1
|
Watson-Levings RS, Palmer GD, Levings PP, Dacanay EA, Evans CH, Ghivizzani SC. Gene Therapy in Orthopaedics: Progress and Challenges in Pre-Clinical Development and Translation. Front Bioeng Biotechnol 2022; 10:901317. [PMID: 35837555 PMCID: PMC9274665 DOI: 10.3389/fbioe.2022.901317] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/27/2022] [Indexed: 11/25/2022] Open
Abstract
In orthopaedics, gene-based treatment approaches are being investigated for an array of common -yet medically challenging- pathologic conditions of the skeletal connective tissues and structures (bone, cartilage, ligament, tendon, joints, intervertebral discs etc.). As the skeletal system protects the vital organs and provides weight-bearing structural support, the various tissues are principally composed of dense extracellular matrix (ECM), often with minimal cellularity and vasculature. Due to their functional roles, composition, and distribution throughout the body the skeletal tissues are prone to traumatic injury, and/or structural failure from chronic inflammation and matrix degradation. Due to a mixture of environment and endogenous factors repair processes are often slow and fail to restore the native quality of the ECM and its function. In other cases, large-scale lesions from severe trauma or tumor surgery, exceed the body’s healing and regenerative capacity. Although a wide range of exogenous gene products (proteins and RNAs) have the potential to enhance tissue repair/regeneration and inhibit degenerative disease their clinical use is hindered by the absence of practical methods for safe, effective delivery. Cumulatively, a large body of evidence demonstrates the capacity to transfer coding sequences for biologic agents to cells in the skeletal tissues to achieve prolonged delivery at functional levels to augment local repair or inhibit pathologic processes. With an eye toward clinical translation, we discuss the research progress in the primary injury and disease targets in orthopaedic gene therapy. Technical considerations important to the exploration and pre-clinical development are presented, with an emphasis on vector technologies and delivery strategies whose capacity to generate and sustain functional transgene expression in vivo is well-established.
Collapse
Affiliation(s)
- Rachael S. Watson-Levings
- Department of Orthopaedic Surgery and Sports Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Glyn D. Palmer
- Department of Orthopaedic Surgery and Sports Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Padraic P. Levings
- Department of Orthopaedic Surgery and Sports Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - E. Anthony Dacanay
- Department of Orthopaedic Surgery and Sports Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Christopher H. Evans
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MI, United States
| | - Steven C. Ghivizzani
- Department of Orthopaedic Surgery and Sports Medicine, University of Florida College of Medicine, Gainesville, FL, United States
- *Correspondence: Steven C. Ghivizzani,
| |
Collapse
|
2
|
Steppe L, Krüger BT, Tschaffon MEA, Fischer V, Tuckermann J, Ignatius A, Haffner-Luntzer M. Estrogen Receptor α Signaling in Osteoblasts is Required for Mechanotransduction in Bone Fracture Healing. Front Bioeng Biotechnol 2021; 9:782355. [PMID: 34950644 PMCID: PMC8689144 DOI: 10.3389/fbioe.2021.782355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Biomechanical stimulation by whole-body low-magnitude high-frequency vibration (LMHFV) has demonstrated to provoke anabolic effects on bone metabolism in both non-osteoporotic and osteoporotic animals and humans. However, preclinical studies reported that vibration improved fracture healing and bone formation in osteoporotic, ovariectomized (OVX) mice representing an estrogen-deficient hormonal status, but impaired bone regeneration in skeletally healthy non-OVX mice. These effects were abolished in general estrogen receptor α (ERα)-knockout (KO) mice. However, it remains to be elucidated which cell types in the fracture callus are targeted by LMHFV during bone healing. To answer this question, we generated osteoblast lineage-specific ERα-KO mice that were subjected to ovariectomy, femur osteotomy and subsequent vibration. We found that the ERα specifically on osteoblastic lineage cells facilitated the vibration-induced effects on fracture healing, because in osteoblast lineage-specific ERα-KO (ERαfl/fl; Runx2Cre) mice the negative effects in non-OVX mice were abolished, whereas the positive effects of vibration in OVX mice were reversed. To gain greater mechanistic insights, the influence of vibration on murine and human osteogenic cells was investigated in vitro by whole genome array analysis and qPCR. The results suggested that particularly canonical WNT and Cox2/PGE2 signaling is involved in the mechanotransduction of LMHFV under estrogen-deficient conditions. In conclusion, our study demonstrates a critical role of the osteoblast lineage-specific ERα in LMHFV-induced effects on fracture healing and provides further insights into the molecular mechanism behind these effects.
Collapse
Affiliation(s)
- Lena Steppe
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Benjamin Thilo Krüger
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | | | - Verena Fischer
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
3
|
Beheshtizadeh N, Asgari Y, Nasiri N, Farzin A, Ghorbani M, Lotfibakhshaiesh N, Azami M. A network analysis of angiogenesis/osteogenesis-related growth factors in bone tissue engineering based on in-vitro and in-vivo data: A systems biology approach. Tissue Cell 2021; 72:101553. [PMID: 33975231 DOI: 10.1016/j.tice.2021.101553] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/01/2021] [Accepted: 04/27/2021] [Indexed: 12/18/2022]
Abstract
The principal purpose of tissue engineering is to stimulate the injured or unhealthy tissues to revive their primary function through the simultaneous use of chemical agents, cells, and biocompatible materials. Still, choosing the appropriate protein as a growth factor (GF) for tissue engineering is vital to fabricate artificial tissues and accelerate the regeneration procedure. In this study, the angiogenesis and osteogenesis-related proteins' interactions are studied using their related network. Three major biological processes, including osteogenesis, angiogenesis, and angiogenesis regulation, were investigated by creating a protein-protein interaction (PPI) network (45 nodes and 237 edges) of bone regeneration efficient proteins. Furthermore, a gene ontology and a centrality analysis were performed to identify essential proteins within a network. The higher degree in this network leads to higher interactions between proteins and causes a considerable effect. The most highly connected proteins in the PPI network are the most remarkable for their employment. The results of this study showed that three significant proteins including prostaglandin endoperoxide synthase 2 (PTGS2), TEK receptor tyrosine kinase (TEK), and fibroblast growth factor 18 (FGF18) were involved simultaneously in osteogenesis, angiogenesis, and their positive regulatory. Regarding the available literature, the results of this study confirmed that PTGS2 and FGF18 could be used as a GF in bone tissue engineering (BTE) applications to promote angiogenesis and osteogenesis. Nevertheless, TEK was not used in BTE applications until now and should be considered in future works to be examined in-vitro and in-vivo.
Collapse
Affiliation(s)
- Nima Beheshtizadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran; Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran; School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Yazdan Asgari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran
| | - Noushin Nasiri
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Ali Farzin
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Ghorbani
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran
| | - Nasrin Lotfibakhshaiesh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
4
|
Rothe R, Schulze S, Neuber C, Hauser S, Rammelt S, Pietzsch J. Adjuvant drug-assisted bone healing: Part I – Modulation of inflammation. Clin Hemorheol Microcirc 2020; 73:381-408. [DOI: 10.3233/ch-199102] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Rebecca Rothe
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | - Sabine Schulze
- University Center of Orthopaedics & Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Christin Neuber
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | - Sandra Hauser
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | - Stefan Rammelt
- University Center of Orthopaedics & Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
- Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Dresden, Germany
| |
Collapse
|
5
|
Choy MHV, Wong RMY, Chow SKH, Li MC, Chim YN, Li TK, Ho WT, Cheng JCY, Cheung WH. How much do we know about the role of osteocytes in different phases of fracture healing? A systematic review. J Orthop Translat 2019; 21:111-121. [PMID: 32309136 PMCID: PMC7152791 DOI: 10.1016/j.jot.2019.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 05/22/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022] Open
Abstract
Background Although emerging studies have provided evidence that osteocytes are actively involved in fracture healing, there is a general lack of a detailed understanding of the mechanistic pathway, cellular events and expression of markers at different phases of healing. Methods This systematic review describes the role of osteocytes in fracture healing from early to late phase. Literature search was performed in PubMed and Embase. Original animal and clinical studies with available English full-text were included. Information was retrieved from the selected studies. Results A total of 23 articles were selected in this systematic review. Most of the studies investigated changes of various genes and proteins expression patterns related to osteocytes. Several studies have described a constant expression of osteocyte-specific marker genes throughout the fracture healing cascade followed by decline phase with the progress of healing, denoting the important physiological role of the osteocyte and the osteocyte lacuno-canalicular network in fracture healing. The reports of various markers suggested that osteocytes could trigger coordinated bone healing responses from cell death and expression of proinflammatory markers cyclooxygenase-2 and interleukin 6 at early phase of fracture healing. This is followed by the expression of growth factors bone morphogenetic protein-2 and cysteine-rich angiogenic inducer 61 that matched with the neo-angiogenesis, chondrogenesis and callus formation during the intermediate phase. Tightly controlled regulation of osteocyte-specific markers E11/Podoplanin (E11), dentin matrix protein 1 and sclerostin modulate and promote osteogenesis, mineralisation and remodelling across different phases of fracture healing. Stabilised fixation was associated with the finding of higher number of osteocytes with little detectable bone morphogenetic proteins expressions in osteocytes. Sclerostin-antibody treatment was found to result in improvement in bone mass, bone strength and mineralisation. Conclusion To further illustrate the function of osteocytes, additional longitudinal studies with appropriate clinically relevant model to study osteoporotic fractures are crucial. Future investigations on the morphological changes of osteocyte lacuno-canalicular network during healing, osteocyte-mediated signalling molecules in the transforming growth factor-beta-Smad3 pathway, perilacunar remodelling, type of fixation and putative biomarkers to monitor fracture healing are highly desirable to bridge the current gaps of knowledge.The translational potential of this article: This systematic review provides an up-to-date chronological overview and highlights the osteocyte-regulated events at gene, protein, cellular and tissue levels throughout the fracture healing cascade, with the hope of informing and developing potential new therapeutic strategies that could improve the timing and quality of fracture healing in the future.
Collapse
Affiliation(s)
- Man Huen Victoria Choy
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, PR China
| | - Ronald Man Yeung Wong
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, PR China
| | - Simon Kwoon Ho Chow
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, PR China
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, PR China
| | - Meng Chen Li
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, PR China
| | - Yu Ning Chim
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, PR China
| | - Tsz Kiu Li
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, PR China
| | - Wing Tung Ho
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, PR China
| | - Jack Chun Yiu Cheng
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, PR China
| | - Wing Ho Cheung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, PR China
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, PR China
- Corresponding author. Department of Orthopaedics and Traumatology, 5/F, Lui Che Woo Clinical Sciences Building, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China.
| |
Collapse
|
6
|
Wasnik S, Lakhan R, Baylink DJ, Rundle CH, Xu Y, Zhang J, Qin X, Lau KHW, Carreon EE, Tang X. Cyclooxygenase 2 augments osteoblastic but suppresses chondrocytic differentiation of CD90 + skeletal stem cells in fracture sites. SCIENCE ADVANCES 2019; 5:eaaw2108. [PMID: 31392271 PMCID: PMC6669009 DOI: 10.1126/sciadv.aaw2108] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 06/21/2019] [Indexed: 05/07/2023]
Abstract
Cyclooxygenase 2 (COX-2) is essential for normal tissue repair. Although COX-2 is known to enhance the differentiation of mesenchymal stem cells (MSCs), how COX-2 regulates MSC differentiation into different tissue-specific progenitors to promote tissue repair remains unknown. Because it has been shown that COX-2 is critical for normal bone repair and local COX-2 overexpression in fracture sites accelerates fracture repair, this study aimed to determine the MSC subsets that are targeted by COX-2. We showed that CD90+ mouse skeletal stem cells (mSSCs; i.e., CD45-Tie2-AlphaV+ MSCs) were selectively recruited by macrophage/monocyte chemoattractant protein 1 into fracture sites following local COX-2 overexpression. In addition, local COX-2 overexpression augmented osteoblast differentiation and suppressed chondrocyte differentiation in CD90+ mSSCs, which depended on canonical WNT signaling. CD90 depletion data demonstrated that local COX-2 overexpression targeted CD90+ mSSCs to accelerate fracture repair. In conclusion, CD90+ mSSCs are promising targets for the acceleration of bone repair.
Collapse
Affiliation(s)
- Samiksha Wasnik
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Ram Lakhan
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - David J. Baylink
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Charles H. Rundle
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial Veterans Affairs Medical Center, Loma Linda, CA, USA
| | - Yi Xu
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Jintao Zhang
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, USA
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Henan, China
| | - Xuezhong Qin
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, USA
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial Veterans Affairs Medical Center, Loma Linda, CA, USA
| | - Kin-Hing William Lau
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, USA
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial Veterans Affairs Medical Center, Loma Linda, CA, USA
| | - Edmundo E. Carreon
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Xiaolei Tang
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, USA
- Corresponding author.
| |
Collapse
|
7
|
Li M, Hao Z, Wanlong Z, Zhengkun W. Seasonal variations of adipose tissue in Tupaia belangeri (Mammalia: Scandentia: Tupaiidae). THE EUROPEAN ZOOLOGICAL JOURNAL 2019. [DOI: 10.1080/24750263.2019.1572798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- M. Li
- Key Laboratory of Adaptive Evolution and Ecological Conservation on Plants and Animals in Southwest Mountain Ecosystem of Yunnan Higher Education Institutes, School of Life Sciences, Yunnan Normal University, Kunming, People’s Republic of China
| | - Z. Hao
- Key Laboratory of Adaptive Evolution and Ecological Conservation on Plants and Animals in Southwest Mountain Ecosystem of Yunnan Higher Education Institutes, School of Life Sciences, Yunnan Normal University, Kunming, People’s Republic of China
| | - Z. Wanlong
- Key Laboratory of Adaptive Evolution and Ecological Conservation on Plants and Animals in Southwest Mountain Ecosystem of Yunnan Higher Education Institutes, School of Life Sciences, Yunnan Normal University, Kunming, People’s Republic of China
| | - W. Zhengkun
- Key Laboratory of Adaptive Evolution and Ecological Conservation on Plants and Animals in Southwest Mountain Ecosystem of Yunnan Higher Education Institutes, School of Life Sciences, Yunnan Normal University, Kunming, People’s Republic of China
| |
Collapse
|
8
|
Wasnik S, Rundle CH, Baylink DJ, Yazdi MS, Carreon EE, Xu Y, Qin X, Lau KHW, Tang X. 1,25-Dihydroxyvitamin D suppresses M1 macrophages and promotes M2 differentiation at bone injury sites. JCI Insight 2018; 3:98773. [PMID: 30185660 PMCID: PMC6171806 DOI: 10.1172/jci.insight.98773] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 07/27/2018] [Indexed: 12/14/2022] Open
Abstract
An indispensable role of macrophages in bone repair has been well recognized. Previous data have demonstrated the copresence of M1 macrophages and mesenchymal stem cells (MSCs) during the proinflammatory stage of bone repair. However, the exact role of M1 macrophages in MSC function and bone repair is unknown. This study aimed to define the role of M1 macrophages at bone injury sites via the function of 1,25-Dihydroxyvitamin D (1,25[OH]2D) in suppressing M1 but promoting M2 differentiation. We showed that 1,25(OH)2D suppressed M1 macrophage-mediated enhancement of MSC migration. Additionally, 1,25(OH)2D inhibited M1 macrophage secretion of osteogenic proteins (i.e., Oncostatin M, TNF-α, and IL-6). Importantly, the 1,25(OH)2D-mediated suppression of osteogenic function in M1 macrophages at the proinflammatory stage was associated with 1,25(OH)2D-mediated reduction of MSC abundance, compromised osteogenic potential of MSCs, and impairment of fracture repair. Furthermore, outside the proinflammatory stage, 1,25(OH)2D treatment did not suppress fracture repair. Accordingly, our data support 2 conclusions: (a) M1 macrophages are important for the recruitment and osteogenic priming of MSCs and, hence, are necessary for fracture repair, and (b) under vitamin D-sufficient conditions, 1,25(OH)2D treatment is unnecessary and can be detrimental if provided during the proinflammatory stage of fracture healing.
Collapse
Affiliation(s)
- Samiksha Wasnik
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Charles H Rundle
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, California, USA
| | - David J Baylink
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Mohammad Safaie Yazdi
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Edmundo E Carreon
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Yi Xu
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Xuezhong Qin
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, California, USA.,Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, California, USA
| | - Kin-Hing William Lau
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, California, USA.,Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, California, USA
| | - Xiaolei Tang
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, California, USA
| |
Collapse
|
9
|
Grol MW, Lee BH. Gene therapy for repair and regeneration of bone and cartilage. Curr Opin Pharmacol 2018; 40:59-66. [PMID: 29621661 DOI: 10.1016/j.coph.2018.03.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/12/2018] [Indexed: 12/28/2022]
Abstract
Gene therapy refers to the use of viral and non-viral vectors to deliver nucleic acids to tissues of interest using direct (in vivo) or transduced cell-mediated (ex vivo) approaches. Over the past few decades, strategies have been adopted to express therapeutic transgenes at sites of injury to promote or facilitate repair of bone and cartilage. Targets of interest have typically included secreted proteins such as growth factors and anti-inflammatory mediators; however, work has also begun to focus intracellularly on signaling components, transcription factors and small, regulatory nucleic acids such as microRNAs (miRNAs). In recent years, a number of single therapeutic gene approaches (termed 'monotherapies') have proven effective in preclinical models of disease, and several are being evaluated in clinical trials. In particular, an ex vivo TGF-β1 gene therapy was approved in Korea in 2017 for treatment of moderate-to-severe osteoarthritis (OA). The ability to utilize viral vectors for context-specific and combinatorial gene therapy is also being investigated, and these strategies are likely to be important in more robustly addressing the complexities of tissue repair and regeneration in skeletal disease. In this review, we provide an overview of viral gene therapies being developed for treatment of bone and cartilage pathologies, with an emphasis on emerging combinatorial strategies as well as those targeting intracellular mediators such as miRNAs.
Collapse
Affiliation(s)
- Matthew W Grol
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Brendan H Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
10
|
Marquez-Lara A, Hutchinson ID, Nuñez F, Smith TL, Miller AN. Nonsteroidal Anti-Inflammatory Drugs and Bone-Healing: A Systematic Review of Research Quality. JBJS Rev 2018; 4:01874474-201603000-00004. [PMID: 27500434 DOI: 10.2106/jbjs.rvw.o.00055] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Nonsteroidal anti-inflammatory drugs (NSAIDs) are often avoided by orthopaedic surgeons because of their possible influence on bone-healing. This belief stems from multiple studies, in particular animal studies, that show delayed bone-healing or nonunions associated with NSAID exposure. The purpose of this review was to critically analyze the quality of published literature that evaluates the impact of NSAIDs on clinical bone-healing. METHODS A MEDLINE and Embase search was conducted to identify all articles relating to bone and fracture-healing and the utilization of NSAIDs. All human studies, including review articles, were identified for further analysis. Non-English-language manuscripts and in vitro and animal studies were excluded. A total of twelve clinical articles and twenty-four literature reviews were selected for analysis. The quality of the clinical studies was assessed with a modified Coleman Methodology Score with emphasis on the NSAID utilization. Review articles were analyzed with regard to variability in the cited literature and final conclusions. RESULTS The mean modified Coleman Methodology Score (and standard deviation) was significantly lower (p = 0.032) in clinical studies that demonstrated a negative effect of NSAIDs on bone-healing (40.0 ± 14.3 points) compared with those that concluded that NSAIDs were safe (58.8 ± 10.3 points). Review articles also demonstrated substantial variability in the number of cited clinical studies and overall conclusions. There were only two meta-analyses and twenty-two narrative reviews. The mean number (and standard deviation) of clinical studies cited was significantly greater (p = 0.008) for reviews that concluded that NSAIDs were safe (8.0 ± 4.8) compared with those that recommended avoiding them (2.1 ± 2.1). Unanimously, all reviews admitted to the need for prospective randomized controlled trials to help clarify the effects of NSAIDs on bone-healing. CONCLUSIONS This systematic literature review highlights the great variability in the interpretation of the literature addressing the impact of NSAIDs on bone-healing. Unfortunately, there is no consensus regarding the safety of NSAIDs following orthopaedic procedures, and future studies should aim for appropriate methodological designs to help to clarify existing discrepancies to improve the quality of care for orthopaedic patients. CLINICAL RELEVANCE This systematic review highlights the limitations in the current understanding of the effects of NSAIDs on bone healing. Thus, withholding these medications does not have any proven scientific benefit to patients and may even cause harm by increasing narcotic requirements in cases in which they could be beneficial for pain management. This review should encourage further basic-science and clinical studies to clarify the risks and benefits of anti-inflammatory medications in the postoperative period, with the aim of improving patient outcomes.
Collapse
Affiliation(s)
- Alejandro Marquez-Lara
- 1Department of Orthopaedic Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | | | | | | | | |
Collapse
|
11
|
Sheng MHC, Lau KHW, Lakhan R, Ahmed ASI, Rundle CH, Biswanath P, Baylink DJ. Unique Regenerative Mechanism to Replace Bone Lost During Dietary Bone Depletion in Weanling Mice. Endocrinology 2017; 158:714-729. [PMID: 28324039 DOI: 10.1210/en.2016-1379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 01/13/2017] [Indexed: 01/16/2023]
Abstract
The present study was undertaken to determine the mechanism whereby calcitropic hormones and mesenchymal stem cell progeny changes are involved in bone repletion, a regenerative bone process that restores the bone lost to calcium deficiency. To initiate depletion, weanling mice with a mixed C57BL/6 (75%) and CD1 (25%) genetic background were fed a calcium-deficient diet (0.01%) for 14 days. For repletion, the mice were fed a control diet containing 1.2% calcium for 14 days. Depletion decreased plasma calcium and increased plasma parathyroid hormone, 1,25(OH)2D (calcitriol), and C-terminal telopeptide of type I collagen. These plasma parameters quickly returned toward normal on repletion. The trabecular bone volume and connectivity decreased drastically during depletion but were completely restored by the end of repletion. This bone repletion process largely resulted from the development of new bone formation. When bromodeoxyuridine (BrdU) was administered in the middle of depletion for 3 days and examined by fluorescence-activated cell sorting at 7 days into repletion, substantial increases in BrdU incorporation were seen in several CD105 subsets of cells of osteoblastic lineage. When BrdU was administered on days 1 to 3 of repletion and examined 11 days later, no increases in BrdU were seen in these subsets. Additionally, osteocytes that stained positively for BrdU were increased during depletion. In conclusion, the results of the present study have established a unique regenerative mechanism to initiate bone repair during the bone insult. Calcium homeostatic mechanisms and the bone repletion mechanism are opposing functions but are simultaneously orchestrated such that both endpoints are optimized. These results have potential clinical relevance for disease entities such as type 2 osteoporosis.
Collapse
Affiliation(s)
- Matilda H-C Sheng
- Regenerative Medicine Division, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, California
| | - Kin-Hing William Lau
- Regenerative Medicine Division, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, California
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial Veterans Affairs Medical Center, Loma Linda, California
| | - Ram Lakhan
- Regenerative Medicine Division, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, California
| | - Abu Shufian Ishtiaq Ahmed
- Regenerative Medicine Division, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, California
| | - Charles H Rundle
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial Veterans Affairs Medical Center, Loma Linda, California
| | - Patra Biswanath
- Regenerative Medicine Division, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, California
| | - David J Baylink
- Regenerative Medicine Division, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
12
|
Lau KHW, Rundle CH, Zhou XD, Baylink DJ, Sheng MHC. Conditional deletion of IGF-I in osteocytes unexpectedly accelerates bony union of the fracture gap in mice. Bone 2016; 92:18-28. [PMID: 27519969 DOI: 10.1016/j.bone.2016.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 08/03/2016] [Accepted: 08/08/2016] [Indexed: 01/14/2023]
Abstract
This study evaluated the effects of deficient IGF-I expression in osteocytes on fracture healing. Transgenic mice with conditional knockout (cKO) of Igf1 in osteocytes were generated by crossing Dmp1-Cre mice with Igf1 flox mice. Fractures were created on the mid-shaft of tibia of 12-week-old male cKO mice and wild-type (WT) littermates by three-point bending. At 21 and 28days post-fracture healing, the increases in cortical bone mineral density, mineral content, bone area, and thickness, as well as sub-cortical bone mineral content at the fracture site were each greater in cKO calluses than in WT calluses. There were 85% decrease in the cartilage area and >2-fold increase in the number of osteoclasts in cKO calluses at 14days post-fracture, suggesting a more rapid remodeling of endochondral bone. The upregulation of mRNA levels of osteoblast marker genes (cbfa1, alp, Opn, and Ocn) was greater in cKO calluses than in WT calluses. μ-CT analysis suggested an accelerated bony union of the fracture gap in cKO mice. The Sost mRNA level was reduced by 50% and the Bmp2 mRNA level was increased 3-fold in cKO fractures at 14days post-fracture, but the levels of these two mRNAs in WT fractures were unchanged, suggesting that the accelerated fracture repair may in part act through the Wnt and/or BMP signaling. In conclusion, conditional deletion of Igf1 in osteocytes not only did not impair, but unexpectedly enhanced, bony union of the fracture gap. The accelerated bony union was due in part to upregulation of the Wnt and BMP2 signaling in response to deficient osteocyte-derived IGF-I expression, which in turn favors intramembranous over endochondral bone repair.
Collapse
Affiliation(s)
- Kin-Hing W Lau
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA; Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA, USA
| | - Charles H Rundle
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA, USA
| | - Xiao-Dong Zhou
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - David J Baylink
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Matilda H-C Sheng
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
13
|
Gao X, Usas A, Lu A, Kozemchak A, Tang Y, Poddar M, Sun X, Cummins JH, Huard J. Cyclooxygenase-2 deficiency impairs muscle-derived stem cell-mediated bone regeneration via cellular autonomous and non-autonomous mechanisms. Hum Mol Genet 2016; 25:3216-3231. [PMID: 27354351 DOI: 10.1093/hmg/ddw172] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/26/2016] [Accepted: 05/31/2016] [Indexed: 01/10/2023] Open
Abstract
This study investigated the role of cyclooxygenase-2 (COX-2) expression by donor and host cells in muscle-derived stem cell (MDSC)-mediated bone regeneration utilizing a critical size calvarial defect model. We found that BMP4/green fluorescent protein (GFP)-transduced MDSCs formed significantly less bone in COX-2 knock-out (Cox-2KO) than in COX-2 wild-type (WT) mice. BMP4/GFP-transduced Cox-2KO MDSCs also formed significantly less bone than transduced WT MDSCs when transplanted into calvarial defects created in CD-1 nude mice. The impaired bone regeneration in the Cox-2KO MDSCBMP4/GFP group is associated with downregulation of BMP4-pSMAD1/5 signaling, decreased osteogenic differentiation and lowered proliferation capacity after transplantation, compared with WT MDSCBMP4/GFP cells. The Cox-2KO MDSCBMP4/GFP group demonstrated a reduction in cell survival and direct osteogenic differentiation in vitro These effects were mediated in part by the downregulation of Igf1 and Igf2. In addition, the Cox-2KO MDSCBMP4/GFP cells recruited fewer macrophages than the WT MDSC/BMP4/GFP cells in the early phase after injury. We concluded that the bone regeneration capacity of Cox-2KO MDSCs was impaired because of a reduction in cell proliferation and survival capacities, reduction in osteogenic differentiation and a decrease in the ability of the cells to recruit host cells to the injury site.
Collapse
Affiliation(s)
- Xueqin Gao
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Orthopaedic Surgery, Brown Institute for Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.,Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO, USA and
| | - Arvydas Usas
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, Medical Academy, Kaunas, Lithuania
| | - Aiping Lu
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Orthopaedic Surgery, Brown Institute for Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.,Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO, USA and
| | - Adam Kozemchak
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ying Tang
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Minakshi Poddar
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xuying Sun
- Department of Orthopaedic Surgery, Brown Institute for Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - James H Cummins
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Orthopaedic Surgery, Brown Institute for Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.,Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO, USA and
| | - Johnny Huard
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA .,Department of Orthopaedic Surgery, Brown Institute for Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.,Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO, USA and
| |
Collapse
|
14
|
Lakhan R, Baylink DJ, Lau KHW, Tang X, Sheng MHC, Rundle CH, Qin X. Local administration of AAV-DJ pseudoserotype expressing COX2 provided early onset of transgene expression and promoted bone fracture healing in mice. Gene Ther 2015; 22:721-8. [PMID: 25965395 DOI: 10.1038/gt.2015.40] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 03/30/2015] [Accepted: 04/07/2015] [Indexed: 11/09/2022]
Abstract
We have previously obtained compelling proof-of-principle evidence for COX2 gene therapy for fracture repair using integrating retroviral vectors. For this therapy to be suitable for patient uses, a suitable vector with high safety profile must be used. Accordingly, this study sought to evaluate the feasibility of AAV as the vector for this COX2 gene therapy, because AAV raises less safety issues than the retroviral vectors used previously. However, an appropriate AAV serotype is required to provide early increase in and adequate level of COX2 expression that is needed for fracture repair. Herein, we reported that AAV-DJ, an artificial AAV pseudoserotype, is highly effective in delivering COX2 gene to fracture sites in a mouse femoral fracture model. Compared with AAV-2, the use of AAV-DJ led to ~5-fold increase in infectivity in mesenchymal stem cells (MSCs) and provided an earlier and significantly higher level of transgene expression at the fracture site. Injection of this vector at a dose of 7.5 × 10(11) genomic copies led to high COX2 level at the fracture site on day 3 after injections and significantly promoted fracture union at 21 days, as analyzed by radiography and μ-CT. The therapeutic effect appears to involve enhanced osteoblastic differentiation of MSCs and remodeling of callus tissues to laminar bone. This interpretation is supported by the enhanced expression of several key genes participating in the fracture repair process. In conclusion, AAV-DJ is a promising serotype for the AAV-based COX2 gene therapy of fracture repair in humans.
Collapse
|
15
|
Wirrig EE, Gomez MV, Hinton RB, Yutzey KE. COX2 inhibition reduces aortic valve calcification in vivo. Arterioscler Thromb Vasc Biol 2015; 35:938-47. [PMID: 25722432 DOI: 10.1161/atvbaha.114.305159] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Calcific aortic valve disease (CAVD) is a significant cause of morbidity and mortality, which affects ≈1% of the US population and is characterized by calcific nodule formation and stenosis of the valve. Klotho-deficient mice were used to study the molecular mechanisms of CAVD as they develop robust aortic valve (AoV) calcification. Through microarray analysis of AoV tissues from klotho-deficient and wild-type mice, increased expression of the gene encoding cyclooxygenase 2 (COX2; Ptgs2) was found. COX2 activity contributes to bone differentiation and homeostasis, thus the contribution of COX2 activity to AoV calcification was assessed. APPROACH AND RESULTS In klotho-deficient mice, COX2 expression is increased throughout regions of valve calcification and is induced in the valvular interstitial cells before calcification formation. Similarly, COX2 expression is increased in human diseased AoVs. Treatment of cultured porcine aortic valvular interstitial cells with osteogenic media induces bone marker gene expression and calcification in vitro, which is blocked by inhibition of COX2 activity. In vivo, genetic loss of function of COX2 cyclooxygenase activity partially rescues AoV calcification in klotho-deficient mice. Moreover, pharmacological inhibition of COX2 activity in klotho-deficient mice via celecoxib-containing diet reduces AoV calcification and blocks osteogenic gene expression. CONCLUSIONS COX2 expression is upregulated in CAVD, and its activity contributes to osteogenic gene induction and valve calcification in vitro and in vivo.
Collapse
Affiliation(s)
- Elaine E Wirrig
- From The Heart Institute, Cincinnati Children's Hospital Medical Center, OH
| | - M Victoria Gomez
- From The Heart Institute, Cincinnati Children's Hospital Medical Center, OH
| | - Robert B Hinton
- From The Heart Institute, Cincinnati Children's Hospital Medical Center, OH
| | - Katherine E Yutzey
- From The Heart Institute, Cincinnati Children's Hospital Medical Center, OH.
| |
Collapse
|
16
|
Bassi G, Guilloton F, Menard C, Di Trapani M, Deschaseaux F, Sensebé L, Schrezenmeier H, Giordano R, Bourin P, Dominici M, Tarte K, Krampera M. Effects of a ceramic biomaterial on immune modulatory properties and differentiation potential of human mesenchymal stromal cells of different origin. Tissue Eng Part A 2014; 21:767-81. [PMID: 25322665 DOI: 10.1089/ten.tea.2014.0269] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to assess the immune modulatory properties of human mesenchymal stromal cells obtained from bone marrow (BM-MSCs), fat (ASCs), and cord blood (CB-MSCs) in the presence of a hydroxyapatite and tricalcium-phosphate (HA/TCP) biomaterial as a scaffold for MSC delivery. In resting conditions, a short-term culture with HA/TCP did not modulate the anti-apoptotic and suppressive features of the various MSC types toward T, B, and NK cells; in addition, when primed with inflammatory cytokines, MSCs similarly increased their suppressive capacities in the presence or absence of HA/TCP. The long-term culture of BM-MSCs with HA/TCP induced an osteoblast-like phenotype with upregulation of OSTERIX and OSTEOCALCIN, similar to what was obtained with dexamethasone and, to a higher extent, with bone morphogenetic protein 4 (BMP-4) treatment. MSC-derived osteoblasts did not trigger immune cell activation, but were less efficient than undifferentiated MSCs in inhibiting stimulated T and NK cells. Interestingly, their suppressive machinery included not only the activation of indoleamine-2,3 dioxygenase (IDO), which plays a central role in T-cell inhibition, but also cyclooxygenase-2 (COX-2) that was not significantly involved in the immune modulatory effect of human undifferentiated MSCs. Since COX-2 is significantly involved in bone healing, its induction by HA/TCP could also contribute to the therapeutic activity of MSCs for bone tissue engineering.
Collapse
Affiliation(s)
- Giulio Bassi
- 1 Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona , Verona, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Gentile MA, Soung DY, Horrell C, Samadfam R, Drissi H, Duong LT. Increased fracture callus mineralization and strength in cathepsin K knockout mice. Bone 2014; 66:72-81. [PMID: 24928497 DOI: 10.1016/j.bone.2014.04.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/21/2014] [Accepted: 04/14/2014] [Indexed: 01/06/2023]
Abstract
Cathepsin K (CatK) is a cysteine protease, expressed predominantly in osteoclasts (OC) which degrades demineralized bone matrix. Novel selective inhibitors of CatK are currently being developed for the treatment of postmenopausal osteoporosis. Pharmacological inhibition of CatK reduces OC resorption activity while preserving bone formation in preclinical models. Disruption of the CatK gene in mice also results in high bone mass due to impaired bone resorption and elevated formation. Here, we assessed mid-shaft femoral fracture healing in 8-10week old CatK knock-out (KO) versus wild type (WT) mice. Fracture healing and callus formation were determined in vivo weekly via X-ray, and ex vivo at days 14, 18, 28 and 42 post-fracture by radiographic scoring, micro-computed tomography (μCT), histomorphometry and terminal mechanical four point bend strength testing. Radiological evaluation indicated accelerated bone healing and remodeling for CatK KO animals based on increased total radiographic scores that included callus opacity and bridging at days 28 and 42 post-fracture. Micro-CT based total callus volume was similar in CatK KO and WT mice at day 14. Callus size in CatK KO mice was 25% smaller than that in WT mice at day 18, statistically significant by day 28 and exhibited significantly higher mineralized tissue volume and volumetric BMD as compared to WT by day 18 onward. Osteoclast surface and osteoid surface trended higher in CatK KO calluses at all time-points and osteoblast number was also significantly increased at day 28. Increased CatK KO callus mineral density was reflected in significant increases in peak load and stiffness over WT at day 42 post-fracture. Regression analysis indicated a positive correlation (r=0.8671; p<0.001) between callus BMC and peak load indicating normal mineral properties in CatK KO calluses. Taken together, gene deletion of cathepsin K in mice accelerated callus size resolution, significantly increased callus mineralized mass, and improved mechanical strength as compared to wild type mice.
Collapse
Affiliation(s)
- Michael A Gentile
- Bone Biology Group, Merck Research Laboratories, West Point, PA, USA
| | - Do Y Soung
- New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, CT, USA
| | - Carlyle Horrell
- Bone Biology Group, Merck Research Laboratories, West Point, PA, USA
| | - Rana Samadfam
- Charles River Laboratories, Preclinical Services, Montreal, Quebec, Canada
| | - Hicham Drissi
- New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, CT, USA
| | - Le T Duong
- Bone Biology Group, Merck Research Laboratories, West Point, PA, USA.
| |
Collapse
|
18
|
Lau KHW, Popa NL, Rundle CH. Microarray Analysis of Gene Expression Reveals that Cyclo-oxygenase-2 Gene Therapy Up-regulates Hematopoiesis and Down-regulates Inflammation During Endochondral Bone Fracture Healing. J Bone Metab 2014; 21:169-88. [PMID: 25247155 PMCID: PMC4170080 DOI: 10.11005/jbm.2014.21.3.169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 08/11/2014] [Accepted: 08/19/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Cyclo-oxygenase-2 (Cox-2) is an inflammatory mediator that is necessary for the tissue repair, including bone fracture healing. Although the application of Cox-2 gene therapy to a murine closed femoral fracture has accelerated bony union, but the beneficial effect was not observed until the endochondral stage of bone repair that is well after the inflammatory stage normally subsides. METHODS To identify the molecular pathways through which Cox-2 regulates fracture healing, we examined gene expression profile in fracture tissues in response to Cox-2 gene therapy during the endochondral bone repair phase. Cox-2 gene therapy was applied to the closed murine femur fracture model. Microarray analysis was performed at 10 days post-fracture to examine global gene expression profile in the fracture tissues during the endochondral bone repair phase. The entire repertoire of significantly expressed genes was examined by gene set enrichment analysis, and the most up-regulated individual genes were evaluated further. RESULTS The genes that normally promote inflammation were under-represented in the microarray analysis, and the expression of several inflammatory chemokines was significantly down-regulated. There was an up-regulation of two key transcription factor genes that regulate hematopoiesis and erythropoiesis. More surprisingly, there was no significant up-regulation in the genes that are normally involved in angiogenesis or bone formation. However, the expression of two tissue remodeling genes was up-regulated. CONCLUSIONS The down-regulation of the inflammatory genes in response to Cox-2 gene therapy was unexpected, given the pro-inflammatory role of prostaglandins. Cox-2 gene therapy could promote bony union through hematopoietic precursor proliferation during endochondral bone repair and thereby enhances subsequently fracture callus remodeling that leads to bony union of the fracture gap.
Collapse
Affiliation(s)
- K.-H. William Lau
- Research Service (151), Jerry L. Pettis Memorial Veterans Administration Medical Center, Loma Linda, CA, USA
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Nicoleta L. Popa
- Research Service (151), Jerry L. Pettis Memorial Veterans Administration Medical Center, Loma Linda, CA, USA
| | - Charles H. Rundle
- Research Service (151), Jerry L. Pettis Memorial Veterans Administration Medical Center, Loma Linda, CA, USA
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
19
|
Huang C, Xue M, Chen H, Jiao J, Herschman HR, O'Keefe RJ, Zhang X. The spatiotemporal role of COX-2 in osteogenic and chondrogenic differentiation of periosteum-derived mesenchymal progenitors in fracture repair. PLoS One 2014; 9:e100079. [PMID: 24988184 PMCID: PMC4079554 DOI: 10.1371/journal.pone.0100079] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/21/2014] [Indexed: 12/16/2022] Open
Abstract
Periosteum provides a major source of mesenchymal progenitor cells for bone fracture repair. Combining cell-specific targeted Cox-2 gene deletion approaches with in vitro analyses of the differentiation of periosteum-derived mesenchymal progenitor cells (PDMPCs), here we demonstrate a spatial and temporal role for Cox-2 function in the modulation of osteogenic and chondrogenic differentiation of periosteal progenitors in fracture repair. Prx1Cre-targeted Cox-2 gene deletion in mesenchyme resulted in marked reduction of intramembraneous and endochondral bone repair, leading to accumulation of poorly differentiated mesenchyme and immature cartilage in periosteal callus. In contrast, Col2Cre-targeted Cox-2 gene deletion in cartilage resulted in a deficiency primarily in cartilage conversion into bone. Further cell culture analyses using Cox-2 deficient PDMPCs demonstrated reduced osteogenic differentiation in monolayer cultures, blocked chondrocyte differentiation and hypertrophy in high density micromass cultures. Gene expression microarray analyses demonstrated downregulation of a key set of genes associated with bone/cartilage formation and remodeling, namely Sox9, Runx2, Osx, MMP9, VDR and RANKL. Pathway analyses demonstrated dysregulation of the HIF-1, PI3K-AKT and Wnt pathways in Cox-2 deficient cells. Collectively, our data highlight a crucial role for Cox-2 from cells of mesenchymal lineages in modulating key pathways that control periosteal progenitor cell growth, differentiation, and angiogenesis in fracture repair.
Collapse
Affiliation(s)
- Chunlan Huang
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Ming Xue
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Hongli Chen
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Jing Jiao
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Harvey R. Herschman
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Regis J. O'Keefe
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Xinping Zhang
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
20
|
Rundle CH, Chen ST, Coen MJ, Wergedal JE, Stiffel V, Lau KHW. Direct lentiviral-cyclooxygenase 2 application to the tendon-bone interface promotes osteointegration and enhances return of the pull-out tensile strength of the tendon graft in a rat model of biceps tenodesis. PLoS One 2014; 9:e98004. [PMID: 24848992 PMCID: PMC4029780 DOI: 10.1371/journal.pone.0098004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 04/28/2014] [Indexed: 11/18/2022] Open
Abstract
This study sought to determine if direct application of the lentiviral (LV)-cyclooxygenase 2 (COX2) vector to the tendon-bone interface would promote osteointegration of the tendon graft in a rat model of biceps tenodesis. The LV-COX2 gene transfer strategy was chosen for investigation because a similar COX2 gene transfer strategy promoted bony bridging of the fracture gap during bone repair, which involves similar histologic transitions that occur in osteointegration. Briefly, a 1.14-mm diameter tunnel was drilled in the mid-groove of the humerus of adult Fischer 344 rats. The LV-COX2 or βgal control vector was applied directly into the bone tunnel and onto the end of the tendon graft, which was then pulled into the bone tunnel. A poly-L-lactide pin was press-fitted into the tunnel as interference fixation. Animals were sacrificed at 3, 5, or 8 weeks for histology analysis of osteointegration. The LV-COX2 gene transfer strategy enhanced neo-chondrogenesis at the tendon-bone interface but with only marginal effect on de novo bone formation. The tendon-bone interface of the LV-COX2-treated tenodesis showed the well-defined tendon-to-fibrocartilage-to-bone histologic transitions that are indicative of osteointegration of the tendon graft. The LV-COX2 in vivo gene transfer strategy also significantly enhanced angiogenesis at the tendon-bone interface. To determine if the increased osteointegration was translated into an improved pull-out mechanical strength property, the pull-out tensile strength of the LV-COX2-treated tendon grafts was determined with a pull-out mechanical testing assay. The LV-COX2 strategy yielded a significant improvement in the return of the pull-out strength of the tendon graft after 8 weeks. In conclusion, the COX2-based in vivo gene transfer strategy enhanced angiogenesis, osteointegration and improved return of the pull-out strength of the tendon graft. Thus, this strategy has great potential to be developed into an effective therapy to promote tendon-to-bone healing after tenodesis or related surgeries.
Collapse
Affiliation(s)
- Charles H. Rundle
- Musculoskeletal Disease Center, J. L. Pettis Memorial VA Medical Center, Loma Linda, California, United States of America
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, California, United State of America
| | - Shin-Tai Chen
- Musculoskeletal Disease Center, J. L. Pettis Memorial VA Medical Center, Loma Linda, California, United States of America
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, California, United State of America
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, California, United State of America
| | - Michael J. Coen
- Musculoskeletal Disease Center, J. L. Pettis Memorial VA Medical Center, Loma Linda, California, United States of America
- Department of Orthopedic Surgery, Loma Linda University School of Medicine, Loma Linda, California, United State of America
| | - Jon E. Wergedal
- Musculoskeletal Disease Center, J. L. Pettis Memorial VA Medical Center, Loma Linda, California, United States of America
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, California, United State of America
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, California, United State of America
| | - Virginia Stiffel
- Musculoskeletal Disease Center, J. L. Pettis Memorial VA Medical Center, Loma Linda, California, United States of America
| | - Kin-Hing William Lau
- Musculoskeletal Disease Center, J. L. Pettis Memorial VA Medical Center, Loma Linda, California, United States of America
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, California, United State of America
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, California, United State of America
- * E-mail:
| |
Collapse
|
21
|
Gao X, Usas A, Proto JD, Lu A, Cummins JH, Proctor A, Chen CW, Huard J. Role of donor and host cells in muscle-derived stem cell-mediated bone repair: differentiation vs. paracrine effects. FASEB J 2014; 28:3792-809. [PMID: 24843069 DOI: 10.1096/fj.13-247965] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Murine muscle-derived stem cells (MDSCs) have been shown capable of regenerating bone in a critical size calvarial defect model when transduced with BMP 2 or 4; however, the contribution of the donor cells and their interactions with the host cells during the bone healing process have not been fully elucidated. To address this question, C57/BL/6J mice were divided into MDSC/BMP4/GFP, MDSC/GFP, and scaffold groups. After transplanting MDSCs into the critical-size calvarial defects created in normal mice, we found that mice transplanted with BMP4GFP-transduced MDSCs healed the bone defect in 4 wk, while the control groups (MDSC-GFP and scaffold) demonstrated no bone healing. The newly formed trabecular bone displayed similar biomechanical properties as the native bone, and the donor cells directly participated in endochondral bone formation via their differentiation into chondrocytes, osteoblasts, and osteocytes via the BMP4-pSMAD5 and COX-2-PGE2 signaling pathways. In contrast to the scaffold group, the MDSC groups attracted more inflammatory cells initially and incurred faster inflammation resolution, enhanced angiogenesis, and suppressed initial immune responses in the host mice. MDSCs were shown to attract macrophages via the secretion of monocyte chemotactic protein 1 and promote endothelial cell proliferation by secreting multiple growth factors. Our findings indicated that BMP4GFP-transduced MDSCs not only regenerated bone by direct differentiation, but also positively influenced the host cells to coordinate and promote bone tissue repair through paracrine effects.
Collapse
Affiliation(s)
- Xueqin Gao
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and
| | - Arvydas Usas
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and
| | - Jonathan D Proto
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and
| | - Aiping Lu
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and
| | - James H Cummins
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and
| | | | - Chien-Wen Chen
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and
| | - Johnny Huard
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and
| |
Collapse
|
22
|
Fracture healing and lipid mediators. BONEKEY REPORTS 2014; 3:517. [PMID: 24795811 DOI: 10.1038/bonekey.2014.12] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 01/03/2014] [Indexed: 01/11/2023]
Abstract
Lipid mediators regulate bone regeneration during fracture healing. Prostaglandins and leukotrienes are well-known lipid mediators that regulate inflammation and are synthesized from the Ω-6 fatty acid, arachidonic acid. Cyclooxygenase (COX-1 or COX-2) and 5-lipoxygenase (5-LO) catalyze the initial enzymatic steps in the synthesis of prostaglandins and leukotrienes, respectively. Inhibition or genetic ablation of COX-2 activity impairs fracture healing in animal models. Genetic ablation of COX-1 does not affect the fracture callus strength in mice, suggesting that COX-2 activity is primarily responsible for regulating fracture healing. Inhibition of cyclooxygenase activity with nonsteroidal anti-inflammatory drugs (NSAIDs) is performed clinically to reduce heterotopic ossification, although clinical evidence that NSAID treatment impairs fracture healing remains controversial. In contrast, inhibition or genetic ablation of 5-LO activity accelerates fracture healing in animal models. Even though prostaglandins and leukotrienes regulate inflammation, loss of COX-2 or 5-LO activity appears to primarily affect chondrogenesis during fracture healing. Prostaglandin or prostaglandin analog treatment, prostaglandin-specific synthase inhibition and prostaglandin or leukotriene receptor antagonism also affect callus chondrogenesis. Unlike the Ω-6-derived lipid mediators, lipid mediators derived from Ω-3 fatty acids, such as resolvin E1 (RvE1), have anti-inflammatory activity. In vivo, RvE1 can inhibit osteoclastogenesis and limit bone resorption. Although Ω-6 and Ω-3 lipid mediators have clear-cut effects on inflammation, the role of these lipid mediators in bone regeneration is more complex, with apparent effects on callus chondrogenesis and bone remodeling.
Collapse
|
23
|
Li TF, Yukata K, Yin G, Sheu T, Maruyama T, Jonason JH, Hsu W, Zhang X, Xiao G, Konttinen YT, Chen D, O’Keefe RJ. BMP-2 induces ATF4 phosphorylation in chondrocytes through a COX-2/PGE2 dependent signaling pathway. Osteoarthritis Cartilage 2014; 22:481-9. [PMID: 24418675 PMCID: PMC3947583 DOI: 10.1016/j.joca.2013.12.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 11/11/2013] [Accepted: 12/20/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Bone morphogenic protein (BMP)-2 is approved for fracture non-union and spine fusion. We aimed to further dissect its downstream signaling events in chondrocytes with the ultimate goal to develop novel therapeutics that can mimic BMP-2 effect but have less complications. METHODS BMP-2 effect on cyclooxygenase (COX)-2 expression was examined using Real time quantitative PCR (RT-PCR) and Western blot analysis. Genetic approach was used to identify the signaling pathway mediating the BMP-2 effect. Similarly, the pathway transducing the PGE2 effect on ATF4 was investigated. Immunoprecipitation (IP) was performed to assess the complex formation after PGE2 binding. RESULTS BMP-2 increased COX-2 expression in primary mouse costosternal chondrocytes (PMCSC). The results from the C9 Tet-off system demonstrated that endogenous BMP-2 also upregulated COX-2 expression. Genetic approaches using PMCSC from ALK2(fx/fx), ALK3(fx/fx), ALK6(-/-), and Smad1(fx/fx) mice established that BMP-2 regulated COX-2 through activation of ALK3-Smad1 signaling. PGE-2 EIA showed that BMP-2 increased PGE2 production in PMCSC. ATF4 is a transcription factor that regulates bone formation. While PGE2 did not have significant effect on ATF4 expression, it induced ATF4 phosphorylation. In addition to stimulating COX-2 expression, BMP-2 also induced phosphorylation of ATF4. Using COX-2 deficient chondrocytes, we demonstrated that the BMP-2 effect on ATF4 was COX-2-dependent. Tibial fracture samples from COX-2(-/-) mice showed reduced phospho-ATF4 immunoreactivity compared to wild type (WT) ones. PGE2 mediated ATF4 phosphorylation involved signaling primarily through the EP2 and EP4 receptors and PGE2 induced an EP4-ERK1/2-RSK2 complex formation. CONCLUSIONS BMP-2 regulates COX-2 expression through ALK3-Smad1 signaling, and PGE2 induces ATF4 phosphorylation via EP4-ERK1/2-RSK2 axis.
Collapse
Affiliation(s)
- Tian-Fang Li
- Department of Biochemistry, Rush University Medical Center, 1735 W. Harrison St, Chicago, IL-60612,Department of Orthopaedics, Rush University Medical Center, 1611 W. Harrison St, Chicago, IL-60612,Corresponding author: Tian-Fang Li, MD, PhD, Department of Biochemistry and Orthopaedics, Rush University Medical Center, 1735 W. Harrison St., Chicago, IL-60608. Phone: 312-942-2182, Fax: 312-942-3053,
| | - Kiminori Yukata
- Department of Orthopaedics, University of Tokushima, 3-18-15 Kuramoto, Tokushima 770-8503, Japan,Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester, 601 Elmwood Ave., NY-14642
| | - Guoyong Yin
- Department of Orthopaedics, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Rd., Nanjing, Jiangsu-210029, China
| | - Tzongjen Sheu
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester, 601 Elmwood Ave., NY-14642
| | - Takamitsu Maruyama
- Department of Biomedical Genetics, Center for Oral Biology, and James P. Wilmot Cancer Center, University of Rochester, 601 Elmwood Ave., Rochester, NY-14642
| | - Jennifer H. Jonason
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester, 601 Elmwood Ave., NY-14642
| | - Wei Hsu
- Department of Biomedical Genetics, Center for Oral Biology, and James P. Wilmot Cancer Center, University of Rochester, 601 Elmwood Ave., Rochester, NY-14642
| | - Xinping Zhang
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester, 601 Elmwood Ave., NY-14642
| | - Guozhi Xiao
- Department of Biochemistry, Rush University Medical Center, 1735 W. Harrison St, Chicago, IL-60612
| | - Yrjo T. Konttinen
- Department of Medicine, Institute of Clinical Medicine, University of Helsinki, PO Box 700 (Haartmaninkatu 8, Biomedicum 1), 00029 HUS, FINLAND
| | - Di Chen
- Department of Biochemistry, Rush University Medical Center, 1735 W. Harrison St, Chicago, IL-60612
| | - Regis J. O’Keefe
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester, 601 Elmwood Ave., NY-14642,Corresponding author: Regis J. O’Keefe, MD, PhD, Department of Orthopaedics and Rehabilitation, Box 665, 601 Elmwood Avenue, University of Rochester, Rochester, NY-14642. Phone: 585-275-5167, Fax: 585-276-1202,
| |
Collapse
|
24
|
|
25
|
Moreschi E, Biguetti CC, Comparim E, De Andrade Holgado L, Ribeiro-Junior PD, Nary-Filho H, Matsumoto MA. Cyclooxygenase-2 inhibition does not impair block bone grafts healing in rabbit model. J Mol Histol 2013; 44:723-31. [DOI: 10.1007/s10735-013-9519-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 06/14/2013] [Indexed: 10/26/2022]
|