solely influence the proportionality (i.e., slope) between those values. The density of water and organics (i.e., collagen) and the volume fraction of the organics constituent were shown to influence the constant offset (intercept) between tissue density and TMD with no influence from ash density. Incorporating tissue density heterogeneity into the derivation of elastic modulus resulted in a significant increase in predicted modulus (for microCT TMD ranges observed for healthy tissue) as compared to when a constant tissue density was used. The presented approach provides a novel method for deriving tissue-level bone material properties and quantifies the effect of assuming tissue homogeneity when calculating elastic modulus (when using a prevalent method in the literature) from microCT scan data.
Collapse
Affiliation(s)
- David W Wagner
- VA Palo Alto Health Care System, Bone and Joint Center, Palo Alto, CA, USA.
| | | | | |
Collapse
|
32
|
Campbell GM, Bernhardt R, Scharnweber D, Boyd SK. The bone architecture is enhanced with combined PTH and alendronate treatment compared to monotherapy while maintaining the state of surface mineralization in the OVX rat. Bone 2011; 49:225-32. [PMID: 21515436 DOI: 10.1016/j.bone.2011.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 03/23/2011] [Accepted: 04/05/2011] [Indexed: 11/17/2022]
Abstract
This study examined the effect of PTH and alendronate alone and in combination on the bone architecture, mineralization, and estimated mechanics in the OVX rat. Female Wistar rats aged 7-9months were assigned to one of five groups: (1) sham+vehicle, (2) OVX+vehicle, (3) OVX+PTH, (4) OVX+alendronate, and (5) OVX+PTH and alendronate. Surgery was performed at baseline (week 0), and biweekly treatment (15μg/kg of alendronate and/or daily (5days/week) 40μg/kg hPTH(1-34)) was administered from week 6 to week 14. Micro-CT scans of the right proximal tibial metaphysis were made in vivo at weeks 0, 6, 8, 10, 12 and 14 and measurements of bone microarchitecture and estimated mechanical parameters (finite element analysis) were made from the images. Synchrotron radiation micro-CT scans of the proximal tibia and fourth lumbar vertebrae were conducted ex vivo at the study endpoint to determine the degree and spatial distribution of the bone mineralization. Alendronate preserved the microarchitecture after OVX, and increased cortical (9%, p<0.05) and trabecular thickness (5%, p<0.05). PTH mono- and combined therapy induced increases in cortical (25-35%, p<0.05) and trabecular thicknesses (46-48%, p<0.05), resulting in a full restoration of bone volume in the PTH group, and an increase beyond baseline in the combined group. Improvements in estimated mechanical outcomes were observed in all treatment groups by the end of the study, with the combined group experiencing the greatest increase in predicted stiffness (63%, p<0.05). Alendronate treatment increased the peak mineral content above the other treatment groups at the trabecular (tibia: 6% above PTH, 6% above combined, L4: 4% above PTH, 4% above combined) and endocortical (tibia: 4% above PTH, 3% above combined, L4: 1% above PTH, 2% above combined) surfaces, while no differences in mineralization between the PTH and combined groups were observed. Combined treatment resulted in more pronounced improvements of the bone architecture than PTH monotherapy, while maintaining the state of mineralization observed with PTH treatment.
Collapse
Affiliation(s)
- Graeme M Campbell
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada
| | | | | | | |
Collapse
|
33
|
Burghardt AJ, Link TM, Majumdar S. High-resolution computed tomography for clinical imaging of bone microarchitecture. Clin Orthop Relat Res 2011; 469:2179-93. [PMID: 21344275 PMCID: PMC3126972 DOI: 10.1007/s11999-010-1766-x] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The role of bone structure, one component of bone quality, has emerged as a contributor to bone strength. The application of high-resolution imaging in evaluating bone structure has evolved from an in vitro technology for small specimens to an emerging clinical research tool for in vivo studies in humans. However, many technical and practical challenges remain to translate these techniques into established clinical outcomes. QUESTIONS/PURPOSES We reviewed use of high-resolution CT for evaluating trabecular microarchitecture and cortical ultrastructure of bone specimens ex vivo, extension of these techniques to in vivo human imaging studies, and recent studies involving application of high-resolution CT to characterize bone structure in the context of skeletal disease. METHODS We performed the literature review using PubMed and Google Scholar. Keywords included CT, MDCT, micro-CT, high-resolution peripheral CT, bone microarchitecture, and bone quality. RESULTS Specimens can be imaged by micro-CT at a resolution starting at 1 μm, but in vivo human imaging is restricted to a voxel size of 82 μm (with actual spatial resolution of ~ 130 μm) due to technical limitations and radiation dose considerations. Presently, this mode is limited to peripheral skeletal regions, such as the wrist and tibia. In contrast, multidetector CT can assess the central skeleton but incurs a higher radiation burden on the subject and provides lower resolution (200-500 μm). CONCLUSIONS CT currently provides quantitative measures of bone structure and may be used for estimating bone strength mathematically. The techniques may provide clinically relevant information by enhancing our understanding of fracture risk and establishing the efficacy of antifracture for osteoporosis and other bone metabolic disorders.
Collapse
Affiliation(s)
- Andrew J. Burghardt
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, Campus Box 2520, QB3 Building, 2nd Floor, Suite 203, 1700 4th Street, San Francisco, CA 94158 USA
| | - Thomas M. Link
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, Campus Box 2520, QB3 Building, 2nd Floor, Suite 203, 1700 4th Street, San Francisco, CA 94158 USA
| | - Sharmila Majumdar
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, Campus Box 2520, QB3 Building, 2nd Floor, Suite 203, 1700 4th Street, San Francisco, CA 94158 USA
| |
Collapse
|
34
|
Dall'Ara E, Varga P, Pahr D, Zysset P. A calibration methodology of QCT BMD for human vertebral body with registered micro-CT images. Med Phys 2011; 38:2602-8. [DOI: 10.1118/1.3582946] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
35
|
Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Müller R. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 2010; 25:1468-86. [PMID: 20533309 DOI: 10.1002/jbmr.141] [Citation(s) in RCA: 3164] [Impact Index Per Article: 226.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Use of high-resolution micro-computed tomography (microCT) imaging to assess trabecular and cortical bone morphology has grown immensely. There are several commercially available microCT systems, each with different approaches to image acquisition, evaluation, and reporting of outcomes. This lack of consistency makes it difficult to interpret reported results and to compare findings across different studies. This article addresses this critical need for standardized terminology and consistent reporting of parameters related to image acquisition and analysis, and key outcome assessments, particularly with respect to ex vivo analysis of rodent specimens. Thus the guidelines herein provide recommendations regarding (1) standardized terminology and units, (2) information to be included in describing the methods for a given experiment, and (3) a minimal set of outcome variables that should be reported. Whereas the specific research objective will determine the experimental design, these guidelines are intended to ensure accurate and consistent reporting of microCT-derived bone morphometry and density measurements. In particular, the methods section for papers that present microCT-based outcomes must include details of the following scan aspects: (1) image acquisition, including the scanning medium, X-ray tube potential, and voxel size, as well as clear descriptions of the size and location of the volume of interest and the method used to delineate trabecular and cortical bone regions, and (2) image processing, including the algorithms used for image filtration and the approach used for image segmentation. Morphometric analyses should be based on 3D algorithms that do not rely on assumptions about the underlying structure whenever possible. When reporting microCT results, the minimal set of variables that should be used to describe trabecular bone morphometry includes bone volume fraction and trabecular number, thickness, and separation. The minimal set of variables that should be used to describe cortical bone morphometry includes total cross-sectional area, cortical bone area, cortical bone area fraction, and cortical thickness. Other variables also may be appropriate depending on the research question and technical quality of the scan. Standard nomenclature, outlined in this article, should be followed for reporting of results.
Collapse
Affiliation(s)
- Mary L Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Easley SK, Jekir MG, Burghardt AJ, Li M, Keaveny TM. Contribution of the intra-specimen variations in tissue mineralization to PTH- and raloxifene-induced changes in stiffness of rat vertebrae. Bone 2010; 46:1162-9. [PMID: 20034599 DOI: 10.1016/j.bone.2009.12.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 11/14/2009] [Accepted: 12/11/2009] [Indexed: 10/20/2022]
Abstract
The intra-specimen spatial variation in mineralization of bone tissue can be changed by drug treatments that alter bone remodeling. However, the contribution of such changes to the overall biomechanical effect of a treatment on bone strength is not known. To provide insight into this issue, we used a rat model to determine the effects of ovariectomy, parathyroid hormone, and raloxifene (vs. sham) on the contribution of spatial variations in mineralization to treatment-induced changes in vertebral stiffness. Mineral density was measured from 6-microm voxel-sized quantitative micro-CT scans. Whole-vertebral and trabecular stiffness values were estimated using finite element analysis of these micro-CT scans, first including all intra-specimen variations in mineral density in the model and then excluding such variations by using a specimen-specific average density throughout each specimen. As expected, we found appreciable effects of treatment on overall bone stiffness, the effect being greater for the trabecular compartment (up to 52% reduction vs. sham, p<0.0001) than the whole vertebra (p=0.055). Intra-specimen mean mineralization was not changed with treatment but the intra-specimen variation in mineralization was, although the effect was small (4%). Intra-specimen spatial variations in mineralization accounted for 10-12% and 5-6% of overall stiffness of the trabecular compartment and whole vertebral body, respectively. However, after accounting for all treatment effects on bone geometry and trabecular microstructure, any treatment effects due to changes in mineralization were negligible (<2%), although statistically detectable (p<0.02). We conclude that, despite a role in the general biomechanical behavior of bone, the spatial variations in tissue mineralization, as measured by quantitative micro-CT, did not appreciably contribute to ovariectomy-, PTH-, or raloxifene-induced changes in stiffness of the whole bone or the trabecular compartment in these rat vertebrae.
Collapse
Affiliation(s)
- Sarah K Easley
- Orthopaedic Biomechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA CA 94720-1740, USA.
| | | | | | | | | |
Collapse
|
37
|
Meganck JA, Kozloff KM, Thornton MM, Broski SM, Goldstein SA. Beam hardening artifacts in micro-computed tomography scanning can be reduced by X-ray beam filtration and the resulting images can be used to accurately measure BMD. Bone 2009; 45:1104-16. [PMID: 19651256 PMCID: PMC2783193 DOI: 10.1016/j.bone.2009.07.078] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 06/23/2009] [Accepted: 07/20/2009] [Indexed: 10/20/2022]
Abstract
Bone mineral density (BMD) measurements are critical in many research studies investigating skeletal integrity. For pre-clinical research, micro-computed tomography (microCT) has become an essential tool in these studies. However, the ability to measure the BMD directly from microCT images can be biased by artifacts, such as beam hardening, in the image. This three-part study was designed to understand how the image acquisition process can affect the resulting BMD measurements and to verify that the BMD measurements are accurate. In the first part of this study, the effect of beam hardening-induced cupping artifacts on BMD measurements was examined. In the second part of this study, the number of bones in the X-ray path and the sampling process during scanning was examined. In the third part of this study, microCT-based BMD measurements were compared with ash weights to verify the accuracy of the measurements. The results indicate that beam hardening artifacts of up to 32.6% can occur in sample sizes of interest in studies investigating mineralized tissue and affect mineral density measurements. Beam filtration can be used to minimize these artifacts. The results also indicate that, for murine femora, the scan setup can impact densitometry measurements for both cortical and trabecular bone and morphologic measurements of trabecular bone. Last, when a scan setup that minimized all of these artifacts was used, the microCT-based measurements correlated well with ash weight measurements (R(2)=0.983 when air was excluded), indicating that microCT can be an accurate tool for murine bone densitometry.
Collapse
Affiliation(s)
- Jeffrey A. Meganck
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor MI
- Department of Biomedical Engineering, University of Michigan, Ann Arbor MI
| | - Kenneth M. Kozloff
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor MI
- Department of Biomedical Engineering, University of Michigan, Ann Arbor MI
| | - Michael M. Thornton
- Imaging Research Laboratories, Robarts Research Institute, London, ON Canada
| | - Stephen M. Broski
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor MI
| | - Steven A. Goldstein
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor MI
- Department of Biomedical Engineering, University of Michigan, Ann Arbor MI
| |
Collapse
|
38
|
Brouwers JEM, van Rietbergen B, Huiskes R, Ito K. Effects of PTH treatment on tibial bone of ovariectomized rats assessed by in vivo micro-CT. Osteoporos Int 2009; 20:1823-35. [PMID: 19262974 PMCID: PMC2765647 DOI: 10.1007/s00198-009-0882-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 12/15/2008] [Indexed: 10/29/2022]
Abstract
UNLABELLED Using in vivo microcomputed tomography (micro-CT), we found in parathyroid hormone (PTH)-treated osteopenic rats linear increases in cortical and trabecular, due to increased trabecular thickness and number, bone mass. Bone was formed in cavities, leading to restoral of nearly cleaved trabeculae. For the first time, effects in PTH-treated rats were analyzed longitudinally. INTRODUCTION Our aims were to over time (1) determine changes in trabecular thickness and number after PTH, (2) compare responses to PTH between the meta- and epiphysis, (3) determine effects of PTH on mineralization and mechanical properties, (4) determine locations of new bone formation due to PTH on a microlevel, and (5) determine the predictive value of bone structural properties for gain in bone mass after PTH. METHODS Adult rats were divided into ovariectomy (OVX; n = 8), SHAM-OVX (n = 8), and OVX and PTH treatment (n = 9). Between weeks 8 and 14, PTH rats received daily subcutaneous PTH injections (60 microg/kg/day). At weeks 0, 8, 10, 12, and 14, in vivo micro-CT scans were made of the proximal and diaphyseal tibia. After sacrifice, all tibiae were tested in three-point bending. RESULTS PTH increased bone volume fraction linearly over time in meta- and epiphysis, accompanied by increased trabecular thickness in both and increased trabecular number only in the latter one. CT-estimated mineralization increased in trabecular and remained constant in cortical bone. Ultimate load and energy were increased and ultimate displacement and stiffness unaltered compared to SHAM rats. For those trabeculae analyzed, bone was formed initially on places where it was most beneficial for increasing their strength and later on to all surfaces.
Collapse
Affiliation(s)
- J. E. M. Brouwers
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - B. van Rietbergen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - R. Huiskes
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - K. Ito
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
39
|
Abstract
With recent advances in molecular medicine and disease treatment in osteoporosis, quantitative image processing of three-dimensional bone structures is critical in the context of bone quality assessment. Biomedical imaging technology such as MRI or CT is readily available, but few attempts have been made to expand the capabilities of these systems by integrating quantitative analysis tools and by exploring structure-function relationships in a hierarchical fashion. Nevertheless, such quantitative end points are an important factor for success in basic research and in the development of novel therapeutic strategies. CT is key to these developments, as it images and quantifies bone in three dimensions and provides multiscale biological imaging capabilities with isotropic resolutions of a few millimeters (clinical CT), a few tens of micrometers (microCT) and even as high as 100 nanometers (nanoCT). The technology enables the assessment of the relationship between microstructural and ultrastructural measures of bone quality and certain diseases or therapies. This Review focuses on presenting strategies for three-dimensional approaches to hierarchical biomechanical imaging in the study of microstructural and ultrastructural bone failure. From this Review, it can be concluded that biomechanical imaging is extremely valuable for the study of bone failure mechanisms at different hierarchical levels.
Collapse
Affiliation(s)
- Ralph Müller
- Institute for Biomechanics, Department of Mechanical and Process Engineering, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
40
|
Sekhon K, Kazakia GJ, Burghardt AJ, Hermannson B, Majumdar S. Accuracy of volumetric bone mineral density measurement in high-resolution peripheral quantitative computed tomography. Bone 2009; 45:473-9. [PMID: 19501201 PMCID: PMC4454742 DOI: 10.1016/j.bone.2009.05.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 05/19/2009] [Accepted: 05/21/2009] [Indexed: 11/17/2022]
Abstract
Accurate bone mineral density (BMD) quantification is critical in clinical assessment of fracture risk and in the research of age-, disease-, and treatment-related musculoskeletal changes. The development of high-resolution peripheral quantitative computed tomography (HR-pQCT) imaging has made possible in vivo assessment of compartmental volumetric BMD (vBMD) and bone micro-architecture in the distal radius and tibia. HR-pQCT imaging relies on a polychromatic X-ray source and therefore is subject to beam hardening as well as scatter artifacts. In light of these limitations, we hypothesize that the accuracy of HR-pQCT vBMD measurement in the trabecular compartment (vBMD(trab)) is not independent of bone density and geometry, but rather influenced by variations in trabecular bone volume fraction and cortical thickness. The goal of this study, therefore, was to evaluate the accuracy of HR-pQCT vBMD(trab) measurement in the radius and tibia, and to determine the dependence of this measurement on geometric and densitometric parameters. Our approach was to use a series of idealized hydroxyapatite (HA) phantoms with varying densities and geometries to quantify the accuracy of HR-pQCT analysis. Two sets of custom-made HA phantoms designed to mimic the distal tibia and distal radius were manufactured. Geometric and densitometric specifications were based on a dataset of healthy volunteers and osteopenic patients. Multiple beam hardening correction (BHC) algorithms were implemented and evaluated in their ability to reduce measurement error. Substantial errors in measured vBMD(trab) were found. Overestimation of vBMD(trab) increased proportional to cortical shell thickness and decreased proportional to insert density. The most pronounced vBMD(trab) overestimation therefore occurred in the phantoms with the lowest insert densities and highest shell thickness, where error was as high as 20 mg HA/cm3 (33%) in the radius phantom and 25 mg HA/cm(3) (41%) in the tibia phantom. Error in vBMD(trab) propagates to the calculation of micro-architectural measures; 41% error in vBMD(trab) will produce 41% error in volume fraction (BV/TV) and trabecular thickness (Tb.Th), and 5% error in trabecular separation (Tb.Sp). BHC algorithms supplied by the manufacturer failed to eliminate these errors. Our results confirm that geometric and densitometric variations influence the accuracy of HR-pQCT vBMD(trab) measurements, and must be considered when interpreting data across populations or time-points.
Collapse
|
41
|
Morgan EF, Mason ZD, Chien KB, Pfeiffer AJ, Barnes GL, Einhorn TA, Gerstenfeld LC. Micro-computed tomography assessment of fracture healing: relationships among callus structure, composition, and mechanical function. Bone 2009; 44:335-44. [PMID: 19013264 PMCID: PMC2669651 DOI: 10.1016/j.bone.2008.10.039] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 09/27/2008] [Accepted: 10/07/2008] [Indexed: 11/26/2022]
Abstract
Non-invasive characterization of fracture callus structure and composition may facilitate development of surrogate measures of the regain of mechanical function. As such, quantitative computed tomography- (CT-) based analyses of fracture calluses could enable more reliable clinical assessments of bone healing. Although previous studies have used CT to quantify and predict fracture healing, it is unclear which of the many CT-derived metrics of callus structure and composition are the most predictive of callus mechanical properties. The goal of this study was to identify the changes in fracture callus structure and composition that occur over time and that are most closely related to the regain of mechanical function. Micro-computed tomography (microCT) imaging and torsion testing were performed on murine fracture calluses (n=188) at multiple post-fracture timepoints and under different experimental conditions that alter fracture healing. Total callus volume (TV), mineralized callus volume (BV), callus mineralized volume fraction (BV/TV), bone mineral content (BMC), tissue mineral density (TMD), standard deviation of mineral density (sigma(TMD)), effective polar moment of inertia (J(eff)), torsional strength, and torsional rigidity were quantified. Multivariate statistical analyses, including multivariate analysis of variance, principal components analysis, and stepwise regression were used to identify differences in callus structure and composition among experimental groups and to determine which of the microCT outcome measures were the strongest predictors of mechanical properties. Although calluses varied greatly in the absolute and relative amounts of mineralized tissue (BV, BMC, and BV/TV), differences among timepoints were most strongly associated with changes in tissue mineral density. Torsional strength and rigidity were dependent on mineral density as well as the amount of mineralized tissue: TMD, BV, and sigma(TMD) explained 62% of the variation in torsional strength (p<0.001); and TMD, BMC, BV/TV, and sigma(TMD) explained 70% of the variation in torsional rigidity (p<0.001). These results indicate that fracture callus mechanical properties can be predicted by several microCT-derived measures of callus structure and composition. These findings form the basis for developing non-invasive assessments of fracture healing and for identifying biological and biomechanical mechanisms that lead to impaired or enhanced healing.
Collapse
Affiliation(s)
- Elise F Morgan
- Orthopaedic and Developmental Biomechanics Laboratory, Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Fajardo RJ, Cory E, Patel ND, Nazarian A, Laib A, Manoharan RK, Schmitz JE, DeSilva JM, MacLatchy LM, Snyder BD, Bouxsein ML. Specimen size and porosity can introduce error into microCT-based tissue mineral density measurements. Bone 2009; 44:176-84. [PMID: 18822398 PMCID: PMC4286574 DOI: 10.1016/j.bone.2008.08.118] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 08/13/2008] [Accepted: 08/19/2008] [Indexed: 12/17/2022]
Abstract
The accurate measurement of tissue mineral density, rho(m), in specimens of unequal size or quantities of bone mineral using polychromatic microCT systems is important, since studies often compare samples with a range of sizes and bone densities. We assessed the influence of object size on microCT measurements of rho(m) using (1) hydroxyapatite rods (HA), (2) precision-manufactured aluminum foams (AL) simulating trabecular bone structure, and (3) bovine cortical bone cubes (BCt). Two beam-hardening correction (BHC) algorithms, determined using a 200 and 1200 mg/cm(3) HA wedge phantom, were used to calculate rho(m) of the HA and BCt. The 200 mg/cm(3) and an aluminum BHC algorithm were used to calculate the linear attenuation coefficients of the AL foams. Equivalent rho(m) measurements of 500, 1000, and 1500 mg HA/cm(3) rods decreased (r(2)>0.96, p<0.05 for all) as HA rod diameter increased in the 200 mg/cm(3) BHC data. Errors averaged 8.2% across these samples and reached as high as 29.5%. Regression analyses suggested no size effects in the 1200 mg/cm(3) BHC data but differences between successive sizes still reached as high as 13%. The linear attenuation coefficients of the AL foams increased up to approximately 6% with increasing volume fractions (r(2)>0.81, p<0.05 for all) but the strength of the size-related error was also BHC dependent. Equivalent rho(m) values were inversely correlated with BCt cube size (r(2)>0.92, p<0.05). Use of the 1200 mg/cm(3) BHC ameliorated the size-related artifact compared to the 200 mg/cm(3) BHC but errors with this BHC were still significant and ranged between 5% and 12%. These results demonstrate that object size, structure, and BHC algorithm can influence microCT measurements of rho(m). Measurements of rho(m) of specimens of unequal size or quantities of bone mineral must be interpreted with caution unless appropriate steps are taken to minimize these potential artifacts.
Collapse
Affiliation(s)
- Roberto J Fajardo
- Orthopedic Biomechanics Laboratory, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kazakia GJ, Burghardt AJ, Cheung S, Majumdar S. Assessment of bone tissue mineralization by conventional x-ray microcomputed tomography: comparison with synchrotron radiation microcomputed tomography and ash measurements. Med Phys 2008; 35:3170-9. [PMID: 18697542 DOI: 10.1118/1.2924210] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Assessment of bone tissue mineral density (TMD) may provide information critical to the understanding of mineralization processes and bone biomechanics. High-resolution three-dimensional assessment of TMD has recently been demonstrated using synchrotron radiation microcomputed tomography (SRmuCT); however, this imaging modality is relatively inaccessible due to the scarcity of SR facilities. Conventional desktop muCT systems are widely available and have been used extensively to assess bone microarchitecture. However, the polychromatic source and cone-shaped beam geometry complicate assessment of TMD by conventional muCT. The goal of this study was to evaluate muCT-based measurement of degree and distribution of tissue mineralization in a quantitative, spatially resolved manner. Specifically, muCT measures of bone mineral content (BMC) and TMD were compared to those obtained by SRmuCT and gravimetric methods. Cylinders of trabecular bone were machined from human femoral heads (n = 5), vertebrae (n = 5), and proximal tibiae (n = 4). Cylinders were imaged in saline on a polychromatic muCT system at an isotropic voxel size of 8 microm. Volumes were reconstructed using beam hardening correction algorithms based on hydroxyapatite (HA)-resin wedge phantoms of 200 and 1200 mg HA/cm3. SRmuCT imaging was performed at an isotropic voxel size of 7.50 microm at the National Synchrotron Light Source. Attenuation values were converted to HA concentration using a linear regression derived by imaging a calibration phantom. Architecture and mineralization parameters were calculated from the image data. Specimens were processed using gravimetric methods to determine ash mass and density, muCT-based BMC values were not affected by altering the beam hardening correction. Volume-averaged TMD values calculated by the two corrections were significantly different (p = 0.008) in high volume fraction specimens only, with the 1200 mg HA/cm3 correction resulting in a 4.7% higher TMD value. MuCT and SRmuCT provided significantly different measurements of both BMC and TMD (p < 0.05). In high volume fraction specimens, muCT with 1200 mg HA/cm3 correctionteg resulted in BMC and TMD values 16.7% and 15.0% lower, respectively, than SRmuCT values. In low volume fraction specimens, muCT with 1200 mg HA/cm3 correction resulted in BMC and TMD values 12.8% and 12.9% lower, respectively, than SRmuCT values. MuCT and SRmuCT values were well-correlated when volume fraction groups were considered individually (BMC R2 = 0.97-1.00; TMD R2 = 0.78-0.99). Ash mass and density were higher than the SRmuCT equivalents by 8.6% in high volume fraction specimens and 10.9% in low volume fraction specimens (p < 0.05). BMC values calculated by tomography were highly correlated with ash mass (ash versus muCT R2 = 0.96-1.00; ash versus SRmuCT R2 = 0.99-1.00). TMD values calculated by tomography were moderately correlated with ash density (ash versus muCT R2 = 0.64-0.72; ash versus SRmuCT R2 = 0.64). Spatially resolved comparisons highlighted substantial geometric nonuniformity in the muCT data, which were reduced (but not eliminated) using the 1200 mg HA/cm3 beam hardening correction, and did not exist in the SRmuCT data. This study represents the first quantitative comparison of muCT mineralization evaluation against SRnuCT and gravimetry. Our results indicate that muCT mineralization measures are underestimated but well-correlated with SRmuCT and gravimetric data, particularly when volume fraction groups are considered individually.
Collapse
Affiliation(s)
- G J Kazakia
- Musculoskeletal and Quantitative Imaging Research Group, Department of Radiology, University of California, San Francisco, California 94158, USA.
| | | | | | | |
Collapse
|