1
|
Welc SS, Brotto M, White KE, Bonewald LF. Aging: A struggle for beneficial to overcome negative factors made by muscle and bone. Mech Ageing Dev 2025; 224:112039. [PMID: 39952614 PMCID: PMC11893237 DOI: 10.1016/j.mad.2025.112039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/15/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Musculoskeletal health is strongly influenced by regulatory interactions of bone and muscle. Recent discoveries have identified a number of key mechanisms through which soluble factors released during exercise by bone exert positive effects on muscle and by muscle on bone. Although exercise can delay the negative effects of aging, these beneficial effects are diminished with aging. The limited response of aged muscle and bone tissue to exercise are accompanied by a failure in bone and muscle communication. Here, we propose that exercise induced beneficial factors must battle changes in circulating endocrine and inflammatory factors that occur with aging. Furthermore, sedentary behavior results in the release of negative factors impacting the ability of bone and muscle to respond to physical activity especially with aging. In this review we report on exercise responsive factors and evidence of modification occurring with aging.
Collapse
Affiliation(s)
- Steven S Welc
- Department of Anatomy, Cell Biology, & Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas-Arlington, Arlington, TX 76019, USA.
| | - Kenneth E White
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Department of Molecular and Medical Genetics, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| | - Lynda F Bonewald
- Department of Anatomy, Cell Biology, & Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| |
Collapse
|
2
|
Moroudi RS, Mahboudi H, Mahboudi F. The Effect of Selection on the Two Important Myostatin Gene Mutations in the Dareshouri Horse in the Middle East. Vet Med Sci 2025; 11:e70300. [PMID: 40104884 PMCID: PMC12077112 DOI: 10.1002/vms3.70300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 02/12/2025] [Accepted: 03/07/2025] [Indexed: 03/20/2025] Open
Abstract
OBJECTIVE The Dareshouri horse breed is one of Iran's native equine breeds, originating from the Dareshouri tribe, a subgroup of the Qashqai nomads. This breed has a history spanning over 500 years. Horses of this breed have smooth nates, tall stature, raised tails and strong skeletal muscles. This is the first study to investigate the effect of genetics on athletic performance in the Dareshouri breed. METHODS For this purpose, in this study, the genotype combination of two important variants, including the rs397152648Single nucleotide polymorphism (SNP) and Short interspersed nuclear element (SINE) insertion, was surveyed to study the effect of selection on MSTN gene mutations in this breed. RESULTS The result displayed absence of SINE insertion and high frequency of the "C" allele in Myostatin gene (MSTN) gene in all studied horses. Considering the importance of the presence and high frequency of the rs397152648 SNP and its relationship with the low expression of equine Myostatin, the muscle mass ratio, and speed performance, this evidence confirms that the Dareshouri breed has the genetic potential to cover the race distance in a shorter time. CONCLUSION Given the absence of genetics studies on this valuable Iranian breed, these findings represent an important contribution to the characterisation of this breed and clearly indicate an occasion for Dareshouri horsebreeders, owners, and trainers to recognise the genetic potential of their horse to make the best decisions in breeding, selection, training and racing to improve the horse's performance.
Collapse
Affiliation(s)
| | - Hossein Mahboudi
- Department of BiotechnologySchool of PharmacyAlborz University of Medical SciencesKarajIran
| | | |
Collapse
|
3
|
Sui H, Dou J, Shi B, Cheng X. The reciprocity of skeletal muscle and bone: an evolving view from mechanical coupling, secretory crosstalk to stem cell exchange. Front Physiol 2024; 15:1349253. [PMID: 38505709 PMCID: PMC10949226 DOI: 10.3389/fphys.2024.1349253] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Introduction: Muscle and bone constitute the two main parts of the musculoskeletal system and generate an intricately coordinated motion system. The crosstalk between muscle and bone has been under investigation, leading to revolutionary perspectives in recent years. Method and results: In this review, the evolving concept of muscle-bone interaction from mechanical coupling, secretory crosstalk to stem cell exchange was explained in sequence. The theory of mechanical coupling stems from the observation that the development and maintenance of bone mass are largely dependent on muscle-derived mechanical loads, which was later proved by Wolff's law, Utah paradigm and Mechanostat hypothesis. Then bone and muscle are gradually recognized as endocrine organs, which can secrete various cytokines to modulate the tissue homeostasis and remodeling to each other. The latest view presented muscle-bone interaction in a more direct way: the resident mesenchymal stromal cell in the skeletal muscle, i.e., fibro-adipogenic progenitors (FAPs), could migrate to the bone injury site and contribute to bone regeneration. Emerging evidence even reveals the ectopic source of FAPs from tissue outside the musculoskeletal system, highlighting its dynamic property. Conclusion: FAPs have been established as the critical cell connecting muscle and bone, which provides a new modality to study inter-tissue communication. A comprehensive and integrated perspective of muscle and bone will facilitate in-depth research in the musculoskeletal system and promote novel therapeutic avenues in treating musculoskeletal disorders.
Collapse
Affiliation(s)
| | | | | | - Xu Cheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Sheng R, Cao M, Song M, Wang M, Zhang Y, Shi L, Xie T, Li Y, Wang J, Rui Y. Muscle-bone crosstalk via endocrine signals and potential targets for osteosarcopenia-related fracture. J Orthop Translat 2023; 43:36-46. [PMID: 38021216 PMCID: PMC10654153 DOI: 10.1016/j.jot.2023.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/14/2023] [Accepted: 09/20/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Osteosarcopenia is a syndrome coexisting sarcopenia and osteopenia/osteoporosis, with a high fracture risk. Recently, skeletal muscle and bone have been recognized as endocrine organs capable of communication through secreting myokines and osteokines, respectively. With a deeper understanding of the muscle-bone crosstalk, these endocrine signals exhibit an important role in osteosarcopenia development and fracture healing. METHODS This review summarizes the role of myokines and osteokines in the development and treatment of osteosarcopenia and fracture, and discusses their potential for osteosarcopenia-related fracture treatment. RESULTS Several well-defined myokines (myostatin and irisin) and osteokines (RANKL and SOST) are found to not only regulate skeletal muscle and bone metabolism but also influence fracture healing processes. Systemic interventions targeting these biochemical signals has shown promising results in improving the mass and functions of skeletal muscle and bone, as well as accelerating fracture healing processes. CONCLUSION The regulation of muscle-bone crosstalk via biochemical signals presents a novel and promising strategy for treating osteosarcopenia and fracture by simultaneously enhancing bone and muscle anabolism. We propose that myostatin, irisin, RANKL, and SOST may serve as potential targets to treat fracture patients with osteosarcopenia. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE Osteosarcopenia is an emerging geriatric syndrome where sarcopenia and osteoporosis coexist, with high fracture risk, delayed fracture healing, and increased mortality. However, no pharmacological agent is available to treat fracture patients with osteosarcopenia. This review summarizes the role of several myokines and osteokines in the development and treatment of osteosacropenia and fracture, as well as discusses their potential as intervention targets for osteosarcopenia-related fracture, which provides a novel and promising strategy for future osteosarcopenia-related fracture treatment.
Collapse
Affiliation(s)
- Renwang Sheng
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Mumin Cao
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Mingyuan Song
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Mingyue Wang
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Yuanwei Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Liu Shi
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Tian Xie
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Yingjuan Li
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Jinyu Wang
- Department of Rehabilitation, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Yunfeng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| |
Collapse
|
5
|
Zhang X, Wang F, Ou M, Liu H, Luo Q, Fei S, Zhao J, Chen K, Zhao Q, Li K. Effects of Myostatin b Knockout on Offspring Body Length and Skeleton in Yellow Catfish ( Pelteobagrus fulvidraco). BIOLOGY 2023; 12:1331. [PMID: 37887041 PMCID: PMC10604553 DOI: 10.3390/biology12101331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/01/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
Based on obtaining mstnb gene knockout in Pelteobagrus fulvidraco, a study on the effect of the mstn gene on skeletal morphology and growth was performed by comparing the number and length of the vertebrae of mutant and wild-type fish in a sibling group of P. fulvidraco, combined with the differences in cells at the level of vertebral skeletal tissue. It was found that mstnb gene knockdown resulted in a reduction in the number of vertebrae, the length, and the intervertebral distance in P. fulvidraco, and these changes may be the underlying cause of the shorter body length in mutant P. fulvidraco. Further, histological comparison of the same sites in the mstn mutant and wild groups of P. fulvidraco also revealed that the number and density of osteocytes were greater in mstnb knockout P. fulvidraco than in wild-type P. fulvidraco. Our results demonstrated that when using genome editing technology to breed new lines, the effects of knockout need to be analyzed comprehensively and may have some unexpected effects due to insufficient study of the function of certain genes.
Collapse
Affiliation(s)
- Xincheng Zhang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.)
| | - Fang Wang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.)
| | - Mi Ou
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.)
| | - Haiyang Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.)
| | - Qing Luo
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.)
| | - Shuzhan Fei
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.)
| | - Jian Zhao
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.)
| | - Kunci Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.)
| | - Qingshun Zhao
- Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou High-Tech Development Zone, Nanjing 210061, China
- Institute of Genome Editing, Nanjing YSY Biotech Company, No. 1 Amber Road, Nanjing 211812, China
| | - Kaibin Li
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.)
| |
Collapse
|
6
|
Li C. Deer antler renewal gives insights into mammalian epimorphic regeneration. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:26. [PMID: 37490254 PMCID: PMC10368610 DOI: 10.1186/s13619-023-00169-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/02/2023] [Indexed: 07/26/2023]
Abstract
Deer antlers are the only known mammalian organ that, once lost, can fully grow back naturally. Hence, the antler offers a unique opportunity to learn how nature has solved the problem of mammalian epimorphic regeneration (EpR). Comprehensive comparisons amongst different types of EpR reveal that antler renewal is fundamentally different from that in lower vertebrates such as regeneration of the newt limb. Surprisingly, antler renewal is comparable to wound healing over a stump of regeneration-incompetent digit/limb, bone fracture repair, and to a lesser extent to digit tip regeneration in mammals. Common to all these mammalian cases of reaction to the amputation/mechanical trauma is the response of the periosteal cells at the distal end/injury site with formation of a circumferential cartilaginous callus (CCC). Interestingly, whether the CCC can proceed to the next stage to transform to a blastema fully depends on the presence of an interactive partner. The actual form of the partner can vary in different cases with the nail organ in digit tip EpR, the opposing callus in bone fracture repair, and the closely associated enveloping skin in antler regeneration. Due to absence of such an interactive partner, the CCC of a mouse/rat digit/limb stump becomes involuted gradually. Based on these discoveries, we created an interactive partner for the rat digit/limb stump through surgically removal of the interposing layers of loose connective tissue and muscle between the resultant CCC and the enveloping skin after amputation and by forcefully bonding two tissue types tightly together. In so doing partial regeneration of the limb stump occurred. In summary, if EpR in humans is to be realized, then I envisage that it would be more likely in a manner akin to antler regeneration rather to that of lower vertebrates such as newt limbs.
Collapse
Affiliation(s)
- Chunyi Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, 130600, China.
- Jilin Provincial Key Laboratory of Deer Antler Biology, Changchun, 130600, China.
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130000, China.
| |
Collapse
|
7
|
Martín-González C, Pérez-Hernández O, García-Rodríguez A, Abreu-González P, Ortega-Toledo P, Fernández-Rodríguez CM, Alvisa-Negrín JC, Martínez-Riera A, González-Reimers E. Serum Myostatin among Excessive Drinkers. Int J Mol Sci 2023; 24:ijms24032981. [PMID: 36769301 PMCID: PMC9917382 DOI: 10.3390/ijms24032981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Myostatin acts as a negative regulator of muscle growth. Its effect on fat mass is subject to debate. Among alcoholics, there is a high prevalence of muscle atrophy, and increased fat deposition has been also described in these patients. Myostatin could be involved in these alterations, but its relationships with body composition have been scarcely studied in alcoholic patients. To analyze the behavior of myostatin among alcoholics and its relationship with alcohol intake, liver function, and body composition. We investigated serum myostatin in 59 male patients and 18 controls. Patients were all heavy drinkers admitted with organic complications related to excessive ethanol ingestion. Densitometry analysis was used to assess body composition in 46 patients. Handgrip was assessed in 51 patients. Patients showed lower myostatin values than controls (Z = 3.80; p < 0.001). There was a significant relationship between myostatin and fat at the right leg (ρ = 0.32; p = 0.028), left leg (ρ = 0.32; p = 0.028), trunk (ρ = 0.31, p = 0.038), total fat proport ion (ρ = 0.33, p = 0.026), and gynecoid fat distribution (ρ = 0.40, p = 0.006) but not with lean mass (total lean ρ = 0.07; p = 0.63; trunk lean ρ = 0.03; p = 0.85; lower limbs ρ = 0.08; p = 0.58; upper limbs ρ = 0.04 p = 0.82; android ρ = 0.02; p = 0.88, or gynoid lean mass ρ = 0.20; p = 0.19). In total, 80.43% of patients showed at least one criterion of osteosarcopenic adiposity (OSA). Myostatin was related to OSA obesity. We also observed higher myostatin values among patients with body mass index > 30 kg/m2. Serum myostatin was lower among excessive drinkers, and it was related to increased fat deposition among these patients but not to lean mass, handgrip, or bone mineral density.
Collapse
Affiliation(s)
- Candelaria Martín-González
- Departamento de Medicina Interna, Universidad de La Laguna, Servicio de Medicina Interna, Hospital Universitario de Canarias, Tenerife, Canary Islands, 38320 La Laguna, Spain
| | - Onán Pérez-Hernández
- Departamento de Medicina Interna, Universidad de La Laguna, Servicio de Medicina Interna, Hospital Universitario de Canarias, Tenerife, Canary Islands, 38320 La Laguna, Spain
| | - Alen García-Rodríguez
- Departamento de Medicina Interna, Universidad de La Laguna, Servicio de Medicina Interna, Hospital Universitario de Canarias, Tenerife, Canary Islands, 38320 La Laguna, Spain
| | - Pedro Abreu-González
- Departamento de Ciencias Médicas Básicas, Unidad de Fisiología, Universidad de la Laguna, Tenerife, Canary Islands, 38320 La Laguna, Spain
| | - Paula Ortega-Toledo
- Departamento de Medicina Interna, Universidad de La Laguna, Servicio de Medicina Interna, Hospital Universitario de Canarias, Tenerife, Canary Islands, 38320 La Laguna, Spain
| | - Camino María Fernández-Rodríguez
- Departamento de Medicina Interna, Universidad de La Laguna, Servicio de Medicina Interna, Hospital Universitario de Canarias, Tenerife, Canary Islands, 38320 La Laguna, Spain
| | - Julio César Alvisa-Negrín
- Departamento de Medicina Interna, Universidad de La Laguna, Servicio de Medicina Interna, Hospital Universitario de Canarias, Tenerife, Canary Islands, 38320 La Laguna, Spain
| | - Antonio Martínez-Riera
- Departamento de Medicina Interna, Universidad de La Laguna, Servicio de Medicina Interna, Hospital Universitario de Canarias, Tenerife, Canary Islands, 38320 La Laguna, Spain
| | - Emilio González-Reimers
- Departamento de Medicina Interna, Universidad de La Laguna, Servicio de Medicina Interna, Hospital Universitario de Canarias, Tenerife, Canary Islands, 38320 La Laguna, Spain
- Correspondence:
| |
Collapse
|
8
|
Wong L, McMahon LP. Crosstalk between bone and muscle in chronic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1146868. [PMID: 37033253 PMCID: PMC10076741 DOI: 10.3389/fendo.2023.1146868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
With increasing life expectancy, the related disorders of bone loss, metabolic dysregulation and sarcopenia have become major health threats to the elderly. Each of these conditions is prevalent in patients with chronic kidney disease (CKD), particularly in more advanced stages. Our current understanding of the bone-muscle interaction is beyond mechanical coupling, where bone and muscle have been identified as interrelated secretory organs, and regulation of both bone and muscle metabolism occurs through osteokines and myokines via autocrine, paracrine and endocrine systems. This review appraises the current knowledge regarding biochemical crosstalk between bone and muscle, and considers recent progress related to the role of osteokines and myokines in CKD, including modulatory effects of physical exercise and potential therapeutic targets to improve musculoskeletal health in CKD patients.
Collapse
Affiliation(s)
- Limy Wong
- Department of Renal Medicine, Monash University Eastern Health Clinical School, Box Hill, VIC, Australia
- Department of Renal Medicine, Eastern Health, Box Hill, VIC, Australia
- *Correspondence: Limy Wong,
| | - Lawrence P. McMahon
- Department of Renal Medicine, Monash University Eastern Health Clinical School, Box Hill, VIC, Australia
- Department of Renal Medicine, Eastern Health, Box Hill, VIC, Australia
| |
Collapse
|
9
|
Cui Y, Yi Q, Sun W, Huang D, Zhang H, Duan L, Shang H, Wang D, Xiong J. Molecular basis and therapeutic potential of myostatin on bone formation and metabolism in orthopedic disease. Biofactors 2023; 49:21-31. [PMID: 32997846 DOI: 10.1002/biof.1675] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/17/2022]
Abstract
Myostatin, a member of the transforming growth factor-β (TGF-β) superfamily, is a key autocrine/paracrine inhibitor of skeletal muscle growth. Recently, researchers have postulated that myostatin is a negative regulator of bone formation and metabolism. Reportedly, myostatin is highly expressed in the fracture area, affecting the endochondral ossification process during the early stages of fracture healing. Furthermore, myostatin is highly expressed in the synovium of patients with rheumatoid arthritis (RA) and is an effective therapeutic target for interfering with osteoclast formation and joint destruction in RA. Thus, myostatin is a potent anti-osteogenic factor and a direct modulator of osteoclast differentiation. Evaluation of the molecular pathway revealed that myostatin can activate SMAD and mitogen-activated protein kinase signaling pathways, inhibiting the Wnt/β-catenin pathway to synergistically regulate muscle and bone growth and metabolism. In summary, inhibition of myostatin or the myostatin signaling pathway has therapeutic potential in the treatment of orthopedic diseases. This review focused on the effects of myostatin on bone formation and metabolism and discussed the potential therapeutic effects of inhibiting myostatin and its pathways in related orthopedic diseases.
Collapse
Affiliation(s)
- Yinxing Cui
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| | - Qian Yi
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| | - Weichao Sun
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| | - Dixi Huang
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| | - Hui Zhang
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
- University of South China, Hengyang, Hunan, China
| | - Li Duan
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| | - Hongxi Shang
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| | - Daping Wang
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| | - Jianyi Xiong
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| |
Collapse
|
10
|
Liu XH, Pan JP, Bauman WA, Cardozo C. Myostatin inhibits insulin-like growth factor 1-dependent citrate secretion and osteogenesis via nicotinamide adenine dinucleotide phosphate oxidase-4 in a mouse mesenchymal stem cell line. Ann N Y Acad Sci 2022; 1517:203-212. [PMID: 36072988 DOI: 10.1111/nyas.14894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Citrate is an indispensable component of bone. Reduced levels of citrate in bone and serum are reported in the elderly and in osteoporosis patients. Myostatin (Mstn) is implicated in skeletal homeostasis, but its effects on osteogenesis remain incompletely understood. Nox4 has critical roles in bone homeostasis. TGF-β/Mstn-associated Smad2/3 signaling has been linked to Nox4 expression. Insulin-like growth factor (IGF-1) has been shown to counteract many regulatory effects of Mstn. However, the crosstalk among Mstn, IGF-1, and Nox4 is not well understood; the interactive effects of those factors on citrate secretion, osteogenic differentiation, and bone remodeling remain unclear. In this study, we demonstrated that osteogenic differentiation induced an IGF-1-dependent upregulation of citrate secretion that was suppressed by Mstn. Inhibition of Nox4 prevented Mstn-induced reduction of citrate secretion. In addition, Mstn reduced bone nodule formation; these changes were prevented by Nox4 inhibition. Moreover, Mstn increased the ratio of RANKL to OPG mRNAs to favor osteoclast activation. These results indicate that Mstn negatively regulates osteogenesis by increasing levels of Nox4, which reduced IGF-1 expression, citrate secretion, and bone mineralization while also altering the RANKL to OPG ratio. These findings provide new and highly relevant insights into the osseous effects of myostatin.
Collapse
Affiliation(s)
- Xin-Hua Liu
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, New York, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jiang Ping Pan
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, New York, USA
| | - William A Bauman
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, New York, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Medical Service, James J. Peter VA Medical Center, Bronx, New York, USA
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Bone Program, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Christopher Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, New York, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Medical Service, James J. Peter VA Medical Center, Bronx, New York, USA
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Bone Program, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
11
|
Maïmoun L, Mariano-Goulart D, Huguet H, Renard E, Lefebvre P, Picot MC, Dupuy AM, Cristol JP, Courtet P, Boudousq V, Avignon A, Guillaume S, Sultan A. In patients with anorexia nervosa, myokine levels are altered but are not associated with bone mineral density loss and bone turnover alteration. Endocr Connect 2022; 11:e210488. [PMID: 35521796 PMCID: PMC9175590 DOI: 10.1530/ec-21-0488] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/06/2022] [Indexed: 11/18/2022]
Abstract
Objectives The two-fold aim of this study was: (i) to determine the effects of undernutrition on the myokines in patients with restrictive anorexia nervosa (AN) and (ii) to examine the potential link between myokines and bone parameters. Methods In this study, 42 young women with restrictive AN and 42 age-matched controls (CON) (mean age, 18.5 ± 4.2 years and 18.6 ± 4.2 years, respectively) were enrolled. aBMD and body composition were determined with DXA. Resting energy expenditure (REEm), a marker of energy status, was indirectly assessed by calorimetry. Bone turnover markers and myokines (follistatin, myostatin and irisin) were concomitantly evaluated. Results AN patients presented low aBMD at all bone sites. REEm, bone formation markers, myostatin and IGF-1 were significantly lower, whereas the bone resorption marker and follistatin were higher in AN compared with controls. No difference was observed between groups for irisin levels. When the whole population was studied, among myokines, only myostatin was positively correlated with aBMD at all bone sites. However, multiple regression analyses showed that in the AN group, the independent variables for aBMD were principally amenorrhoea duration, lean tissue mass (LTM) and procollagen type I N-terminal propeptide (PINP). For CON, the independent variables for aBMD were principally LTM, age and PINP. Whatever the group analysed, none of the myokines appeared as explicative independent variables of aBMD. Conclusion This study demonstrated that despite the altered myokine levels in patients with AN, their direct effect on aBMD loss and bone turnover alteration seems limited in comparison with other well-known disease-related factors such as oestrogen deprivation.
Collapse
Affiliation(s)
- Laurent Maïmoun
- Département de Médecine Nucléaire, Hôpital Lapeyronie, Centre Hospitalier Régional Universitaire (CHU) Montpellier, Montpellier, France
- PhyMedExp, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Denis Mariano-Goulart
- Département de Médecine Nucléaire, Hôpital Lapeyronie, Centre Hospitalier Régional Universitaire (CHU) Montpellier, Montpellier, France
- PhyMedExp, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Helena Huguet
- Unité de Recherche Clinique et Epidémiologie, Hôpital Lapeyronie, CHU Montpellier, Montpellier, France
| | - Eric Renard
- Departement d’Endocrinologie, Diabète, Nutrition, Hôpital Lapeyronie, CHRU Montpellier, Montpellier, France
- CIC INSERM 1411, Hôpital Gui de Chauliac, CHU Montpellier, Montpellier Cedex 5, France
- Institut de Génomique Fonctionnelle, CNRS UMR 5203/INSERM U661/Université Montpellier, Montpellier, France
| | - Patrick Lefebvre
- Departement d’Endocrinologie, Diabète, Nutrition, Hôpital Lapeyronie, CHRU Montpellier, Montpellier, France
| | - Marie-Christine Picot
- Unité de Recherche Clinique et Epidémiologie, Hôpital Lapeyronie, CHU Montpellier, Montpellier, France
- CIC INSERM 1411, Hôpital Gui de Chauliac, CHU Montpellier, Montpellier Cedex 5, France
| | - Anne-Marie Dupuy
- Département de Biochimie, Hôpital Lapeyronie, CHU Montpellier, Montpellier, France
| | - Jean-Paul Cristol
- PhyMedExp, Université de Montpellier, INSERM, CNRS, Montpellier, France
- Département de Biochimie, Hôpital Lapeyronie, CHU Montpellier, Montpellier, France
| | - Philippe Courtet
- Institut de Génomique Fonctionnelle, CNRS, INSERM Université Montpellier, Montpellier, France
- Département d’Urgence et Post-Urgence Psychiatrique, Hôpital Lapeyronie, CHU Montpellier, Montpellier, France
| | - Vincent Boudousq
- Département de Médecine Nucléaire, Hôpital Carémeau, CHU Nîmes, Nîmes, France
| | - Antoine Avignon
- Département Endocrinologie, Nutrition, Diabète, Equipe Nutrition, Diabète, CHU Montpellier, Montpellier, France
| | - Sébastien Guillaume
- Institut de Génomique Fonctionnelle, CNRS, INSERM Université Montpellier, Montpellier, France
- Département d’Urgence et Post-Urgence Psychiatrique, Hôpital Lapeyronie, CHU Montpellier, Montpellier, France
| | - Ariane Sultan
- PhyMedExp, Université de Montpellier, INSERM, CNRS, Montpellier, France
- Département Endocrinologie, Nutrition, Diabète, Equipe Nutrition, Diabète, CHU Montpellier, Montpellier, France
| |
Collapse
|
12
|
Saeki C, Tsubota A. Influencing Factors and Molecular Pathogenesis of Sarcopenia and Osteosarcopenia in Chronic Liver Disease. Life (Basel) 2021; 11:life11090899. [PMID: 34575048 PMCID: PMC8468289 DOI: 10.3390/life11090899] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023] Open
Abstract
The liver plays a pivotal role in nutrient/energy metabolism and storage, anabolic hormone regulation, ammonia detoxification, and cytokine production. Impaired liver function can cause malnutrition, hyperammonemia, and chronic inflammation, leading to an imbalance between muscle protein synthesis and proteolysis. Patients with chronic liver disease (CLD) have a high prevalence of sarcopenia, characterized by progressive loss of muscle mass and function, affecting health-related quality of life and prognosis. Recent reports have revealed that osteosarcopenia, defined as the concomitant occurrence of sarcopenia and osteoporosis, is also highly prevalent in patients with CLD. Since the differentiation and growth of muscles and bones are closely interrelated through mechanical and biochemical communication, sarcopenia and osteoporosis often progress concurrently and affect each other. Osteosarcopenia further exacerbates unfavorable health outcomes, such as vertebral fracture and frailty. Therefore, a comprehensive assessment of sarcopenia, osteoporosis, and osteosarcopenia, and an understanding of the pathogenic mechanisms involving the liver, bones, and muscles, are important for prevention and treatment. This review summarizes the molecular mechanisms of sarcopenia and osteosarcopenia elucidated to data in hopes of promoting advances in treating these musculoskeletal disorders in patients with CLD.
Collapse
Affiliation(s)
- Chisato Saeki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo 105-8461, Japan;
| | - Akihito Tsubota
- Core Research Facilities, Research Center for Medical Science, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo 105-8461, Japan
- Correspondence: ; Tel.: +81-3-3433-1111
| |
Collapse
|
13
|
Esposito P, Verzola D, Picciotto D, Cipriani L, Viazzi F, Garibotto G. Myostatin/Activin-A Signaling in the Vessel Wall and Vascular Calcification. Cells 2021; 10:2070. [PMID: 34440838 PMCID: PMC8393536 DOI: 10.3390/cells10082070] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
A current hypothesis is that transforming growth factor-β signaling ligands, such as activin-A and myostatin, play a role in vascular damage in atherosclerosis and chronic kidney disease (CKD). Myostatin and activin-A bind with different affinity the activin receptors (type I or II), activating distinct intracellular signaling pathways and finally leading to modulation of gene expression. Myostatin and activin-A are expressed by different cell types and tissues, including muscle, kidney, reproductive system, immune cells, heart, and vessels, where they exert pleiotropic effects. In arterial vessels, experimental evidence indicates that myostatin may mostly promote vascular inflammation and premature aging, while activin-A is involved in the pathogenesis of vascular calcification and CKD-related mineral bone disorders. In this review, we discuss novel insights into the biology and physiology of the role played by myostatin and activin in the vascular wall, focusing on the experimental and clinical data, which suggest the involvement of these molecules in vascular remodeling and calcification processes. Moreover, we describe the strategies that have been used to modulate the activin downward signal. Understanding the role of myostatin/activin signaling in vascular disease and bone metabolism may provide novel therapeutic opportunities to improve the treatment of conditions still associated with high morbidity and mortality.
Collapse
Affiliation(s)
- Pasquale Esposito
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (P.E.); (D.V.); (L.C.); (F.V.)
- IRCCS Ospedale Policlinico San Martino, Clinica Nefrologica, Dialisi, Trapianto, 16132 Genova, Italy;
| | - Daniela Verzola
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (P.E.); (D.V.); (L.C.); (F.V.)
| | - Daniela Picciotto
- IRCCS Ospedale Policlinico San Martino, Clinica Nefrologica, Dialisi, Trapianto, 16132 Genova, Italy;
| | - Leda Cipriani
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (P.E.); (D.V.); (L.C.); (F.V.)
| | - Francesca Viazzi
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (P.E.); (D.V.); (L.C.); (F.V.)
- IRCCS Ospedale Policlinico San Martino, Clinica Nefrologica, Dialisi, Trapianto, 16132 Genova, Italy;
| | - Giacomo Garibotto
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (P.E.); (D.V.); (L.C.); (F.V.)
| |
Collapse
|
14
|
Omosule CL, Phillips CL. Deciphering Myostatin's Regulatory, Metabolic, and Developmental Influence in Skeletal Diseases. Front Genet 2021; 12:662908. [PMID: 33854530 PMCID: PMC8039523 DOI: 10.3389/fgene.2021.662908] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/05/2021] [Indexed: 01/08/2023] Open
Abstract
Current research findings in humans and other mammalian and non-mammalian species support the potent regulatory role of myostatin in the morphology and function of muscle as well as cellular differentiation and metabolism, with real-life implications in agricultural meat production and human disease. Myostatin null mice (mstn−/−) exhibit skeletal muscle fiber hyperplasia and hypertrophy whereas myostatin deficiency in larger mammals like sheep and pigs engender muscle fiber hyperplasia. Myostatin’s impact extends beyond muscles, with alterations in myostatin present in the pathophysiology of myocardial infarctions, inflammation, insulin resistance, diabetes, aging, cancer cachexia, and musculoskeletal disease. In this review, we explore myostatin’s role in skeletal integrity and bone cell biology either due to direct biochemical signaling or indirect mechanisms of mechanotransduction. In vitro, myostatin inhibits osteoblast differentiation and stimulates osteoclast activity in a dose-dependent manner. Mice deficient in myostatin also have decreased osteoclast numbers, increased cortical thickness, cortical tissue mineral density in the tibia, and increased vertebral bone mineral density. Further, we explore the implications of these biochemical and biomechanical influences of myostatin signaling in the pathophysiology of human disorders that involve musculoskeletal degeneration. The pharmacological inhibition of myostatin directly or via decoy receptors has revealed improvements in muscle and bone properties in mouse models of osteogenesis imperfecta, osteoporosis, osteoarthritis, Duchenne muscular dystrophy, and diabetes. However, recent disappointing clinical trial outcomes of induced myostatin inhibition in diseases with significant neuromuscular wasting and atrophy reiterate complexity and further need for exploration of the translational application of myostatin inhibition in humans.
Collapse
Affiliation(s)
- Catherine L Omosule
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Charlotte L Phillips
- Department of Biochemistry, University of Missouri, Columbia, MO, United States.,Department of Child Health, University of Missouri, Columbia, MO, United States
| |
Collapse
|
15
|
Zhi X, Chen Q, Song S, Gu Z, Wei W, Chen H, Chen X, Weng W, Zhou Q, Cui J, Cao L. Myostatin Promotes Osteoclastogenesis by Regulating Ccdc50 Gene Expression and RANKL-Induced NF-κB and MAPK Pathways. Front Pharmacol 2021; 11:565163. [PMID: 33536903 PMCID: PMC7849192 DOI: 10.3389/fphar.2020.565163] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 11/05/2020] [Indexed: 11/30/2022] Open
Abstract
Myostatin is a crucial cytokine that is widely present in skeletal muscle and that negatively regulates the growth and development of muscle cells. Recent research has shown that myostatin might play an essential role in bone metabolism. In RAW264.7 cells and bone marrow monocytes (BMMCs), myostatin activates the expression of the II type receptor ActR II B. Here, we report that myostatin significantly promoted RANKL/M-CSF-induced osteoclastogenesis and activated NF-κB and MAPK pathways in vitro via the Ccdc50 gene. Overexpression of myostatin promoted osteoclastogenesis and osteoclastogenesis-related markers including c-Src, MMP9, CTR, CK, and NFATc1. Specifically, myostatin increased the phosphorylation of Smad2, which led to the activation of NF-κB and MAPK pathways to activate osteoclastogenesis. Ccdc50 was identified as a gene whose expression was highly decreased in osteoclastogenesis upon myostatin treatment, and it could inhibit the function of myostatin in osteoclastogenesis by blocking NF-κB and MAPKs pathways. Our study indicates that myostatin is a promising candidate target for inhibiting RANKL-mediated osteoclastogenesis and might participate in therapy for osteoporosis, and that the Ccdc50 gene plays a significant role in the regulatory process.
Collapse
Affiliation(s)
- Xin Zhi
- Department of Orthopedics, PLA General Hospital, Beijing, China
| | - Qian Chen
- Basic Medical School, Naval Military Medical University, Shanghai, China
| | - Shaojun Song
- Department of Emergency, General Hospital of Central Theather Command, Wuhan, China
| | - Zhengrong Gu
- Department of Orthopedics, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | - Wenqiang Wei
- Department of Orthopedics, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | - Huiwen Chen
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Xiao Chen
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Weizong Weng
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Qirong Zhou
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Jin Cui
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Liehu Cao
- Department of Orthopedics, Shanghai Baoshan Luodian Hospital, Shanghai, China
| |
Collapse
|
16
|
Tang L, An S, Zhang Z, Fan X, Guo J, Sun L, Ta D. MSTN is a key mediator for low-intensity pulsed ultrasound preventing bone loss in hindlimb-suspended rats. Bone 2021; 143:115610. [PMID: 32829040 DOI: 10.1016/j.bone.2020.115610] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022]
Abstract
Low-intensity pulsed ultrasound (LIPUS) has been used to accelerate bone fracture healing. However, the issue whether LIPUS is effective in preventing osteoporosis has not been clarified, and if so, what possible mechanisms might be responsible. Myostatin (MSTN) is a negative regulator of muscle growth, and its absence will trigger a positive response to bone. In this study, we examined the effects of LIPUS on bone micro-structure, mechanical properties and damage healing of hindlimb-suspended rats, and investigated whether the inhibition of MSTN plays a role in this process. The rats were randomly divided into four groups: Normal control group (NC), Hind limb suspension group (HLS), Hind limb suspension and 80 mW/cm2 LIPUS irradiation group (HLS+ 80 mW/cm2), Hind limb suspension and 30 mW/cm2 LIPUS irradiation group (HLS+ 30 mW/cm2). The HLS+ 80 mW/cm2 rats were treated with LIPUS (1 MHz, 80 mW/cm2) and the HLS+ 30 mW/cm2 rats were treated with LIPUS (1 MHz, 30 mW/cm2) on the femur for 20 min/day for 28 days. MC3T3-E1 cells were respectively cultured with the serum of wild type mouse and MSTN knockout mouse at 1% concentration for 7 days. After 28 days, LIPUS effectively prevented the destruction of bone microstructure and the decline of mechanical properties, and promoted bone defect healing in the tail-suspended rats. In addition, LIPUS effectively reduced the MSTN content in the quadriceps and serum of the tail-suspended rats, inhibited its receptor and downstream signaling molecules and activated the Wnt signaling pathway in femurs. Growth of MC-3T3-E1 cell cultured with the serum of MSTN knockout mice was superior to that with wild mice serum on day 7. These results indicate that MSTN is a key mediator in LIPUS preventing bone loss caused by hindlimb-suspension.
Collapse
Affiliation(s)
- Liang Tang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Shasha An
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Zhihao Zhang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Xiushan Fan
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Jianzhong Guo
- Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an 710119, China
| | - Lijun Sun
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China.
| | - Dean Ta
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China; Human Phenome Institute, Fudan University, Shanghai 201203, China; Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai 200032, China.
| |
Collapse
|
17
|
Wenger KH, Heringer D, Lloyd T, Johnson MS, DesJardins JD, Stanley SE, Remeniuk B, Szivek JA. Repair and remodeling of partial-weightbearing, uninstrumented long bone fracture model in mice treated with low intensity vibration therapy. Clin Biomech (Bristol, Avon) 2021; 81:105244. [PMID: 33341522 DOI: 10.1016/j.clinbiomech.2020.105244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND While vibration therapy has shown encouraging results across many fields of medicine in the last decade, its role as originally envisioned for bone health remains uncertain. Especially regarding its efficacy in promoting fracture healing, mixed and incomplete outcomes suggest a need to clarify its potential. In particular, the definitive effect of vibration, when isolated from the confounding mechanical inputs of gait and stabilizing instrumentation, remains largely unknown. METHODS Four cohorts of C57BL/6 male mice underwent single-leg, open fibula fracture. Vibration was applied at 0.3 g to two groups for 20 min/d. At 3 and 6 weeks, fibulae were harvested for microcomputed tomography and 3-point bending to failure. FINDINGS In bone volume and tissue volume, the groups at each healing time point were statistically not different. At 3 weeks, however, the ratio of bone-to-tissue volume was lower for the vibrated group than control. Likewise, while bone mineral density did not differ, tissue volume density was lowest with vibration. At 6 weeks, mean differences were nominal. Biomechanically, vibration consistently trended ahead of control in strength and stiffness, but did not achieve statistical significance. INTERPRETATION At this stage of therapeutic development, vibration therapy in isolation does not demonstrate a clear efficacy for bone healing, although further treatment permutations and translational uses remain open for investigation.
Collapse
Affiliation(s)
- Karl H Wenger
- Regencor LLC, Augusta, GA 30904, USA; Department of Clinical Investigation, Dwight D. Eisenhower Army Medical Center, Fort Gordon, GA 30905, USA.
| | - Diana Heringer
- College of Medicine, University of Arizona, Tucson, AZ 85724, USA.
| | | | - Maria S Johnson
- Small Animal Phenotyping Core Facility, University of Alabama at Birmingham, USA.
| | - John D DesJardins
- Department of Bioengineering, 301 Rhodes Building, Clemson, SC 29634, USA.
| | - Scott E Stanley
- Department of Bioengineering, 301 Rhodes Building, Clemson, SC 29634, USA.
| | - Bethany Remeniuk
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA.
| | - John A Szivek
- Department of Orthopedic Surgery, College of Medicine, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
18
|
Pleiotropic actions of Vitamin D in composite musculoskeletal trauma. Injury 2020; 51:2099-2109. [PMID: 32624209 DOI: 10.1016/j.injury.2020.06.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/21/2020] [Accepted: 06/13/2020] [Indexed: 02/02/2023]
Abstract
Composite tissue injuries are the result of high energy impacts caused by motor vehicle accidents, gunshot wounds or blasts. These are highly traumatic injuries characterized by wide-spread, penetrating wounds affecting the entire musculoskeletal system, and are generally defined by frank volumetric muscle loss with concomitant segmental bone defects. At the tissue level, the breadth of damage to multiple tissue systems, and potential for infection from penetration, have been shown to lead to an exaggerated, often chronic inflammatory response with subsequent dysregulation of normal musculoskeletal healing mechanisms. Aside from the direct effects of inflammation on myogenesis and osteogenesis, frank muscle loss has been shown to directly impair fracture union and ultimately contribute to failed wound regeneration. Care for these injuries requires extensive surgical intervention and acute care strategies. However, often these interventions do not adequately mitigate inflammation or promote proper musculoskeletal injury repair and force amputation of the limb. Therefore, identification of factors that can promote tissue regeneration and mitigate inflammation could be key to restoring wound healing after composite tissue injury. One such factor that may directly affect both inflammation and tissue regeneration in response to these multi-tissue injuries may be Vitamin D. Beyond traditional roles, the pleiotropic and localized actions of Vitamin D are increasingly being recognized in most aspects of wound healing in complex tissue injuries - e.g., regulation of inflammation, myogenesis, fracture callus mineralization and remodeling. Conversely, pre-existing Vitamin D deficiency leads to musculoskeletal dysfunction, increased fracture risk or fracture non-unions, decreased strength/function and reduced capacity to heal wounds through increased inflammation. This Vitamin D deficient state requires acute supplementation in order to quickly restore circulating levels to an optimal level, thereby facilitating a robust wound healing response. Herein, the purpose of this review is to address the roles and critical functions of Vitamin D throughout the wound healing process. Findings from this review suggest that careful monitoring and/or supplementation of Vitamin D may be critical for wound regeneration in composite tissue injuries.
Collapse
|
19
|
roostaei M, pirani H, rashidlamir A. High intensity interval training induces the expression of Myostatin and Follistatin isoforms in rat muscle: differential effects on fast and slow twitch skeletal muscles. MEDICAL LABORATORY JOURNAL 2020. [DOI: 10.29252/mlj.14.5.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
20
|
Suh J, Lee YS. Myostatin Inhibitors: Panacea or Predicament for Musculoskeletal Disorders? J Bone Metab 2020; 27:151-165. [PMID: 32911580 PMCID: PMC7571243 DOI: 10.11005/jbm.2020.27.3.151] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/23/2020] [Indexed: 01/19/2023] Open
Abstract
Myostatin, also known as growth differentiation factor 8 (GDF8), is a transforming growth factor-β (TGF-β) family member that functions to limit skeletal muscle growth. Accordingly, loss-of-function mutations in myostatin result in a dramatic increase in muscle mass in humans and various animals, while its overexpression leads to severe muscle atrophy. Myostatin also exerts a significant effect on bone metabolism, as demonstrated by enhanced bone mineral density and bone regeneration in myostatin null mice. The identification of myostatin as a negative regulator of muscle and bone mass has sparked an enormous interest in developing myostatin inhibitors as therapeutic agents for treating a variety of clinical conditions associated with musculoskeletal disorders. As a result, various myostatin-targeting strategies involving antibodies, myostatin propeptides, soluble receptors, and endogenous antagonists have been generated, and many of them have progressed to clinical trials. Importantly, most myostatin inhibitors also repress the activities of other closely related TGF-β family members including GDF11, activins, and bone morphogenetic proteins (BMPs), increasing the potential for unwanted side effects, such as vascular side effects through inhibition of BMP 9/10 and bone weakness induced by follistatin through antagonizing several TGF-β family members. Therefore, a careful distinction between targets that may enhance the efficacy of an agent and those that may cause adverse effects is required with the improvement of the target specificity. In this review, we discuss the current understanding of the endogenous function of myostatin, and provide an overview of clinical trial outcomes from different myostatin inhibitors.
Collapse
Affiliation(s)
- Joonho Suh
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Yun-Sil Lee
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
21
|
Kerschan-Schindl K, Tiefenböck TM, Föger-Samwald U, Payr S, Frenzel S, Marculescu R, Gleiss A, Sarahrudi K, Pietschmann P. Circulating Myostatin Levels Decrease Transiently after Implantation of a Hip Hemi-Arthroplasty. Gerontology 2020; 66:393-400. [PMID: 32454508 DOI: 10.1159/000507731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/03/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Muscle and bone metabolism are both important for the healing of fractures and the regeneration of injured muscle tissue. The aim of this investigation was to evaluate myostatin and other regulating factors in patients with hip fractures who underwent hemi-arthroplasty. METHODS Serum levels of myostatin (MSTN), follistatin (FSTN), dickkopf-1 (Dkk1), and periostin (PSTN) as well as markers of bone turnover were evaluated in patients with hip fractures before surgery and twice in the 2 weeks after surgery. These parameters were also evaluated in age- and gender-matched subjects without major musculoskeletal injury. RESULTS MSTN was transiently reduced; its opponent FSTN was transiently increased. Dkk1, the negative regulator of bone mass, and PSTN, a marker of subperiosteal bone formation, increased after surgery. With regard to markers of bone turnover, resorption was elevated during the entire period of observation whereas the early bone formation marker N-terminal propeptide of type I collagen was elevated 12 days after surgery. CONCLUSIONS Unexpectedly, MSTN, a negative regulator of muscle growth, was reduced after surgery compared with before surgery. As musculoskeletal markers are altered during bone healing, they do not reflect general bone metabolism after fracture or joint arthroplasty. This is important because many elderly patients receive treatment for osteoporosis.
Collapse
Affiliation(s)
- Katharina Kerschan-Schindl
- Department of Physical Medicine, Rehabilitation and Occupational Therapy, Medical University of Vienna, Vienna, Austria
| | - Thomas M Tiefenböck
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Ursula Föger-Samwald
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - Stephan Payr
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Stephan Frenzel
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Rodrig Marculescu
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Andreas Gleiss
- Center of Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Kambiz Sarahrudi
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria, .,Landesklinikum Wiener Neustadt, Wiener Neustadt, Austria,
| | - Peter Pietschmann
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Modification of Muscle-Related Hormones in Women with Obesity: Potential Impact on Bone Metabolism. J Clin Med 2020; 9:jcm9041150. [PMID: 32316563 PMCID: PMC7230770 DOI: 10.3390/jcm9041150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023] Open
Abstract
Lean body mass (LBM) is a determinant of areal bone mineral density (aBMD) through its mechanical actions and quite possibly through its endocrine functions. The threefold aims of this study are: to determine the effects of obesity (OB) on aBMD and myokines; to examine the potential link between myokines and bone parameters; and to determine whether the effects of LBM on aBMD are mediated by myokines. aBMD and myokine levels were evaluated in relation to the body mass index (BMI) in 179 women. Compared with normal-weight controls (CON; n = 40), women with OB (n = 139) presented higher aBMD, myostatin and follistatin levels and lower irisin levels. Except for irisin levels, all differences between the OB and CON groups were accentuated with increasing BMI. For the whole population (n = 179), weight, BMI, fat mass (FM) and LBM were positively correlated with aBMD at all bone sites, while log irisin were negatively correlated. The proportion of the LBM effect on aBMD was partially mediated (from 14.8% to 29.8%), by log irisin, but not by follistatin or myosin. This study showed that myokine levels were greatly influenced by obesity. However, irisin excepted, myokines do not seem to mediate the effect of LBM on bone tissue.
Collapse
|
23
|
Wenger KH, Zumbrun SD, Rosas M, Dickinson DP, McPherson JC. Ingestion of gastrolith mineralized matrix increases bone volume and tissue volume in mouse long bone fracture model. J Orthop 2020; 20:251-256. [PMID: 32099273 DOI: 10.1016/j.jor.2020.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 01/25/2020] [Indexed: 11/30/2022] Open
Abstract
Purpose Fracture healing often requires extended convalescence as the bony fragments consolidate into restored viable tissue for load-bearing. Development of interventions to improve healing remains a priority for orthopaedic research. The goal of this study was to evaluate the ability of a naturally occurring matrix of amorphous calcium carbonate to affect fracture healing in an uninstrumented long bone model. Methods Complete transverse fracture was induced in the fibula of mature mice, followed by daily gavage of crushed gastrolith from crayfish at doses of 0 (control), 1 (1 MG), and 5 (5 MG) mg/kg. At Day 17, bones and sera were harvested. Results Morphologically, the 1 MG treated group had greater bone volume (BV), and both 1 MG and 5 MG had greater tissue volume (TV) than control (p < 0.05), as determined by μCT; BV/TV and mineral density did not yield a statistical difference. Histologically, regional variations in mineralized matrix were evident in all specimens, indicating a broad continuum of healing within the callus. Among serum proteins, bone-specific alkaline phosphatase, indicative of active mineralization, was greater in 5 MG than control (p < 0.05). Sclerostin, an inhibitor of osteogenesis, was lower in 5 MG than control (p < 0.05), also suggestive of enhanced healing. Conclusions An increase in bone volume, tissue volume and cellular signaling for osteogenesis at 17 days following fibula fracture in this mouse model suggests that gastrolith treatment holds potential for improving fracture healing. Further study at subsequent time points is warranted to determine the extent to which the increase in callus size with gastrolith treatment may accelerate restoration of tissue integrity.
Collapse
Affiliation(s)
- Karl H Wenger
- Department of Clinical Investigation, Dwight D. Eisenhower Army Medical Center, Fort Gordon, 30905, Georgia.,General Dynamics Information Technology, Frederick, MD, 21703, USA.,Regencor LLC, Augusta, GA, 30904, USA
| | - Steven D Zumbrun
- Department of Clinical Investigation, Dwight D. Eisenhower Army Medical Center, Fort Gordon, 30905, Georgia
| | - Militza Rosas
- Department of Clinical Investigation, Dwight D. Eisenhower Army Medical Center, Fort Gordon, 30905, Georgia
| | | | - James C McPherson
- Department of Clinical Investigation, Dwight D. Eisenhower Army Medical Center, Fort Gordon, 30905, Georgia
| |
Collapse
|
24
|
Zhang N, Chim YN, Wang J, Wong RMY, Chow SKH, Cheung WH. Impaired Fracture Healing in Sarco-Osteoporotic Mice Can Be Rescued by Vibration Treatment Through Myostatin Suppression. J Orthop Res 2020; 38:277-287. [PMID: 31535727 DOI: 10.1002/jor.24477] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/13/2019] [Indexed: 02/04/2023]
Abstract
Sarcopenia is highly prevalent in fragility fracture patients and is associated with delayed healing. In this study, we investigated the effect of low-magnitude high-frequency vibration (LMHFV) on osteoporotic fracture with sarcopenia and the potential role of myostatin. Osteoporotic fractures created in sarcopenic SAMP8, non-sarcopenic SAMR1 were randomized to control or LMHFV (SAMP8, SAMR1, SAMP8-V, or SAMR1-V) groups. Healing and myostatin expression were evaluated at 2, 4, and 6 weeks post-fracture. In vitro, conditioned-media were collected from myofibers isolated from aged and young SAMP8 or C2C12 myoblasts with or without LMHFV. Osteoblastic MC3T3-E1 under osteogenic differentiation were treated with plain or conditioned-medium (±myostatin propeptide). LMHFV significantly enhanced callus formation was in non-sarcopenic SAMR1 mice; but the enhancement effect was not significant in SAMP8 mice at week 2. Myostatin expressions in callus and biceps femoris of SAMP8 group were significantly higher all groups with significant negative correlation with callus size (R2 = 0.7256; p = 0.0004). Mechanical properties (week 4) and callus remodeling (week 6) were inferior in SAMP8 versus SAMR1 and were significantly enhanced by LMHFV. Alkaline Phosphatase (ALP) and Runx2 expression of MC3T3-E1 was lower in aged myofiber compared with young, but upregulated by LMHFV or myostatin inhibition; also confirmed with C2C12. LMHFV enhanced early callus formation, microarchitecture, callus remodeling and mechanical properties of fracture healing in both SAMP8 and SAMR1; however, more effective in non-sarcopenic SAMR1 mice. Impaired fracture healing in sarcopenic SAMP8 mice is attributed by elevated myostatin expression in callus and muscle, which correlated negatively with callus formation. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:277-287, 2020.
Collapse
Affiliation(s)
- Ning Zhang
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, 5/F Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, People's Republic of China
| | - Yu Ning Chim
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, 5/F Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, People's Republic of China
| | - Jinyu Wang
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, 5/F Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, People's Republic of China
| | - Ronald Man Yeung Wong
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, 5/F Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, People's Republic of China
| | - Simon K H Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, 5/F Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, People's Republic of China.,The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System Research Base, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, People's Republic of China
| | - Wing-Hoi Cheung
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, 5/F Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, People's Republic of China.,The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System Research Base, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, People's Republic of China
| |
Collapse
|
25
|
Abstract
Bone and skeletal muscle are integrated organs and their coupling has been considered mainly a mechanical one in which bone serves as attachment site to muscle while muscle applies load to bone and regulates bone metabolism. However, skeletal muscle can affect bone homeostasis also in a non-mechanical fashion, i.e., through its endocrine activity. Being recognized as an endocrine organ itself, skeletal muscle secretes a panel of cytokines and proteins named myokines, synthesized and secreted by myocytes in response to muscle contraction. Myokines exert an autocrine function in regulating muscle metabolism as well as a paracrine/endocrine regulatory function on distant organs and tissues, such as bone, adipose tissue, brain and liver. Physical activity is the primary physiological stimulus for bone anabolism (and/or catabolism) through the production and secretion of myokines, such as IL-6, irisin, IGF-1, FGF2, beside the direct effect of loading. Importantly, exercise-induced myokine can exert an anti-inflammatory action that is able to counteract not only acute inflammation due to an infection, but also a condition of chronic low-grade inflammation raised as consequence of physical inactivity, aging or metabolic disorders (i.e., obesity, type 2 diabetes mellitus). In this review article, we will discuss the effects that some of the most studied exercise-induced myokines exert on bone formation and bone resorption, as well as a brief overview of the anti-inflammatory effects of myokines during the onset pathological conditions characterized by the development a systemic low-grade inflammation, such as sarcopenia, obesity and aging.
Collapse
Affiliation(s)
- Marta Gomarasca
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Molecular Biology, Milan, Italy
| | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Molecular Biology, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Giovanni Lombardi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Molecular Biology, Milan, Italy; Gdańsk University of Physical Education & Sport, Gdańsk, Pomorskie, Poland.
| |
Collapse
|
26
|
Wallner C, Huber J, Drysch M, Schmidt SV, Wagner JM, Dadras M, Dittfeld S, Becerikli M, Jaurich H, Lehnhardt M, Behr B. Activin Receptor 2 Antagonization Impairs Adipogenic and Enhances Osteogenic Differentiation in Mouse Adipose-Derived Stem Cells and Mouse Bone Marrow-Derived Stem Cells In Vitro and In Vivo. Stem Cells Dev 2019; 28:384-397. [PMID: 30654712 DOI: 10.1089/scd.2018.0155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Tumors, traumata, burn injuries or surgeries can lead to critical-sized bony defects which need to be reconstructed. Mesenchymal stem cells (MSCs) have the ability to differentiate into multiple cell lineages and thus present a promising alternative for use in tissue engineering and reconstruction. However, there is an ongoing debate whether all MSCs are equivalent in their differentiation and proliferation ability. The goal of this study was to assess osteogenic and adipogenic characteristic changes of adipose-derived stem cells (ASCs) and bone marrow-derived stem cells (BMSCs) upon Myostatin inhibition with Follistatin in vitro and in vivo. We harvested ASCs from mice inguinal fat pads and BMSCs from tibiae of mice. By means of histology, real-time cell analysis, immunohistochemistry, and PCR osteogenic and adipogenic proliferation and differentiation in the presence or absence of Follistatin were analyzed. In vivo, osteogenic capacity was investigated in a tibial defect model of wild-type (WT) mice treated with mASCs and mBMSCs of Myo-/- and WT origin. In vitro, we were able to show that inhibition of Myostatin leads to markedly reduced proliferative capacity in mBMSCs and mASCs in adipogenic differentiation and reduced proliferation in osteogenic differentiation in mASCs, whereas proliferation in mBMSCs in osteogenic differentiation was increased. Adipogenic differentiation was inhibited in mASCs and mBMSCs upon Follistatin treatment, whereas osteogenic differentiation was increased in both cell lineages. In vivo, we could demonstrate increased osteoid formation in WT mice treated with mASCs and mBMSCs of Myo-/- origin and enhanced osteogenic differentiation and proliferation of mASCs of Myo-/- origin. We could demonstrate that the osteogenic potential of mASCs could be raised to a level comparable to mBMSCs upon inhibition of Myostatin. Moreover, Follistatin treatment led to inhibition of adipogenesis in both lineages.
Collapse
Affiliation(s)
- Christoph Wallner
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Julika Huber
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Marius Drysch
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Sonja Verena Schmidt
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Johannes Maximilian Wagner
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Mehran Dadras
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Stephanie Dittfeld
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Mustafa Becerikli
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Henriette Jaurich
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Marcus Lehnhardt
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Björn Behr
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
27
|
The selective TrkA agonist, gambogic amide, promotes osteoblastic differentiation and improves fracture healing in mice. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2019; 19:94-103. [PMID: 30839307 PMCID: PMC6454248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVES To study effects of the selective TrkA agonist, gambogic amide (GA), on fracture healing in mice and on an osteoprogenitor cell line in vitro. METHODS Mice were given bilateral fibular fractures and treated for two weeks with vehicle or 1 mg/kg/day GA and euthanized at 14-, 21-, and 42-days post-fracture. Calluses were analysed by micro-computed tomography (µCT), three-point bending and histology. For RT-PCR analyses, Kusa O cells were treated with 0.5nM of GA or vehicle for 3, 7, and 14 days, while for mineralization assessment, cells were treated for 21 days. RESULTS µCT analysis found that 21-day GA-treated calluses had both decreased tissue volume (p<0.05) and bone surface (p<0.05) and increased fractional bone volume (p<0.05) compared to controls. Biomechanical analyses of 42-day calluses revealed that GA treatment increased stiffness per unit area by 53% (p<0.01) and load per unit area by 52% (p<0.01). GA treatment increased Kusa O gene expression of alkaline phosphatase and osteocalcin (p<0.05) by 14 days as well as mineralization at 21 days (p<0.05). CONCLUSIONS GA treatment appeared to have a beneficial effect on fracture healing at 21- and 42-days post-fracture. The exact mechanism is not yet understood but may involve increased osteoblastic differentiation and matrix mineralization.
Collapse
|
28
|
Abstract
Tendons connect muscle to bone and play an integral role in bone and joint alignment and loading. Tendons act as pulleys that provide anchorage of muscle forces for joint motion and stability, as well as for fracture reduction and realignment. Patients that experience complex fractures also have concomitant soft tissue injuries, such as tendon damage or rupture. Tendon injuries that occur at the time of bone fracture have long-term ramifications on musculoskeletal health, yet these injuries are often disregarded in clinical treatment and diagnosis for patients with bone fractures as well as in basic science approaches for understanding bone repair processes. Delayed assessment of soft tissue injuries during evaluation of trauma can lead to chronic pain, dysfunction, and delayed bone healing even following successful fracture repair, highlighting the importance of identifying and treating damaged tendons early. Treatment strategies for bone repair, such as mechanical stabilization and biological therapeutics, can impact tendon healing and function. Because poor tendon healing following complex fracture can significantly impact the function of tendon during bone fracture healing, a need exists to understand the healing process of complex fractures more broadly, beyond the healing of bone. In this review, we explored the mechanical and biological interaction of bone and tendon in the context of complex fracture, as well as the relevance and potential ramifications of tendon damage following bone fracture, which has particular impact on patients that experience complex fractures, such as from combat, automobile accidents, and other trauma.
Collapse
Affiliation(s)
- Elahe Ganji
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716
| | - Megan L. Killian
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716
| |
Collapse
|
29
|
Iolascon G, Moretti A, Stefano L, Gimigliano F. Muscle Weakness and Falls. CONTEMPORARY ENDOCRINOLOGY 2018:205-225. [DOI: 10.1007/978-3-319-73742-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
30
|
Wu LF, Zhu DC, Wang BH, Lu YH, He P, Zhang YH, Gao HQ, Zhu XW, Xia W, Zhu H, Mo XB, Lu X, Zhang L, Zhang YH, Deng FY, Lei SF. Relative abundance of mature myostatin rather than total myostatin is negatively associated with bone mineral density in Chinese. J Cell Mol Med 2017; 22:1329-1336. [PMID: 29247983 PMCID: PMC5783859 DOI: 10.1111/jcmm.13438] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/28/2017] [Indexed: 01/26/2023] Open
Abstract
Myostatin is mainly secreted by skeletal muscle and negatively regulates skeletal muscle growth. However, the roles of myostatin on bone metabolism are still largely unknown. Here, we recruited two large populations containing 6308 elderly Chinese and conducted comprehensive statistical analyses to evaluate the associations among lean body mass (LBM), plasma myostatin, and bone mineral density (BMD). Our data revealed that total myostatin in plasma was mainly determined by LBM. The relative abundance of mature myostatin (mature/total) was significantly lower in high versus low BMD subjects. Moreover, the relative abundance of mature myostatin was positively correlated with bone resorption marker. Finally, we carried out in vitro experiments and found that myostatin has inhibitory effects on the proliferation and differentiation of human osteoprogenitor cells. Taken together, our results have demonstrated that the relative abundance of mature myostatin in plasma is negatively associated with BMD, and the underlying functional mechanism for the association is most likely through inhibiting osteoblastogenesis and promoting osteoclastogenesis.
Collapse
Affiliation(s)
- Long-Fei Wu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Dong-Cheng Zhu
- Department of Orthopedics, Sihong People's Hospital, Suqian, Jiangsu, China
| | - Bing-Hua Wang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Yi-Hua Lu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Pei He
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Yun-Hong Zhang
- Disease Prevention and Control Center of Suzhou high Tech Zone, Suzhou, Jiangsu, China
| | - Hong-Qin Gao
- Shishan Community Health Service Center, Suzhou High Tech Zone, Suzhou, Jiangsu, China
| | - Xiao-Wei Zhu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Wei Xia
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Hong Zhu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Xing-Bo Mo
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Xin Lu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Lei Zhang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Yong-Hong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Fei-Yan Deng
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Shu-Feng Lei
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
31
|
Li G, Wang L, Jiang Y, Kong X, Fan Q, Ge S, Hao Y. Upregulation of Akt signaling enhances femoral fracture healing by accelerating atrophic quadriceps recovery. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2848-2861. [DOI: 10.1016/j.bbadis.2017.07.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/25/2017] [Accepted: 07/31/2017] [Indexed: 10/19/2022]
|
32
|
Inhibition of GDF8 (Myostatin) accelerates bone regeneration in diabetes mellitus type 2. Sci Rep 2017; 7:9878. [PMID: 28852138 PMCID: PMC5575348 DOI: 10.1038/s41598-017-10404-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/08/2017] [Indexed: 12/21/2022] Open
Abstract
Metabolic diseases like diabetes mellitus cause bone healing deficiencies. We found significant impairment of bone regeneration, osteogenic differentiation and proliferation in diabetic bone. Moreover recent studies suggest a highly underestimated importance of GDF8 (Myostatin) in bone metabolism. Our goal was to analyze the role of GDF8 as a regulator of osteogenic differentiation, proliferation and bone regeneration. We used a murine tibial defect model in diabetic (Leprdb-/-) mice. Myostatin-Inhibitor Follistatin was administered in tibial bony defects of diabetic mice. By means of histology, immunohistochemistry and QRT-PC osteogenesis, differentiation and proliferation were analyzed. Application of Myostatin-inhibitor showed a significant improvement in diabetic bone regeneration compared to the control group (6.5 fold, p < 0.001). Immunohistochemistry revealed a significantly higher proliferation (7.7 fold, p = 0.009), osteogenic differentiation (Runx-2: 3.7 fold, p = 0.011, ALP: 9.3 fold, p < 0.001) and calcification (4.9 fold, p = 0.024) in Follistatin treated diabetic animals. Therapeutical application of Follistatin, known for the importance in muscle diseases, plays an important role in bone metabolism. Diabetic bone revealed an overexpression of the catabolic protein Myostatin. Antagonization of Myostatin in diabetic animals leads to a restoration of the impaired bone regeneration and represents a promising therapeutic option.
Collapse
|
33
|
Zhang N, Chow SKH, Leung KS, Lee HH, Cheung WH. An animal model of co-existing sarcopenia and osteoporotic fracture in senescence accelerated mouse prone 8 (SAMP8). Exp Gerontol 2017; 97:1-8. [PMID: 28711604 DOI: 10.1016/j.exger.2017.07.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/26/2017] [Accepted: 07/11/2017] [Indexed: 12/14/2022]
Abstract
Sarcopenia and osteoporotic fracture are common aging-related musculoskeletal problems. Recent evidences report that osteoporotic fracture patients showed high prevalence of sarcopenia; however, current clinical practice basically does not consider sarcopenia in the treatment or rehabilitation of osteoporotic fracture. There is almost no report studying the relationship of the co-existing of sarcopenia and osteoporotic fracture healing. In this study, we validated aged senescence accelerated mouse prone 8 (SAMP8) and senescence accelerated mouse resistant 1 (SAMR1) as animal models of senile osteoporosis with/without sarcopenia. Bone mineral density (BMD) at the 5th lumbar and muscle testing of the two animal strains were measured to confirm the status of osteoporosis and sarcopenia, respectively. Closed fracture was created on the right femur of 8-month-old animals. Radiographs were taken weekly post-fracture. MicroCT and histology of the fractured femur were performed at week 2, 4 and 6 post-fracture, while mechanical test of both femora at week 4 and 6 post-fracture. Results showed that the callus of SAMR1 was significantly larger at week 2 but smaller at week 6 post-fracture than SAMP8. Mechanical properties were significantly better at week 4 post-fracture in SAMR1 than SAMP8, indicating osteoporotic fracture healing was delayed in sarcopenic SAMP8. This study validated an animal model of co-existing sarcopenia and osteoporotic fracture, where a delayed fracture healing might be resulted in the presence of sarcopenia.
Collapse
Affiliation(s)
- Ning Zhang
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Simon Kwoon Ho Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, People's Republic of China
| | - Kwok Sui Leung
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Ho Hin Lee
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Wing Hoi Cheung
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, People's Republic of China.
| |
Collapse
|
34
|
Wehmeyer C, Pap T, Buckley CD, Naylor AJ. The role of stromal cells in inflammatory bone loss. Clin Exp Immunol 2017; 189:1-11. [PMID: 28419440 PMCID: PMC5461090 DOI: 10.1111/cei.12979] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2017] [Indexed: 12/26/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation, local and systemic bone loss and a lack of compensatory bone repair. Fibroblast-like synoviocytes (FLS) are the most abundant cells of the stroma and a key population in autoimmune diseases such as RA. An increasing body of evidence suggests that these cells play not only an important role in chronic inflammation and synovial hyperplasia, but also impact bone remodelling. Under inflammatory conditions FLS release inflammatory cytokines, regulate bone destruction and formation and communicate with immune cells to control bone homeostasis. Other stromal cells, such as osteoblasts and terminally differentiated osteoblasts, termed osteocytes, are also involved in the regulation of bone homeostasis and are dysregulated during inflammation. This review highlights our current understanding of how stromal cells influence the balance between bone formation and bone destruction. Increasing our understanding of these processes is critical to enable the development of novel therapeutic strategies with which to treat bone loss in RA.
Collapse
Affiliation(s)
- C. Wehmeyer
- Institute of Inflammation and Ageing (IIA), University of Birmingham, Queen Elizabeth HospitalBirminghamUK
| | - T. Pap
- Institute of Experimental Musculoskeletal Medicine, University Hospital MuensterMuensterGermany
| | - C. D. Buckley
- Institute of Inflammation and Ageing (IIA), University of Birmingham, Queen Elizabeth HospitalBirminghamUK
| | - A. J. Naylor
- Institute of Inflammation and Ageing (IIA), University of Birmingham, Queen Elizabeth HospitalBirminghamUK
| |
Collapse
|
35
|
Ning B, Zhao Y, Buza JA, Li W, Wang W, Jia T. Surgically‑induced mouse models in the study of bone regeneration: Current models and future directions (Review). Mol Med Rep 2017; 15:1017-1023. [PMID: 28138711 PMCID: PMC5367352 DOI: 10.3892/mmr.2017.6155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 12/13/2016] [Indexed: 01/17/2023] Open
Abstract
Bone regeneration has been extensively studied over the past several decades. The surgically‑induced mouse model is the key animal model for studying bone regeneration, of the various research strategies used. These mouse models mimic the trauma and recovery processes in vivo and serve as carriers for tissue engineering and gene modification to test various therapies or associated genes in bone regeneration. The present review introduces a classification of surgically induced mouse models in bone regeneration, evaluates the application and value of these models and discusses the potential development of further innovations in this field in the future.
Collapse
Affiliation(s)
- Bin Ning
- Department of Orthopedic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Yunpeng Zhao
- Department of Orthopedic Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - John A Buza
- Department of Orthopedic Surgery, New York University Medical Center, New York, NY 10003, USA
| | - Wei Li
- Department of Orthopedic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Wenzhao Wang
- Department of Orthopedic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Tanghong Jia
- Department of Orthopedic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
36
|
Fennen M, Pap T, Dankbar B. Smad-dependent mechanisms of inflammatory bone destruction. Arthritis Res Ther 2016; 18:279. [PMID: 27906049 PMCID: PMC5134126 DOI: 10.1186/s13075-016-1187-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/18/2016] [Indexed: 12/20/2022] Open
Abstract
Homeostatic bone remodelling becomes disturbed in a variety of pathologic conditions that affect the skeleton, including inflammatory diseases. Rheumatoid arthritis is the prototype of an inflammatory arthritis characterised by chronic inflammation, progressive cartilage destruction and focal bone erosions and is a prime example for a disease with disturbed bone homeostasis. The inflammatory milieu favours the recruitment and activation of osteoclasts, which have been found to be the cells that are primarily responsible for bone erosions in many animal models of inflammatory arthritis. Among the inflammatory modulators, members of the transforming growth factor (TGF)-β super family are shown to be important regulators in osteoclastogenesis with Smad-mediated signalling being crucial for inducing osteoclast differentiation. These findings have opened a new field for exploring mechanisms of osteoclast differentiation under inflammatory conditions. Recent studies have shown that the TGF-β superfamily members TGF-β1, myostatin and activin A directly regulate osteoclast differentiation through mechanisms that depend on the RANKL–RANK interplay. These growth factors transduce their signals through type I and II receptor serine/threonine kinases, thereby activating the Smad pathway. In this review, we describe the impact of inflammation-induced Smad signalling in osteoclast development and subsequently bone erosion in rheumatoid arthritis.
Collapse
Affiliation(s)
- Michelle Fennen
- Institute of Experimental Musculoskeletal Medicine, Westfalian Wilhelms-University Münster, Münster, Germany
| | - Thomas Pap
- Institute of Experimental Musculoskeletal Medicine, Westfalian Wilhelms-University Münster, Münster, Germany
| | - Berno Dankbar
- Institute of Experimental Musculoskeletal Medicine, Westfalian Wilhelms-University Münster, Münster, Germany.
| |
Collapse
|
37
|
Jin M, Song S, Guo L, Jiang T, Lin ZY. Increased serum GDF11 concentration is associated with a high prevalence of osteoporosis in elderly native Chinese women. Clin Exp Pharmacol Physiol 2016; 43:1145-1147. [PMID: 27557752 DOI: 10.1111/1440-1681.12651] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/25/2016] [Accepted: 07/31/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Miaomiao Jin
- Department of Orthopedics; The Xiangya Hospital of Central South University; Changsha Hunan China
- Department of Endocrinology; The Heji Affiliated Hospital of Changzhi Medical College; Changsha Hunan China
| | - Shumin Song
- Department of Endocrinology; The Xiangya Hospital of Central South University; Changsha Hunan China
| | - Lijuan Guo
- Department of Endocrinology; The Xiangya Hospital of Central South University; Changsha Hunan China
| | - Tiejian Jiang
- Department of Endocrinology; The Xiangya Hospital of Central South University; Changsha Hunan China
| | - Zhang-Yuan Lin
- Department of Orthopedics; The Xiangya Hospital of Central South University; Changsha Hunan China
| |
Collapse
|
38
|
Laurent MR, Dubois V, Claessens F, Verschueren SMP, Vanderschueren D, Gielen E, Jardí F. Muscle-bone interactions: From experimental models to the clinic? A critical update. Mol Cell Endocrinol 2016; 432:14-36. [PMID: 26506009 DOI: 10.1016/j.mce.2015.10.017] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/13/2015] [Accepted: 10/20/2015] [Indexed: 02/06/2023]
Abstract
Bone is a biomechanical tissue shaped by forces from muscles and gravitation. Simultaneous bone and muscle decay and dysfunction (osteosarcopenia or sarco-osteoporosis) is seen in ageing, numerous clinical situations including after stroke or paralysis, in neuromuscular dystrophies, glucocorticoid excess, or in association with vitamin D, growth hormone/insulin like growth factor or sex steroid deficiency, as well as in spaceflight. Physical exercise may be beneficial in these situations, but further work is still needed to translate acceptable and effective biomechanical interventions like vibration therapy from animal models to humans. Novel antiresorptive and anabolic therapies are emerging for osteoporosis as well as drugs for sarcopenia, cancer cachexia or muscle wasting disorders, including antibodies against myostatin or activin receptor type IIA and IIB (e.g. bimagrumab). Ideally, increasing muscle mass would increase muscle strength and restore bone loss from disuse. However, the classical view that muscle is unidirectionally dominant over bone via mechanical loading is overly simplistic. Indeed, recent studies indicate a role for neuronal regulation of not only muscle but also bone metabolism, bone signaling pathways like receptor activator of nuclear factor kappa-B ligand (RANKL) implicated in muscle biology, myokines affecting bone and possible bone-to-muscle communication. Moreover, pharmacological strategies inducing isolated myocyte hypertrophy may not translate into increased muscle power because tendons, connective tissue, neurons and energy metabolism need to adapt as well. We aim here to critically review key musculoskeletal molecular pathways involved in mechanoregulation and their effect on the bone-muscle unit as a whole, as well as preclinical and emerging clinical evidence regarding the effects of sarcopenia therapies on osteoporosis and vice versa.
Collapse
Affiliation(s)
- Michaël R Laurent
- Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium; Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; Centre for Metabolic Bone Diseases, University Hospitals Leuven, 3000 Leuven, Belgium.
| | - Vanessa Dubois
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Frank Claessens
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Sabine M P Verschueren
- Research Group for Musculoskeletal Rehabilitation, Department of Rehabilitation Science, KU Leuven, 3000 Leuven, Belgium
| | - Dirk Vanderschueren
- Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Evelien Gielen
- Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium; Centre for Metabolic Bone Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Ferran Jardí
- Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
39
|
Effects of myokines on bone. BONEKEY REPORTS 2016; 5:826. [PMID: 27579164 DOI: 10.1038/bonekey.2016.48] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 05/01/2016] [Indexed: 12/22/2022]
Abstract
The links between muscle and bone have been recently examined because of the increasing number of patients with osteoporosis and sarcopenia. Myokines are skeletal muscle-derived humoral cytokines and growth factors, which exert physiological and pathological functions in various distant organs, including the regulation of glucose, energy and bone metabolism. Myostatin is a crucial myokine, the expression of which is mainly limited to muscle tissues. The inhibition of myostatin signaling increases bone remodeling, bone mass and muscle mass, and it may provide a target for the treatment of both sarcopenia and osteoporosis. As myostatin is involved in osteoclast formation and bone destruction in rheumatoid arthritis, myostatin may be a target myokine for the treatment of accelerated bone resorption and joint destruction in rheumatoid arthritis. Numerous other myokines, including transforming growth factor-β, follistatin, insulin-like growth factor-I, fibroblast growth factor-2, osteoglycin, FAM5C, irisin, interleukin (IL)-6, leukemia inhibitory factor, IL-7, IL-15, monocyte chemoattractant protein-1, ciliary neurotrophic factor, osteonectin and matrix metalloproteinase 2, also affect bone cells in various manners. However, the effects of myokines on bone metabolism are largely unknown. Further research is expected to clarify the interaction between muscle and bone, which may lead to greater diagnosis and the development of the treatment for muscle and bone disorders, such as osteoporosis and sarcopenia.
Collapse
|
40
|
[Fibroblastic modulators of bone destruction]. Z Rheumatol 2016; 75:534-6. [PMID: 27418056 DOI: 10.1007/s00393-016-0160-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Postsurgical Acute Phase Reaction is Associated with Decreased Levels of Circulating Myostatin. Inflammation 2016; 38:1727-30. [PMID: 25749570 DOI: 10.1007/s10753-015-0149-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Muscle strength is of importance for postsurgical rehabilitation. Myostatin is a growth factor that regulates the size of muscles and could thus influence muscle mass and function in the postsurgical period. The aim of the present study was to study the changes in myostatin levels during the postsurgical inflammatory period. Myostatin was analysed in serum samples from two elective surgery groups, orthopaedic surgery (n = 24) and coronary bypass patients (n = 21). The samples were collected prior to surgery and 4 and 30 days after surgery. In the orthopaedic group, the median myostatin levels decreased from 3582 ng/L prior to surgery to 774 ng/L at day 4 (p < 0.001) and to 2016 ng/L at day 30 (p < 0.001). Median CRP increased from 2.35 mg/L preoperatively to 117 mg/L at day 4 and decreased to 5.5 mg/L at day 30 in the same group. The coronary bypass group showed a similar pattern with a decrease in myostatin from 4212 ng/L to 2574 ng/L at day 4 (p < 0.001) and to 2808 ng/L at day 30 (p = 0.002). Median CRP increased from 1.80 mg/L preoperatively to 136 mg/L at day 4 and returned to 6.12 mg/L at day 30 in the coronary bypass group. There was a significant decrease in myostatin concentrations both in the early and late postsurgical period. The lowest myostatin concentration time point coincided with the highest CRP concentration time point.
Collapse
|
42
|
Gunton JE, Girgis CM, Baldock PA, Lips P. Bone muscle interactions and vitamin D. Bone 2015; 80:89-94. [PMID: 25745883 DOI: 10.1016/j.bone.2015.02.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 02/12/2015] [Accepted: 02/28/2015] [Indexed: 12/17/2022]
Abstract
Beyond the established roles of vitamin D in bone and mineral homeostasis, we are becoming increasingly aware of its diverse effects in skeletal muscle. Subjects with severe vitamin D deficiency or mutations of the vitamin D receptor develop generalized atrophy of muscle and bone, suggesting coordinated effects of vitamin D in musculoskeletal physiology. At a mechanistic level, vitamin D exerts wide-ranging effects in muscle and bone calcium handling, differentiation and development. Vitamin D also modulates muscle and bone-derived hormones, facilitating cross-talk between these tissues. In this review, we discuss emerging evidence that vitamin D regulates bone and muscle in a direct, integrated fashion, positioning the vitamin D pathway as a potential therapeutic target for musculoskeletal diseases. This article is part of a Special Issue entitled "Muscle Bone Interactions".
Collapse
Affiliation(s)
- Jenny E Gunton
- Faculty of Medicine, University of Sydney, Sydney, NSW, Australia; Garvan Institute of Medical Research, Sydney, NSW, Australia; Department of Endocrinology and Diabetes, Westmead Hospital, Sydney, NSW, Australia; Westmead Millennium Institute, Westmead Hospital, NSW, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia.
| | - Christian M Girgis
- Faculty of Medicine, University of Sydney, Sydney, NSW, Australia; Garvan Institute of Medical Research, Sydney, NSW, Australia; Department of Endocrinology and Diabetes, Westmead Hospital, Sydney, NSW, Australia; Westmead Millennium Institute, Westmead Hospital, NSW, Australia
| | - Paul A Baldock
- Garvan Institute of Medical Research, Sydney, NSW, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Paul Lips
- Department of Internal Medicine/Endocrinology, VU University Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
43
|
Dankbar B, Fennen M, Brunert D, Hayer S, Frank S, Wehmeyer C, Beckmann D, Paruzel P, Bertrand J, Redlich K, Koers-Wunrau C, Stratis A, Korb-Pap A, Pap T. Myostatin is a direct regulator of osteoclast differentiation and its inhibition reduces inflammatory joint destruction in mice. Nat Med 2015; 21:1085-90. [DOI: 10.1038/nm.3917] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/06/2015] [Indexed: 02/07/2023]
|
44
|
Bakker AD, Jaspers RT. IL-6 and IGF-1 Signaling Within and Between Muscle and Bone: How Important is the mTOR Pathway for Bone Metabolism? Curr Osteoporos Rep 2015; 13:131-9. [PMID: 25712618 PMCID: PMC4417129 DOI: 10.1007/s11914-015-0264-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Insulin-like growth factor 1 (IGF-1) and interleukin 6 (IL-6) play an important role in the adaptation of both muscle and bone to mechanical stimuli. Here, we provide an overview of the functions of IL-6 and IGF-1 in bone and muscle metabolism, and the intracellular signaling pathways that are well known to mediate these functions. In particular, we discuss the Akt/mammalian target of rapamycin (mTOR) pathway which in skeletal muscle is known for its key role in regulating the rate of mRNA translation (protein synthesis). Since the role of the mTOR pathway in bone is explored to a much lesser extent, we discuss what is known about this pathway in bone and the potential role of this pathway in bone remodeling. We will also discuss the possible ways of influencing IGF-1 or IL-6 signaling by osteocytes and the clinical implications of pharmacological or nutritional modulation of the Akt/mTOR pathway.
Collapse
Affiliation(s)
- Astrid D. Bakker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Richard T. Jaspers
- Laboratory for Myology, MOVE Research Institute Amsterdam, Faculty of Human Movement Sciences, VU University Amsterdam, Van der Boechorststraat 9, 1081 BT Amsterdam, The Netherlands
| |
Collapse
|
45
|
Davis K, Griffin K, Chu TM, Wenke J, Corona B, McKinley T, Kacena M. Muscle-bone interactions during fracture healing. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2015; 15:1-9. [PMID: 25730647 PMCID: PMC4433554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 12/08/2014] [Indexed: 11/06/2022]
Abstract
Although it is generally accepted that the rate and strength of fracture healing is intimately linked to the integrity of surrounding soft tissues, the contribution of muscle has largely been viewed as a vascular supply for oxygen and nutrient exchange. However, more is becoming known about the cellular and paracrine contributions of muscle to the fracture healing process. Research has shown that muscle is capable of supplying osteoprogenitor cells in cases where the periosteum is insufficient, and the muscular osteoprogenitors possess similar osteogenic potential to those derived from the periosteum. Muscle's secrotome includes proteins capable of inhibiting or enhancing osteogenesis and myogenesis following musculoskeletal injury and can be garnered for therapeutic use in patients with traumatic musculoskeletal injuries. In this review, we will highlight the current knowledge on muscle-bone interaction in the context of fracture healing as well as concisely present the current models to study such interactions.
Collapse
Affiliation(s)
- K.M. Davis
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - K.S. Griffin
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - T-M.G. Chu
- Department of Restorative Dentistry, Indiana University School of Dentistry, Indianapolis, IN
| | - J.C. Wenke
- Extremity Trauma & Regenerative Medicine Task Area, United States Army Institute of Surgical Research, San Antonio, TX
| | - B.T. Corona
- Extremity Trauma & Regenerative Medicine Task Area, United States Army Institute of Surgical Research, San Antonio, TX
| | - T.O. McKinley
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - M.A. Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
46
|
Girgis CM. Integrated therapies for osteoporosis and sarcopenia: from signaling pathways to clinical trials. Calcif Tissue Int 2015; 96:243-55. [PMID: 25633430 DOI: 10.1007/s00223-015-9956-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 01/15/2015] [Indexed: 12/15/2022]
Abstract
Sarcopenia and osteoporosis are two sides of the same coin. They represent different aspects of the same age-related process of musculoskeletal atrophy and together culminate in falls, fractures, deconditioning, and increased mortality in older individuals. However, the current therapeutic approach to the prevention of minimal trauma fracture is unilateral and focuses solely on bone. In theory, an integrated approach that recognizes the interaction between muscle and bone could break the vicious cycle of their combined involution and more effectively minimize falls/fractures. In this review, signaling pathways and cross-talk mechanisms that integrate bone/muscle, and the emergence of novel therapies that exploit these pathways to target osteoporosis/sarcopenia will be discussed. In broad terms, these agents act on nuclear receptors (e.g., VDR, AR) or transmembrane receptors (e.g., activins, GH/IGF-1) expressed in muscle and bone, and seek to alter biologic responses to musculoskeletal aging, loading, and injury. Challenges in the development of these dual bone-muscle therapies, early clinical trials examining their safety/efficacy, and novel targets that hold promise in the reversal of musculoskeletal aging will be discussed.
Collapse
Affiliation(s)
- Christian M Girgis
- Westmead Millennium Institute for Medical Research, 176 Hawkesbury Rd, Westmead, NSW, Australia,
| |
Collapse
|
47
|
DiGirolamo DJ, Singhal V, Chang X, Lee SJ, Germain-Lee EL. Administration of soluble activin receptor 2B increases bone and muscle mass in a mouse model of osteogenesis imperfecta. Bone Res 2015; 3:14042. [PMID: 26161291 PMCID: PMC4472144 DOI: 10.1038/boneres.2014.42] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 11/01/2014] [Accepted: 11/03/2014] [Indexed: 11/09/2022] Open
Abstract
Osteogenesis imperfecta (OI) comprises a group of heritable connective tissue disorders generally defined by recurrent fractures, low bone mass, short stature and skeletal fragility. Beyond the skeletal complications of OI, many patients also report intolerance to physical activity, fatigue and muscle weakness. Indeed, recent studies have demonstrated that skeletal muscle is also negatively affected by OI, both directly and indirectly. Given the well-established interdependence of bone and skeletal muscle in both physiology and pathophysiology and the observations of skeletal muscle pathology in patients with OI, we investigated the therapeutic potential of simultaneous anabolic targeting of both bone and skeletal muscle using a soluble activin receptor 2B (ACVR2B) in a mouse model of type III OI (oim). Treatment of 12-week-old oim mice with ACVR2B for 4 weeks resulted in significant increases in both bone and muscle that were similar to those observed in healthy, wild-type littermates. This proof of concept study provides encouraging evidence for a holistic approach to treating the deleterious consequences of OI in the musculoskeletal system.
Collapse
Affiliation(s)
- Douglas J DiGirolamo
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine , Baltimore, MD, USA
| | - Vandana Singhal
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine , Baltimore, MD, USA
| | - Xiaoli Chang
- Bone & Osteogenesis Imperfecta Department, Kennedy Krieger Institute , Baltimore, MD, USA ; Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine , Baltimore, MD, USA
| | - Se-Jin Lee
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine , Baltimore, MD, USA
| | - Emily L Germain-Lee
- Bone & Osteogenesis Imperfecta Department, Kennedy Krieger Institute , Baltimore, MD, USA ; Department of Pediatrics, Johns Hopkins University School of Medicine , Baltimore, MD, USA
| |
Collapse
|
48
|
Brady RD, Grills BL, Schuijers JA, Ward AR, Tonkin BA, Walsh NC, McDonald SJ. Thymosin β4 administration enhances fracture healing in mice. J Orthop Res 2014; 32:1277-82. [PMID: 25042765 DOI: 10.1002/jor.22686] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 06/10/2014] [Indexed: 02/04/2023]
Abstract
Thymosin β4 (Tβ4 ) is a regenerative peptide that we hypothesized would promote healing of fractured bone. Mice received a bilateral fibular osteotomy and were given i.p. injections of either Tβ4 (6 mg/kg) or saline. Calluses from saline- and Tβ4 -treated mice were analyzed for: (1) biomechanical properties and (2) composition using micro-computed tomography (µCT) and histomorphometry. Biomechanical analysis showed that Tβ4 -treated calluses had a 41% increase in peak force to failure (p < 0.01) and were approximately 25% stiffer (p < 0.05) than saline-treated controls. µCT analysis at 21 days post-fracture showed that the fractional volume of new mineralized tissue and new highly mineralized tissue were respectively 18% and 26% greater in calluses from Tβ4 -treated mice compared to controls (p < 0.01; p < 0.05, respectively). Histomorphometry complemented the µCT data; at 21 days post-fracture, Tβ4 -treated calluses were almost 23% smaller (p < 0.05), had nearly 47% less old cortical bone (p < 0.05) and had a 31% increase in new trabecular bone area/total callus area fraction compared with controls (p < 0.05). Our finding of enhanced biomechanical properties of fractures in mice treated with Tβ4 provides novel evidence of the therapeutic potential of this peptide for treating bone fractures.
Collapse
Affiliation(s)
- Rhys D Brady
- Department of Human Biosciences, La Trobe University, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
49
|
Abou-Khalil R, Colnot C. Cellular and molecular bases of skeletal regeneration: what can we learn from genetic mouse models? Bone 2014; 64:211-21. [PMID: 24709685 DOI: 10.1016/j.bone.2014.03.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 03/19/2014] [Accepted: 03/26/2014] [Indexed: 10/25/2022]
Abstract
Although bone repairs through a very efficient regenerative process in 90% of the patients, many factors can cause delayed or impaired healing. To date, there are no reliable biological parameters to predict or diagnose bone repair defects. Orthopedic surgeons mostly base their diagnoses on radiographic analyses. With the recent progress in our understanding of the bone repair process, new methods may be envisioned. Animal models have allowed us to define the key steps of bone regeneration and the biological and mechanical factors that may influence bone healing in positive or negative ways. Most importantly, small animal models such as mice have provided powerful tools to apprehend the genetic bases of normal and impaired bone healing. The current review presents a state of the art of the genetically modified mouse models that have advanced our understanding of the cellular and molecular components of bone regeneration and repair. The review illustrates the use of these models to define the role of inflammation, skeletal cell lineages, signaling pathways, the extracellular matrix, osteoclasts and angiogenesis. These genetic mouse models promise to change the field of orthopedic surgery to help establish genetic predispositions for delayed repair, develop models of non-union that mimic the human conditions and elaborate new therapeutic approaches to enhance bone regeneration.
Collapse
Affiliation(s)
- Rana Abou-Khalil
- INSERM UMR1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - Céline Colnot
- INSERM UMR1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France.
| |
Collapse
|
50
|
Abstract
Musculoskeletal diseases are highly prevalent with staggering annual health care costs across the globe. The combined wasting of muscle (sarcopenia) and bone (osteoporosis)-both in normal aging and pathologic states-can lead to vastly compounded risk for fracture in patients. Until now, our therapeutic approach to the prevention of such fractures has focused solely on bone, but our increasing understanding of the interconnected biology of muscle and bone has begun to shift our treatment paradigm for musculoskeletal disease. Targeting pathways that centrally regulate both bone and muscle (eg, GH/IGF-1, sex steroids, etc.) and newly emerging pathways that might facilitate communication between these 2 tissues (eg, activin/myostatin) might allow a greater therapeutic benefit and/or previously unanticipated means by which to treat these frail patients and prevent fracture. In this review, we will discuss a number of therapies currently under development that aim to treat musculoskeletal disease in precisely such a holistic fashion.
Collapse
Affiliation(s)
- Christian M Girgis
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney NSW, Australia,
| | | | | |
Collapse
|