1
|
Bormann N, Schmock A, Hanke A, Eras V, Ahmed N, Kissner MS, Wildemann B, Brune JC. Analysis of the Ability of Different Allografts to Act as Carrier Grafts for Local Drug Delivery. J Funct Biomater 2023; 14:305. [PMID: 37367268 DOI: 10.3390/jfb14060305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Bone defects and infections pose significant challenges for treatment, requiring a comprehensive approach for prevention and treatment. Thus, this study sought to evaluate the efficacy of various bone allografts in the absorption and release of antibiotics. A specially designed high-absorbency, high-surface-area carrier graft composed of human demineralized cortical fibers and granulated cancellous bone (fibrous graft) was compared to different human bone allograft types. The groups tested here were three fibrous grafts with rehydration rates of 2.7, 4, and 8 mL/g (F(2.7), F(4), and F(8)); demineralized bone matrix (DBM); cortical granules; mineralized cancellous bone; and demineralized cancellous bone. The absorption capacity of the bone grafts was assessed after rehydration, the duration of absorption varied from 5 to 30 min, and the elution kinetics of gentamicin were determined over 21 days. Furthermore, antimicrobial activity was assessed using a zone of inhibition (ZOI) test with S. aureus. The fibrous grafts exhibited the greatest tissue matrix absorption capacity, while the mineralized cancellous bone revealed the lowest matrix-bound absorption capacity. For F(2.7) and F(4), a greater elution of gentamicin was observed from 4 h and continuously over the first 3 days when compared to the other grafts. Release kinetics were only marginally affected by the varied incubation times. The enhanced absorption capacity of the fibrous grafts resulted in a prolonged antibiotic release and activity. Therefore, fibrous grafts can serve as suitable carrier grafts, as they are able to retain fluids such as antibiotics at their intended destinations, are easy to handle, and allow for a prolonged antibiotic release. Application of these fibrous grafts can enable surgeons to provide longer courses of antibiotic administration for septic orthopedic indications, thus minimizing infections.
Collapse
Affiliation(s)
- Nicole Bormann
- Julius Wolff Institut und BIH-Center für Regenerative Therapien und Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin und Berlin Institute of Health, 13353 Berlin, Germany
| | - Aysha Schmock
- Julius Wolff Institut und BIH-Center für Regenerative Therapien und Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin und Berlin Institute of Health, 13353 Berlin, Germany
| | - Anja Hanke
- German Institute for Cell and Tissue Replacement (DIZG, gemeinnützige GmbH), 12555 Berlin, Germany
| | - Volker Eras
- German Institute for Cell and Tissue Replacement (DIZG, gemeinnützige GmbH), 12555 Berlin, Germany
| | - Norus Ahmed
- German Institute for Cell and Tissue Replacement (DIZG, gemeinnützige GmbH), 12555 Berlin, Germany
| | - Maya S Kissner
- Julius Wolff Institut und BIH-Center für Regenerative Therapien und Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin und Berlin Institute of Health, 13353 Berlin, Germany
| | - Britt Wildemann
- Julius Wolff Institut und BIH-Center für Regenerative Therapien und Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin und Berlin Institute of Health, 13353 Berlin, Germany
- Experimental Trauma Surgery, Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University, 07747 Jena, Germany
| | - Jan C Brune
- German Institute for Cell and Tissue Replacement (DIZG, gemeinnützige GmbH), 12555 Berlin, Germany
| |
Collapse
|
2
|
Cai D, Chen S, Wu B, Chen J, Tao D, Li Z, Dong Q, Zou Y, Chen Y, Bi C, Zu D, Lu L, Fang B. Construction of multifunctional porcine acellular dermal matrix hydrogel blended with vancomycin for hemorrhage control, antibacterial action, and tissue repair in infected trauma wounds. Mater Today Bio 2021; 12:100127. [PMID: 34585135 PMCID: PMC8452890 DOI: 10.1016/j.mtbio.2021.100127] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/29/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022] Open
Abstract
Prevention of bacterial infection and reduction of hemorrhage, the primary challenges posed by trauma before hospitalization, are essential steps in prolonging the patient's life until they have been transported to a trauma center. Extracellular matrix (ECM) hydrogel is a promising biocompatible material for accelerating wound closure. However, due to the lack of antibacterial properties, this hydrogel is difficult to be applied to acute contaminated wounds. This study formulates an injectable dermal extracellular matrix hydrogel (porcine acellular dermal matrix (ADM)) as a scaffold for skin defect repair. The hydrogel combines vancomycin, an antimicrobial agent for inducing hemostasis, expediting antimicrobial activity, and promoting tissue repair. The hydrogel possesses a porous structure beneficial for the adsorption of vancomycin. The antimicrobial agent can be timely released from the hydrogel within an hour, which is less than the time taken by bacteria to infest an injury, with a cumulative release rate of approximately 80%, and thus enables a relatively fast bactericidal effect. The cytotoxicity investigation demonstrates the biocompatibility of the ADM hydrogel. Dynamic coagulation experiments reveal accelerated blood coagulation by the hydrogel. In vivo antibacterial and hemostatic experiments on a rat model indicate the healing of infected tissue and effective control of hemorrhaging by the hydrogel. Therefore, the vancomycin-loaded ADM hydrogel will be a viable biomaterial for controlling hemorrhage and preventing bacterial infections in trauma patients.
Collapse
Affiliation(s)
- D Cai
- Department of Spine Surgery, The Central Hospital Affiliated to Shaoxing University, Shaoxing, China
| | - S Chen
- Department of Spine Surgery, The Central Hospital Affiliated to Shaoxing University, Shaoxing, China
| | - B Wu
- Department of Spine Surgery, The Central Hospital Affiliated to Shaoxing University, Shaoxing, China
| | - J Chen
- Bacterial Laboratory, The Central Hospital Affiliated to Shaoxing University, Shaoxing, China
| | - D Tao
- Pathology Department, The Central Hospital Affiliated to Shaoxing University, Shaoxing, China
| | - Z Li
- Pathology Department, The Central Hospital Affiliated to Shaoxing University, Shaoxing, China
| | - Q Dong
- Department of Spine Surgery, The Central Hospital Affiliated to Shaoxing University, Shaoxing, China
| | - Y Zou
- Department of Spine Surgery, The Central Hospital Affiliated to Shaoxing University, Shaoxing, China
| | - Y Chen
- Department of Spine Surgery, The Central Hospital Affiliated to Shaoxing University, Shaoxing, China.,School of Medcine, Shaoxing University, Shaoxing, China
| | - C Bi
- Department of Spine Surgery, The Central Hospital Affiliated to Shaoxing University, Shaoxing, China.,School of Medcine, Shaoxing University, Shaoxing, China
| | - D Zu
- Central Laboratory, The Central Hospital Affiliated to Shaoxing University, Shaoxing, China
| | - L Lu
- Department of Spine Surgery, The Central Hospital Affiliated to Shaoxing University, Shaoxing, China
| | - B Fang
- Department of Spine Surgery, The Central Hospital Affiliated to Shaoxing University, Shaoxing, China
| |
Collapse
|
3
|
Abstract
Fracture-related infection (FRI) remains a challenging complication that imposes a heavy burden on orthopaedic trauma patients. The surgical management eradicates the local infectious focus and if necessary facilitates bone healing. Treatment success is associated with debridement of all dead and poorly vascularized tissue. However, debridement is often associated with the formation of a dead space, which provides an ideal environment for bacteria and is a potential site for recurrent infection. Dead space management is therefore of critical importance. For this reason, the use of locally delivered antimicrobials has gained attention not only for local antimicrobial activity but also for dead space management. Local antimicrobial therapy has been widely studied in periprosthetic joint infection, without addressing the specific problems of FRI. Furthermore, the literature presents a wide array of methods and guidelines with respect to the use of local antimicrobials. The present review describes the scientific evidence related to dead space management with a focus on the currently available local antimicrobial strategies in the management of FRI. LEVEL OF EVIDENCE:: Therapeutic Level V. See Instructions for Authors for a complete description of levels of evidence.
Collapse
|
4
|
Peeters A, Putzeys G, Thorrez L. Current Insights in the Application of Bone Grafts for Local Antibiotic Delivery in Bone Reconstruction Surgery. J Bone Jt Infect 2019; 4:245-253. [PMID: 31700774 PMCID: PMC6831806 DOI: 10.7150/jbji.38373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/27/2019] [Indexed: 12/15/2022] Open
Abstract
Introduction: Bone implant related infection is still one of the biggest challenges in bone and joint surgery. Antibiotic impregnated bone grafts seem to be promising in both treatment and prevention of these infections. However, great variance in methodology predominates this field of research. This paper gives an overview of the published literature. Methods: The PRISMA-flowchart was used as protocol for article selection. Medline was searched and articles were selected in accordance with predetermined exclusion criteria. Results: Forty-eight articles were included in the synthesis. Topics including bone graft type, manipulations of the graft, elution profile, bacterial inhibition, osteotoxicity, incorporation, special impregnation methods, clinical use and storage were investigated. Therapeutically, high initial levels seem appropriate for biofilm eradication. A single stage procedure in the treatment of bone implant related infection seems feasible. Prophylactically, the literature indicates a reduction of postoperative infections when using antibiotic impregnated bone grafts. Conclusion: Bone grafts are a suitable carrier for local antibiotic application both therapeutically and prophylactically.
Collapse
Affiliation(s)
| | - Guy Putzeys
- Orthopedic Centre, AZ Groeninge, Kortrijk, Belgium
| | - Lieven Thorrez
- Department of Development and Regeneration, KU Leuven, Kortrijk, Belgium
| |
Collapse
|
5
|
Delaney LJ, MacDonald D, Leung J, Fitzgerald K, Sevit AM, Eisenbrey JR, Patel N, Forsberg F, Kepler CK, Fang T, Kurtz SM, Hickok NJ. Ultrasound-triggered antibiotic release from PEEK clips to prevent spinal fusion infection: Initial evaluations. Acta Biomater 2019; 93:12-24. [PMID: 30826477 PMCID: PMC6764442 DOI: 10.1016/j.actbio.2019.02.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 02/21/2019] [Accepted: 02/26/2019] [Indexed: 01/01/2023]
Abstract
Despite aggressive peri-operative antibiotic treatments, up to 10% of patients undergoing instrumented spinal surgery develop an infection. Like most implant-associated infections, spinal infections persist through colonization and biofilm formation on spinal instrumentation, which can include metal screws and rods for fixation and an intervertebral cage commonly comprised of polyether ether ketone (PEEK). We have designed a PEEK antibiotic reservoir that would clip to the metal fixation rod and that would achieve slow antibiotic release over several days, followed by a bolus release of antibiotics triggered by ultrasound (US) rupture of a reservoir membrane. We have found using human physiological fluid (synovial fluid), that higher levels (100–500 μg) of vancomycin are required to achieve a marked reduction in adherent bacteria vs. that seen in the common bacterial medium, trypticase soy broth. To achieve these levels of release, we applied a polylactic acid coating to a porous PEEK puck, which exhibited both slow and US-triggered release. This design was further refined to a one-hole or two-hole cylindrical PEEK reservoir that can clip onto a spinal rod for clinical use. Short-term release of high levels of antibiotic (340 ± 168 μg), followed by US-triggered release was measured (7420 ± 2992 μg at 48 h). These levels are sufficient to prevent adhesion of Staphylococcus aureus to implant materials. This study demonstrates the feasibility of an US-mediated antibiotic delivery device, which could be a potent weapon against spinal surgical site infection.
Collapse
Affiliation(s)
- Lauren J Delaney
- Department of Radiology, Thomas Jefferson University, 132 S. 10th Street, Philadelphia, PA 19107, USA
| | - Daniel MacDonald
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | - Jay Leung
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | - Keith Fitzgerald
- Department of Orthopaedic Surgery, Thomas Jefferson University, 1015 Walnut Street, Philadelphia, PA 19107, USA
| | - Alex M Sevit
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | - John R Eisenbrey
- Department of Radiology, Thomas Jefferson University, 132 S. 10th Street, Philadelphia, PA 19107, USA
| | - Neil Patel
- Department of Orthopaedic Surgery, Thomas Jefferson University, 1015 Walnut Street, Philadelphia, PA 19107, USA
| | - Flemming Forsberg
- Department of Radiology, Thomas Jefferson University, 132 S. 10th Street, Philadelphia, PA 19107, USA
| | - Christopher K Kepler
- Department of Orthopaedic Surgery, Thomas Jefferson University, 1015 Walnut Street, Philadelphia, PA 19107, USA; The Rothman Institute, Thomas Jefferson University, 925 Chestnut Street, Philadelphia, PA 19107, USA
| | - Taolin Fang
- Department of Orthopaedic Surgery, Thomas Jefferson University, 1015 Walnut Street, Philadelphia, PA 19107, USA; The Rothman Institute, Thomas Jefferson University, 925 Chestnut Street, Philadelphia, PA 19107, USA
| | - Steven M Kurtz
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA; Exponent, Inc., 3440 Market Street Suite 600, Philadelphia, PA 19104, USA
| | - Noreen J Hickok
- Department of Orthopaedic Surgery, Thomas Jefferson University, 1015 Walnut Street, Philadelphia, PA 19107, USA.
| |
Collapse
|
6
|
General Assembly, Prevention, Local Antimicrobials: Proceedings of International Consensus on Orthopedic Infections. J Arthroplasty 2019; 34:S75-S84. [PMID: 30352772 DOI: 10.1016/j.arth.2018.09.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
7
|
Dang M, Saunders L, Niu X, Fan Y, Ma PX. Biomimetic delivery of signals for bone tissue engineering. Bone Res 2018; 6:25. [PMID: 30181921 PMCID: PMC6115422 DOI: 10.1038/s41413-018-0025-8] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/22/2018] [Accepted: 06/15/2018] [Indexed: 02/06/2023] Open
Abstract
Bone tissue engineering is an exciting approach to directly repair bone defects or engineer bone tissue for transplantation. Biomaterials play a pivotal role in providing a template and extracellular environment to support regenerative cells and promote tissue regeneration. A variety of signaling cues have been identified to regulate cellular activity, tissue development, and the healing process. Numerous studies and trials have shown the promise of tissue engineering, but successful translations of bone tissue engineering research into clinical applications have been limited, due in part to a lack of optimal delivery systems for these signals. Biomedical engineers are therefore highly motivated to develop biomimetic drug delivery systems, which benefit from mimicking signaling molecule release or presentation by the native extracellular matrix during development or the natural healing process. Engineered biomimetic drug delivery systems aim to provide control over the location, timing, and release kinetics of the signal molecules according to the drug's physiochemical properties and specific biological mechanisms. This article reviews biomimetic strategies in signaling delivery for bone tissue engineering, with a focus on delivery systems rather than specific molecules. Both fundamental considerations and specific design strategies are discussed with examples of recent research progress, demonstrating the significance and potential of biomimetic delivery systems for bone tissue engineering.
Collapse
Affiliation(s)
- Ming Dang
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI USA
| | - Laura Saunders
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI USA
| | - Xufeng Niu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Peter X. Ma
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI USA
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI USA
| |
Collapse
|
8
|
Wei S, Jian C, Xu F, Bao T, Lan S, Wu G, Qi B, Bai Z, Yu A. Vancomycin-impregnated electrospun polycaprolactone (PCL) membrane for the treatment of infected bone defects: An animal study. J Biomater Appl 2018; 32:1187-1196. [PMID: 29380662 DOI: 10.1177/0885328218754462] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
There is no consensus for the management of critical infected bone defects. The purpose of this study was to produce a vancomycin-impregnated electrospun polycaprolactone (PCL) membrane for the treatment of infected critical bone defects, and test it in a rabbit model. Electrospinning produced a resorbable PCL fiber membrane containing vancomycin approximately 1 mm in thickness, with a pore diameter of <10 μm. Femur defects were made in the limbs of 18 rabbits and infected with Staphylococcus aureus. The rabbits were divided into three groups according to treatment: (1) Experimental group: rabbit freeze-dried allogeneic bone graft and the vancomycin-PCL membrane. (2) Control group 1: bone graft. (3) Control group 2: vancomycin-PCL membrane only. Culture showed no difference in osteoclast activity between the three groups. Transwell testing showed that almost no fibroblasts passed through the membrane during the first 24 h, but some fibroblasts were able to pass it after 72 h. At 12 weeks after surgery, there was significantly less inflammatory cell infiltration in the experimental compared to the control groups. New bone formation and fracture bone callus were greater in the experimental group than control groups. We thus conclude the resorbable electrospun vancomycin-impregnated PCL membrane was effective at controlling bone infection, and in the regeneration of bone in a critical bone defect animal model.
Collapse
Affiliation(s)
- Shijun Wei
- 1 Department of Microorthopaedics, Zhongnan Hospital of Wuhan University, Wuhan, China.,2 Department of Orthopaedics, Wuhan General Hospital of Guangzhou Command, Wuhan, China
| | - Chao Jian
- 1 Department of Microorthopaedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Feng Xu
- 2 Department of Orthopaedics, Wuhan General Hospital of Guangzhou Command, Wuhan, China
| | - Tongzhu Bao
- 3 Department of Orthopedics, Yichang Central People's Hospital and The First Affiliated Hospital of China Three Gorges University, Yichang, China
| | - Shenghui Lan
- 2 Department of Orthopaedics, Wuhan General Hospital of Guangzhou Command, Wuhan, China
| | - Gang Wu
- 2 Department of Orthopaedics, Wuhan General Hospital of Guangzhou Command, Wuhan, China
| | - BaiWen Qi
- 1 Department of Microorthopaedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zikui Bai
- 4 State Key Laboratory Cultivation Base for New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan, China
| | - Aixi Yu
- 1 Department of Microorthopaedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Modified chitosan scaffolds: Proliferative, cytotoxic, apoptotic, and necrotic effects on Saos-2 cells and antimicrobial effect on Escherichia coli. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911515627471] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Scaffolds used in tissue engineering applications should have high biocompatibility with minimum allergic, toxic, apoptotic, or necrotic effects on the growing cells and newly forming tissue and, if possible, have antimicrobial property to prevent infection at the host site. In this study, novel micro-fibrous chitosan scaffolds, having mineralized bioactive surface to enhance cell adhesion and a model antibiotic (gentamicin) to prevent bacterial attack, were prepared. The effects of the scaffolds on proliferation, viability, apoptosis, and necrosis of Saos-2 cells are reported for the first time. Wet spinning technique was used in the scaffold preparation and biomineralization was achieved by incubating them in five-time concentrated simulated body fluid for 2, 7, or 14 days (coded as CH-BM/2, CH-BM/7, and CH-BM/14, respectively). Gentamicin, an effectively used antibiotic in bone treatments, was loaded by vacuum-pressure cycle. Energy-dispersive X-ray results demonstrated that Ca/P ratio of the mineral phase varies depending on the incubation period. When the scaffolds were cultured with Saos-2 cells, cell adhesion and extracellular matrix formation occurred on all types of scaffolds. Alamar Blue cytotoxicity tests showed correlation among mineral concentration and cytotoxicity where CH-BM/2 had significantly more favorable properties. For all types of scaffolds, apoptosis and necrosis were less than 10%, meaning the samples are biocompatible. Gentamicin-loaded scaffolds showed high antimicrobial efficacy against Escherichia coli. The presence of mineral phase enhanced the adhesive capacity of cells and entrapment efficiency of antibiotic. These results suggest that the bioactive and antimicrobial scaffolds prepared in this study can act as promising matrices in bone tissue engineering applications.
Collapse
|
10
|
Marculescu CE, Mabry T, Berbari EF. Prevention of Surgical Site Infections in Joint Replacement Surgery. Surg Infect (Larchmt) 2016; 17:152-7. [PMID: 26855288 DOI: 10.1089/sur.2015.258] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Prosthetic joint infections (PJI), although rare, represent a serious complication of total joint arthroplasty as they pose not only a direct financial burden to the patient but also an indirect burden related to psychosocial impact that PJI incur on the patient. Treatment of PJI is complex and requires a combined surgical and medical approach. Patients are often subjected to multiple surgical procedures and prolonged courses of antimicrobial therapy. Therefore, all efforts should be directed toward maximizing the prophylactic measures in the peri-operative and post-operative phases in order to prevent the occurrence of surgical site infections. This article explores primarily the prophylactic measures that target the host and the operative theater environment. Implementation of such preventive measures requires a multi-disciplinary approach and is crucial for a successful outcome of the total joint arthroplasty.
Collapse
Affiliation(s)
- Camelia E Marculescu
- 1 Department of Infectious Diseases, Medical University of South Carolina , Charleston, South Carolina
| | - Tad Mabry
- 2 Department of Orthopedic Surgery, Mayo Clinic , Rochester, Minnesota
| | - Elie F Berbari
- 3 Department of Infectious Diseases, Mayo Clinic , Rochester, Minnesota
| |
Collapse
|
11
|
Davidson H, Poon M, Saunders R, Shapiro IM, Hickok NJ, Adams CS. Tetracycline tethered to titanium inhibits colonization by Gram-negative bacteria. J Biomed Mater Res B Appl Biomater 2015; 103:1381-9. [PMID: 25389082 PMCID: PMC5952619 DOI: 10.1002/jbm.b.33310] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/14/2014] [Accepted: 10/18/2014] [Indexed: 11/07/2022]
Abstract
As peri-prosthetic infection is one of the most devastating complications associated with implant placement, we have reasoned that such infection can be largely subverted by development of antibacterial implants. Our previous work demonstrated that covalent coupling of vancomycin to titanium alloy prevented colonization by the Gram-positive pathogens, Staphylococcus aureus and Staphylococcus epidermidis. Some orthopedic devices, including permanent prosthesis anchors, and most dental implants are transcutaneous or transmucosal and can be prone to colonization by Gram-negative pathogens. We report here the successful covalent coupling of the broad-spectrum antibiotic, tetracycline (TET), to titanium surfaces (Ti-TET) to retard Gram-negative colonization. Synthetic progress was followed by changes in water contact angle, while the presence of TET was confirmed by immunofluorescence. Ti-TET actively prevented colonization in the presence of bathing Escherichia coli, both by fluorescence microscopy and direct counting. Finally, the Ti-TET surface supported osteoblastic cell adhesion and proliferation over a 72-h period. Thus, this new surface offers a powerful means to protect transcutaneous implants from adhesion of Gram-negative pathogens, decreasing the need for replacement of this hardware.
Collapse
Affiliation(s)
- Helen Davidson
- Department of Orthopaedic Surgery, Thomas Jefferson University,
Philadelphia, PA
| | - Martin Poon
- Department of Orthodontics, School of Dental Medicine, University of
Pennsylvania, Philadelphia, PA
| | - Ray Saunders
- Department of Biological Science, University of the Sciences,
Philadelphia, PA. Department of Biochemistry and Molecular Biology, Thomas Jefferson
University, Philadelphia, PA
| | - Irving M. Shapiro
- Department of Orthopaedic Surgery, Thomas Jefferson University,
Philadelphia, PA
| | - Noreen J. Hickok
- Department of Orthopaedic Surgery, Thomas Jefferson University,
Philadelphia, PA
- Department of Biological Science, University of the Sciences,
Philadelphia, PA. Department of Biochemistry and Molecular Biology, Thomas Jefferson
University, Philadelphia, PA
| | - Christopher S. Adams
- Department of Bio-Medical Sciences, Philadelphia College of
Osteopathic Medicine, Philadelphia, PA
| |
Collapse
|
12
|
Scheverin N, Steverlynck A, Castelli R, Sobrero D, Kopp NV, Dinelli D, Sarotto A, Falavigna A. PROPHYLAXIS OF SURGICAL SITE INFECTION WITH VANCOMYCIN IN 513 PATIENTS THAT UNDERWENT TO LUMBAR FUSION. COLUNA/COLUMNA 2015. [DOI: 10.1590/s1808-185120151403149776] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Objective:To assess the prophylactic effects of local vancomycin on an infection of the surgical site in patients undergoing lumbar instrumented fusion.Methods:Retrospective study from January 2011 to June 2014 in patients with symptomatic and refractory lumbar spine stenosis and listhesis who underwent instrumented pedicle screw spinal fusion. Two groups of patient were analyzed, one using vancomycin on the surgical site, vancomycin group (VG) and the control group (CG) without topical vancomycin. The routine prophylactic procedures were performed in both groups: aseptic scrub technique, skin preparation, preoperative intravenous antibiotic therapy. The VG received a dose of 1g of vancomycin mixed with the bone graft every three spinal levels fused and the group consisted of 232 patients.Results:513 patients were analyzed, 232 in the VG and 281 in the CG. There was no statistical difference between the groups when the sex, mean surgery length, and mean bleeding volume were considered. The rate of infection for VG was reduced from 4.98% to 1.29% when compared with CG.Conclusion:The use of vancomycin added to the bone graft in posterior spinal fusion is associated with significantly lower rates of infection.
Collapse
|
13
|
Brooks AE, Brooks BD, Davidoff SN, Hogrebe PC, Fisher MA, Grainger DW. Polymer-controlled release of tobramycin from bone graft void filler. Drug Deliv Transl Res 2015; 3:518-30. [PMID: 25786372 DOI: 10.1007/s13346-013-0155-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Despite clinical, material, and pharmaceutical advances, infection remains a major obstacle in total joint revision surgery. Successful solutions must extend beyond bulk biomaterial and device modifications, integrating locally delivered pharmaceuticals and physiological cues at the implant site, or within large bone defects with prominent avascular spaces. One approach involves coating clinically familiar allograft bone with an antibiotic-releasing rate-controlling polymer membrane for use as a matrix for local drug release in bone. The kinetics of drug release from this system can be tailored via alterations in the substrate or the polymeric coating. Drug-loaded polycaprolactone coating releases bioactive tobramycin from both cadaveric-sourced cancellous allograft fragments and synthetic hybrid coralline ceramic bone graft fragments with similar kinetics over a clinically relevant 6-week timeframe. However, micron-sized allograft particulate provides extended bioactive tobramycin release. Addition of porogen polyethylene glycol to the polymer coating formulation changes tobramycin release kinetics without significant impact on released antibiotic bioactivity. Incorporation of oil-microencapsulated tobramycin into the polymer coating did not significantly modify tobramycin release kinetics. In addition to releasing inhibitory concentrations of tobramycin, antibiotic-loaded allograft bone provides recognized beneficial osteoconductive potential, attractive for decreasing orthopedic surgical infections with improved filling of dead space and new bone formation.
Collapse
Affiliation(s)
- Amanda E Brooks
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112-5820, USA,
| | | | | | | | | | | |
Collapse
|
14
|
Brooks BD, Sinclair KD, Grainger DW, Brooks AE. A resorbable antibiotic-eluting polymer composite bone void filler for perioperative infection prevention in a rabbit radial defect model. PLoS One 2015; 10:e0118696. [PMID: 25815727 PMCID: PMC4376868 DOI: 10.1371/journal.pone.0118696] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 01/23/2015] [Indexed: 02/04/2023] Open
Abstract
Nearly 1.3 million total joint replacement procedures are performed in the United States annually, with numbers projected to rise exponentially in the coming decades. Although finite infection rates for these procedures remain consistently low, device-related infections represent a significant cause of implant failure, requiring secondary or revision procedures. Revision procedures manifest several-fold higher infection recurrence rates. Importantly, many revision surgeries, infected or not, require bone void fillers to support the host bone and provide a sufficient tissue bed for new hardware placement. Antibiotic-eluting bone void fillers (ABVF), providing both osteoconductive and antimicrobial properties, represent one approach for reducing rates of orthopedic device-related infections. Using a solvent-free, molten-cast process, a polymer-controlled antibiotic-eluting calcium carbonate hydroxyapatite (HAP) ceramic composite BVF (ABVF) was fabricated, characterized, and evaluated in vivo using a bacterial challenge in a rabbit radial defect window model. ABVF loaded with tobramycin eliminated the infectious burden in rabbits challenged with a clinically relevant strain of Staphylococcus aureus (inoculum as high as 10⁷ CFU). Histological, microbiological, and radiographic methods were used to detail the effects of ABVF on microbial challenge to host bone after 8 weeks in vivo. In contrast to the HAP/BVF controls, which provided no antibiotic protection and required euthanasia 3 weeks post-operatively, tobramycin-releasing ABVF animals showed no signs of infection (clinical, microbiological, or radiographic) when euthanized at the 8-week study endpoint. ABVF sites did exhibit fibrous encapsulation around the implant at 8 weeks. Local antibiotic release from ABVF to orthopedic sites requiring bone void fillers eliminated the periprosthetic bacterial challenge in this 8-week in vivo study, confirming previous in vitro results.
Collapse
Affiliation(s)
- Benjamin D Brooks
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, 84112-5820, United States of America
| | - Kristofer D Sinclair
- Elute Inc., 417 Wakara Way, Suite 3510, Salt Lake City, Utah, 84108, United States of America
| | - David W Grainger
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, 84112-5820, United States of America; Department of Bioengineering, University of Utah, Salt Lake City, Utah, 84112-5820, United States of America
| | - Amanda E Brooks
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, 84112-5820, United States of America
| |
Collapse
|
15
|
Antibiotic mixing through impacted bone grafts does not seem indicated in two-stage cemented hip revisions for septic loosening. Hip Int 2014; 24:596-603. [PMID: 25096448 DOI: 10.5301/hipint.5000159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/06/2014] [Indexed: 02/04/2023]
Abstract
Impaction bone grafts (IBG) in two-stage revision for prosthetic hip infection (PHI) might be more susceptible for infection, therefore antibiotic mixing through these grafts has been suggested. However, outcomes have not been compared with IBG without antibiotics and no long-term results are available. Therefore, we evaluated long-term infection-free outcome after the use of IBG without antibiotic supplement in two-stage revision for PHI. Patients were divided into positive (group 1, n = 8) and negative (group 2, n = 28) cultures at re-implantation and followed up to 18 years after re-implantation. Five of 36 patients died from non-orthopaedic causes (median 37, range 24-149 months). Five patients had a re-operation not related to infection (median 39, range 7-140 months). These were censored in the Kaplan-Meier estimator at the last outpatient evaluation. We found an overall re-infection rate of 2.8% within two years, which matches comparative studies in which antibiotic impregnated bone grafts had been used. In group 1, there was one re-infection after 44 months. In group 2, all three infections occurred within 56 months with an estimated infection-free percentage at 10 years of 87% (95% CI 66-96). Follow-up should be extended beyond two years and randomised clinical trials are needed for further comparison with IBG impregnated with antibiotics.
Collapse
|
16
|
Mejía Oneto JM, Gupta M, Leach JK, Lee M, Sutcliffe JL. Implantable biomaterial based on click chemistry for targeting small molecules. Acta Biomater 2014; 10:5099-5105. [PMID: 25162537 DOI: 10.1016/j.actbio.2014.08.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/12/2014] [Accepted: 08/18/2014] [Indexed: 12/31/2022]
Abstract
Specific and targeted delivery of medical therapies continues to be a challenge for the optimal treatment of multiple medical conditions. Technological advances permit physicians to target most sites of the body. However, after the intervention, physicians rely on systemic medications that need frequent dosing and may have noxious side effects. A novel system combining the temporal flexibility of systemic drug delivery and the spatial control of injectable biomaterials would improve the spatiotemporal control of medical therapies. Here we present an implantable biomaterial that harnesses in vivo click chemistry to enhance the delivery of suitable small molecules by an order of magnitude. The results demonstrate a simple and modular method to modify a biomaterial with small molecules in vitro and present an example of a polysaccharide modified hours after in vivo implantation. This approach provides the ability to precisely control the moment when biochemical and/or physical signals may appear in an implanted biomaterial. This is the first step towards the construction of a biomaterial that enhances the spatial location of systemic small molecules via in vivo chemical delivery.
Collapse
|
17
|
Increased release time of antibiotics from bone allografts through a novel biodegradable coating. BIOMED RESEARCH INTERNATIONAL 2014; 2014:459867. [PMID: 25045678 PMCID: PMC4090498 DOI: 10.1155/2014/459867] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/14/2014] [Accepted: 05/19/2014] [Indexed: 11/17/2022]
Abstract
The use of bone allografts is contraindicated in septic revision surgery due to the high risk of graft reinfection. Antibiotic release from the graft may solve the problem and these combinations can theoretically be used for prevention or even therapy of infection. The present study investigated whether amoxicillin, ciprofloxacin, and vancomycin alone or in combination with chitosan or alginate are suitable for short-term or long-term bone coating. Human bone allografts were prepared from femoral head and lyophilized. Antibiotic coating was achieved by incubating the grafts in antibiotic solution and freeze-drying again. Two biopolymers chitosan and alginate were used for creating sustained-release implantable coatings and the drug release profile was characterized in vitro by spectrophotometry. Using lyophilization with or without chitosan only resulted in short-term release that lasted up to 48 hours. Alginate coating enabled a sustained release that lasted for 8 days with amoxicillin, 28 days with ciprofloxacin coating, and 50 days with vancomycin coating. Using only implantable biodegradable allograft and polymers, a sustained release of antibiotics was achieved with ciprofloxacin and vancomycin for several weeks. Since the calculated daily release of the antibiotic was lower than the recommended IV dose, the calcium alginate coated bone graft can support endoprosthesis revision surgery.
Collapse
|
18
|
Bormann N, Schwabe P, Smith MD, Wildemann B. Analysis of parameters influencing the release of antibiotics mixed with bone grafting material using a reliable mixing procedure. Bone 2014; 59:162-72. [PMID: 24239495 DOI: 10.1016/j.bone.2013.11.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 11/01/2013] [Accepted: 11/05/2013] [Indexed: 10/26/2022]
Abstract
Local infections arising from fracture fixation, defect reconstruction or joint replacement can cause extreme pain and impaired healing, lead to revision operations, prolong hospital stay and increase costs. Treatment options including prophylaxis are afforded by the use of grafts and biomaterials loaded with antibiotics. These can produce local therapeutic concentrations with a reduced systemic concentration and reduced systemic side-effects. Patient-specific loading of osteogenic graft materials with antibiotic could be an important option for orthopaedic surgeons. A local therapeutic concentration must be available for the desired duration and cytotoxic effects must be kept within an acceptable range. The present study investigates a simple and reliable mixing procedure that could be used for the perioperative combination of antibiotic powders and solutions with bone grafting materials. The potential influence of concentration and sampling regime on the release kinetics of gentamicin, tobramycin and vancomycin was studied over a period of 56days and potency and cytotoxicity were evaluated. In all treatment groups, gentamicin and tobramycin were completely released within 3days whilst vancomycin was released over a period of 14days. The results clearly show that the main parameter influencing release is the molecular weight of the drug. Growth of Staphylococcus aureus was inhibited in all 3 treatment groups for at least 3days. Cell viability and alkaline phosphatase activity of primary osteoblast-like cells were not significantly affected by the antibiotic concentrations obtained from the elution experiments. Bone grafting is an established component of surgery for bone defect filling and for biological stimulation of healing. Patient-specific enhancement of such procedures by incorporation of antibiotics for infection prevention or by addition of cytokines for promotion of impaired healing or for treatment of critical size defects will be a relevant issue in the future.
Collapse
Affiliation(s)
- N Bormann
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Germany
| | - P Schwabe
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Germany
| | - M D Smith
- German Institute for Cell and Tissue Replacement, Berlin, Germany
| | - B Wildemann
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Germany; Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Germany.
| |
Collapse
|
19
|
Killion JA, Geever LM, Devine DM, Higginbotham CL. Fabrication and in vitro biological evaluation of photopolymerisable hydroxyapatite hydrogel composites for bone regeneration. J Biomater Appl 2013; 28:1274-83. [DOI: 10.1177/0885328213506951] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study was to improve the bioactive and compressive properties of photopolymerisable polyethylene glycol hydrogels with the incorporation of hydroxyapatite at different loadings. The synthesis of pure hydroxyapatite was verified through Fourier transform infrared spectroscopy (FTIR) analysis by the complete reaction of all constituents. The formation of a bioactive layer of the hydrogel based composites was confirmed through the formation of carbonate hydroxyapatite after soaking the samples in simulated body fluid. The incorporation of hydroxyapatite into the system resulted in an increase in Young’s modulus from 4.36 to 12.73 MPa and an increase in the stress at limit value from 1.20 to 4.42 MPa. This was due to the hydroxyapatite absorbing the compressive load, the polymer matrix distributing the load, a reduction in swelling and the presence of physical crosslinking between both components. Drug dissolution testing showed that the release rate of a drug from the hydrogels was dependent on the molecular weight of the polymer and the type of drug used.
Collapse
Affiliation(s)
- John A Killion
- Materials Research Institute, Athlone Institute of Technology, Athlone, Co. Westmeath, Ireland
| | - Luke M Geever
- Materials Research Institute, Athlone Institute of Technology, Athlone, Co. Westmeath, Ireland
| | - Declan M Devine
- Materials Research Institute, Athlone Institute of Technology, Athlone, Co. Westmeath, Ireland
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Clement L Higginbotham
- Materials Research Institute, Athlone Institute of Technology, Athlone, Co. Westmeath, Ireland
| |
Collapse
|
20
|
Vorrapakdee R, Kanokpanont S, Ratanavaraporn J, Waikakul S, Charoenlap C, Damrongsakkul S. Modification of human cancellous bone using Thai silk fibroin and gelatin for enhanced osteoconductive potential. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:735-744. [PMID: 23224853 DOI: 10.1007/s10856-012-4830-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 11/30/2012] [Indexed: 06/01/2023]
Abstract
The modification of human cancellous bone (hBONE) with silk fibroin/gelatin (SF/G) using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC)/N-hydroxysuccini-mide (NHS) crosslinking was established. The SF/G solutions at a weight ratio of 50/50 and the solution concentrations of 1, 2, and 4 wt % were studied. SF/G sub-matrix was formed on the surface and inside pore structure of hBONE. All hBONE scaffolds modified with SF/G showed smaller pore sizes, less porosity, and slightly lower compressive modulus than unmodified hBONE. SF/G sub-matrix was gradually biodegraded in collagenase solution along 4 days. The hBONE scaffolds modified with SF/G, particularly at 2 and 4 wt % solution concentrations, promoted attachment, proliferation, and osteogenic differentiation of bone marrow-derived mesenchymal stem cells (MSC), comparing to the original hBONE. The highest cell number, ALP activity and calcium production were observed for MSC cultured on the hBONE scaffolds modified with 4 wt % SF/G. The mineralization was also remarkably induced in the cases of modified hBONE scaffolds as observed from the deposited calcium phosphate by EDS. The modification of hBONE with SF/G was, therefore, the promising method to enhance the osteoconductive potential of human bone graft for bone tissue engineering.
Collapse
Affiliation(s)
- Rungnapa Vorrapakdee
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Phatumwan, Bangkok, Thailand
| | | | | | | | | | | |
Collapse
|
21
|
Chang Z, Hou T, Wu X, Luo F, Xing J, Li Z, Chen Q, Yu B, Xu J, Xie Z. An anti-infection tissue-engineered construct delivering vancomycin: its evaluation in a goat model of femur defect. Int J Med Sci 2013; 10:1761-70. [PMID: 24151446 PMCID: PMC3804800 DOI: 10.7150/ijms.6294] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 10/06/2013] [Indexed: 12/11/2022] Open
Abstract
A tissue-engineered construct (TEC) has previously been used for treating bone defects due to its strong osteogenic capability. However, transplantation of a TEC involves an open surgery that can cause infection. To overcome the potential risk of infection after TEC transplantation, we designed a system for the controlled release of antibiotics using fibrin gel-coated vancomycin alginate beads (FG-Vanco-AB) that can supply sustained antibiotics at the graft site. A TEC with FG-Vanco-AB was transplanted into critically sized bone defects of the right femur in a goat. As a control, the TEC without FG-Vanco-AB was transplanted into the left femur defect of the same goat. The breakpoint sensitivity of vancomycin for S. aureus (5 mg/L) was used as a known standard. Study results showed that the duration of time with vancomycin concentrations greater than 5 mg/L in the right graft site, blood, and left graft site were 28 days, 7 days, and 2 days, respectively. The bioactivity regarding vancomycin release was analysed by antibiotic disc diffusion. The vancomycin concentration was decreased from the centre of the graft to both ends of the femur. Radionuclide bone imaging showed no significant difference between the right and left TECs at either 28 or 56 days post-operation. Computed tomography and histological observation showed both sides' bone defects were healed by TEC at 112 days post-operation, and there was no significant difference in computed tomography value. These results suggest that FG-Vanco-AB in transplanted bone provided the ability to kill bacteria in local bone tissue while not interfering with the process of bone reconstruction and wound healing.
Collapse
Affiliation(s)
- Zhengqi Chang
- 1. National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, the Third Military Medical University, Chongqing, China. ; 2. Center of Regenetive and Reconstructive Engineering Technology in Chongqing City, Chongqing, China. ; 3. Laboratory of Tissue Engineering in Chongqing City, Chongqing, China. ; 4. Department of Orthopedics, General Hospital of Jinan Military Commanding Region, Jinan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Culpepper BK, Bonvallet PP, Reddy MS, Ponnazhagan S, Bellis SL. Polyglutamate directed coupling of bioactive peptides for the delivery of osteoinductive signals on allograft bone. Biomaterials 2012. [PMID: 23182349 DOI: 10.1016/j.biomaterials.2012.10.046] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Allograft bone is commonly used as an alternative to autograft, however allograft lacks many osteoinductive factors present in autologous bone due to processing. In this study, we investigated a method to reconstitute allograft with osteoregenerative factors. Specifically, an osteoinductive peptide from collagen I, DGEA, was engineered to express a heptaglutamate (E7) domain, which binds the hydroxyapatite within bone mineral. Addition of E7 to DGEA resulted in 9× greater peptide loading on allograft, and significantly greater retention after a 5-day interval with extensive washing. When factoring together greater initial loading and retention, the E7 domain directed a 45-fold enhancement of peptide density on the allograft surface. Peptide-coated allograft was also implanted subcutaneously into rats and it was found that E7DGEA was retained in vivo for at least 3 months. Interestingly, E7DGEA peptides injected intravenously accumulated within bone tissue, implicating a potential role for E7 domains in drug delivery to bone. Finally, we determined that, as with DGEA, the E7 modification enhanced coupling of a bioactive BMP2-derived peptide on allograft. These results suggest that E7 domains are useful for coupling many types of bone-regenerative molecules to the surface of allograft to reintroduce osteoinductive signals and potentially advance allograft treatments.
Collapse
Affiliation(s)
- Bonnie K Culpepper
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
23
|
Zmistowski B, Parvizi J. Identification and treatment of infected total hip arthroplasty. Expert Rev Anti Infect Ther 2012; 10:509-18. [PMID: 22512759 DOI: 10.1586/eri.12.19] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Periprosthetic joint infection (PJI) in the hip following prosthetic joint placement is a devastating outcome of an otherwise often successful surgical treatment (total-hip arthroplasty). Management of PJI is dependent upon accurate diagnosis and successful treatment, both of which are challenging. Recently, great strides have been made in improving the diagnosis of PJI, which has no 'gold standard' diagnostic tool. Proper diagnosis is essential as untreated or undetected PJI can quickly lead to biofilm formation on the implant surface depending upon the infecting organism. Upon complete biofilm formation, successful treatment requires prosthetic resection with immediate or delayed reimplantation. Even with the most aggressive surgical treatment, PJI eradication currently has a success rate of approximately 80%. Unfortunately, technologies to improve the local delivery of antibiotics are not expected to be available in the near future.
Collapse
Affiliation(s)
- Benjamin Zmistowski
- The Rothman Institute of Orthopaedics at Thomas Jefferson University Hospital, 925 Chestnut Street, 5th Floor, Philadelphia, PA 19107, USA
| | | |
Collapse
|
24
|
|
25
|
Vancomycin bonded to bone grafts prevents bacterial colonization. Antimicrob Agents Chemother 2010; 55:487-94. [PMID: 21098245 DOI: 10.1128/aac.00741-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Infection is an important medical problem associated with the use of bone allografts. To retard bacterial colonization, we have recently reported on the modification of bone allografts with the antibiotic vancomycin (VAN). In this report, we examine the ability of this antibiotic-modified allograft to resist bacterial colonization and biofilm formation. When antibiotic was coupled to the allograft, a uniform distribution of the antibiotic was apparent. Following challenges with Staphylococcus aureus for 6 h, the covalently bonded VAN decreased colonization as a function of inoculum, ranging from 0.8 to 2.0 log(10) CFU. Furthermore, the VAN-modified surface resisted biofilm formation, even in topographical niches that provide a protected environment for bacterial adhesion. Attachment of the antibiotic to the allograft surface was robust, and the bonded VAN was stable whether incubated in aqueous media or in air, maintaining levels of 75 to 100% of initial levels over 60 days. While the VAN-modified allograft inhibited the Gram-positive S. aureus colonization, in keeping with VAN's spectrum of activity, the VAN-modified allograft was readily colonized by the Gram-negative Escherichia coli. Finally, initial toxicity measures indicated that the VAN-modified allograft did not influence osteoblast colonization or viability. Since the covalently tethered antibiotic is stable, is active, retains its specificity, and does not exhibit toxicity, it is concluded that this modified allograft holds great promise for decreasing bone graft-associated infections.
Collapse
|