1
|
Wei L, Sun Y, Yu D, Pieterse H, Wismeijer D, Liu Y, Wu Y. The Clinical Efficacy and Safety of ErhBMP-2/BioCaP/β-TCP as a Novel Bone Substitute Using the Tooth-Extraction-Socket-Healing Model: A Proof-of-Concept Randomized Controlled Trial. J Clin Periodontol 2025; 52:299-309. [PMID: 39478364 PMCID: PMC11743062 DOI: 10.1111/jcpe.14084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 01/30/2025]
Abstract
AIM This first randomized controlled trial in humans aimed to assess the efficacy and safety of low-dosage Escherichia coli-derived recombinant human bone morphogenetic protein 2 (ErhBMP-2)-incorporated biomimetic calcium phosphate coating-functionalized β-TCP (ErhBMP-2/BioCaP/β-TCP) as a novel bone substitute using the tooth-extraction-socket-healing model. MATERIALS AND METHODS Forty patients requiring dental implants after single-root tooth extraction were enrolled in this study and randomly assigned into three groups: ErhBMP-2/BioCaP/β-TCP (N = 15), β-TCP (N = 15) and natural healing (N = 10). New bone volume density from histomorphometric analyses was evaluated 6 weeks post-operatively as the primary outcome, and other histomorphometric analyses, alveolar bone and soft-tissue changes were the secondary outcomes. Safety parameters included adverse events, soft-tissue healing, oral health impact profile, serum BMP-2 concentrations and other laboratory tests. RESULTS The findings revealed a significant increase in new bone volume density in patients treated with ErhBMP-2/BioCaP/β-TCP compared to those receiving β-TCP alone. The required bone augmentation procedures during implant placement surgery in the ErhBMP-2/BioCaP/β-TCP group were significantly less than in the natural healing group. There were no significant differences in safety parameters among the three groups. CONCLUSION This clinical trial primarily proved the safety and efficacy of ErhBMP-2/BioCaP/β-TCP as a promising bone substitute.
Collapse
Affiliation(s)
- Lingfei Wei
- Department of Second Dental CenterShanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical SciencesShanghaiChina
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA)Vrije Universiteit Amsterdam and University of AmsterdamAmsterdamThe Netherlands
- Department of Oral Implantology, Yantai Stomatological HospitalBinzhou Medical UniversityYantaiChina
| | - Yuanyuan Sun
- Department of Second Dental CenterShanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical SciencesShanghaiChina
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA)Vrije Universiteit Amsterdam and University of AmsterdamAmsterdamThe Netherlands
| | - Dedong Yu
- Department of Second Dental CenterShanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical SciencesShanghaiChina
| | | | | | - Yuelian Liu
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA)Vrije Universiteit Amsterdam and University of AmsterdamAmsterdamThe Netherlands
| | - Yiqun Wu
- Department of Second Dental CenterShanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical SciencesShanghaiChina
| |
Collapse
|
2
|
Robin M, Mouloungui E, Castillo Dali G, Wang Y, Saffar JL, Pavon-Djavid G, Divoux T, Manneville S, Behr L, Cardi D, Choudat L, Giraud-Guille MM, Meddahi-Pellé A, Baudimont F, Colombier ML, Nassif N. Mineralized collagen plywood contributes to bone autograft performance. Nature 2024; 636:100-107. [PMID: 39567697 PMCID: PMC11618095 DOI: 10.1038/s41586-024-08208-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/11/2024] [Indexed: 11/22/2024]
Abstract
Autologous bone (AB) is the gold standard for bone-replacement surgeries1, despite its limited availability and the need for an extra surgical site. Traditionally, competitive biomaterials for bone repair have focused on mimicking the mineral aspect of bone, as evidenced by the widespread clinical use of bioactive ceramics2. However, AB also exhibits hierarchical organic structures that might substantially affect bone regeneration. Here, using a range of cell-free biomimetic-collagen-based materials in murine and ovine bone-defect models, we demonstrate that a hierarchical hybrid microstructure-specifically, the twisted plywood pattern of collagen and its association with poorly crystallized bioapatite-favourably influences bone regeneration. Our study shows that the most structurally biomimetic material has the potential to stimulate bone growth, highlighting the pivotal role of physicochemical properties in supporting bone formation and offering promising prospects as a competitive bone-graft material.
Collapse
Affiliation(s)
- Marc Robin
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université, CNRS, Collège de France, Paris, France
| | - Elodie Mouloungui
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université, CNRS, Collège de France, Paris, France
| | - Gabriel Castillo Dali
- URP2496, Laboratoire Pathologies, Imagerie et Biothérapies Orofaciales, UFR d'Odontologie, Université Paris Cité, Montrouge, France
- Instituto de Ciencia de Materiales de Sevilla (ICMS), Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Yan Wang
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université, CNRS, Collège de France, Paris, France
| | - Jean-Louis Saffar
- URP2496, Laboratoire Pathologies, Imagerie et Biothérapies Orofaciales, UFR d'Odontologie, Université Paris Cité, Montrouge, France
| | - Graciela Pavon-Djavid
- Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Université Sorbonne Paris Nord, Inserm U1148, Villetaneuse, France
| | | | - Sébastien Manneville
- Laboratoire de Physique, ENSL, CNRS, Lyon, France
- Institut Universitaire de France (IUF), Paris, France
| | | | | | | | - Marie-Madeleine Giraud-Guille
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université, CNRS, Collège de France, Paris, France
| | - Anne Meddahi-Pellé
- Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Université Sorbonne Paris Nord, Inserm U1148, Villetaneuse, France
| | | | - Marie-Laure Colombier
- URP2496, Laboratoire Pathologies, Imagerie et Biothérapies Orofaciales, UFR d'Odontologie, Université Paris Cité, Montrouge, France
| | - Nadine Nassif
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université, CNRS, Collège de France, Paris, France.
| |
Collapse
|
3
|
Galarraga-Vinueza ME, Barootchi S, Nevins ML, Nevins M, Miron RJ, Tavelli L. Twenty-five years of recombinant human growth factors rhPDGF-BB and rhBMP-2 in oral hard and soft tissue regeneration. Periodontol 2000 2024; 94:483-509. [PMID: 37681552 DOI: 10.1111/prd.12522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023]
Abstract
Contemporary oral tissue engineering strategies involve recombinant human growth factor approaches to stimulate diverse cellular processes including cell differentiation, migration, recruitment, and proliferation at grafted areas. Recombinant human growth factor applications in oral hard and soft tissue regeneration have been progressively researched over the last 25 years. Growth factor-mediated surgical approaches aim to accelerate healing, tissue reconstruction, and patient recovery. Thus, regenerative approaches involving growth factors such as recombinant human platelet-derived growth factor-BB (rhPDGF-BB) and recombinant human bone morphogenetic proteins (rhBMPs) have shown certain advantages over invasive traditional surgical approaches in severe hard and soft tissue defects. Several clinical studies assessed the outcomes of rhBMP-2 in diverse clinical applications for implant site development and bone augmentation. Current evidence regarding the clinical benefits of rhBMP-2 compared to conventional therapies is inconclusive. Nevertheless, it seems that rhBMP-2 can promote faster wound healing processes and enhance de novo bone formation, which may be particularly favorable in patients with compromised bone healing capacity or limited donor sites. rhPDGF-BB has been extensively applied for periodontal regenerative procedures and for the treatment of gingival recessions, showing consistent and positive outcomes. Nevertheless, current evidence regarding its benefits at implant and edentulous sites is limited. The present review explores and depicts the current applications, outcomes, and evidence-based clinical recommendations of rhPDGF-BB and rhBMPs for oral tissue regeneration.
Collapse
Affiliation(s)
- Maria Elisa Galarraga-Vinueza
- Tufts University School of Dental Medicine, Boston, Massachusetts, USA
- School of Dentistry, Universidad de las Américas (UDLA), Quito, Ecuador
| | - Shayan Barootchi
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
- Center for Clinical Research and Evidence Synthesis in Oral Tissue Regeneration (CRITERION), Boston, Massachusetts, USA
| | - Marc L Nevins
- Division of Periodontology, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Myron Nevins
- Division of Periodontology, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Lorenzo Tavelli
- Center for Clinical Research and Evidence Synthesis in Oral Tissue Regeneration (CRITERION), Boston, Massachusetts, USA
- Division of Periodontology, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Zhu Y, Jia G, Yang Y, Weng J, Liu S, Zhang M, Zhang G, Qin H, Chen Y, Yang Q, Yuan G, Yu F, Zeng H. Biomimetic Porous Magnesium Alloy Scaffolds Promote the Repair of Osteoporotic Bone Defects in Rats through Activating the Wnt/β-Catenin Signaling Pathway. ACS Biomater Sci Eng 2023. [PMID: 37200162 DOI: 10.1021/acsbiomaterials.2c01097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In this study, biomimetic porous magnesium alloy scaffolds were prepared to repair femoral bone defects in ovariectomized osteoporotic rats. The purpose of the study was to investigate the effect of biomimetic porous magnesium alloy scaffolds on repairing osteoporotic bone defects and possible mechanisms. The animal model of osteoporosis was established in female SD rats. Three months later, a bone defect of 3 mm in diameter and 3 mm in depth was created in the lateral condyle of the right femur. The rats were then randomly divided into two groups: an experimental group and a control group. Four weeks after surgery, gross specimens were observed and micro-CT scans were performed. The repair of osteoporotic femoral defects in rats was studied histologically using HE staining, Masson staining, and Goldner staining. The expression of Wnt5a, β-catenin, and BMP-2 was measured between groups by immunohistochemical staining. The bone defect was repaired better after the application of biomimetic porous magnesium alloy scaffolds. Immunohistochemical results showed significantly higher expression of Wnt5a, β-catenin, and BMP-2. To conclude, the biomimetic porous magnesium alloy scaffolds proposed in this paper might promote the repair of osteoporotic femoral bone defects in rats possibly through activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yuanchao Zhu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Gaozhi Jia
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Yifei Yang
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jian Weng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Su Liu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Mengwei Zhang
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Geng Zhang
- Zunyi Medical University, Zunyi 563000, China
| | - Haotian Qin
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yixiao Chen
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Qi Yang
- Department of Medical Ultrasound, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Guangyin Yuan
- Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fei Yu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hui Zeng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
5
|
Bian Y, Hu T, Lv Z, Xu Y, Wang Y, Wang H, Zhu W, Feng B, Liang R, Tan C, Weng X. Bone tissue engineering for treating osteonecrosis of the femoral head. EXPLORATION (BEIJING, CHINA) 2023; 3:20210105. [PMID: 37324030 PMCID: PMC10190954 DOI: 10.1002/exp.20210105] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/12/2022] [Indexed: 06/16/2023]
Abstract
Osteonecrosis of the femoral head (ONFH) is a devastating and complicated disease with an unclear etiology. Femoral head-preserving surgeries have been devoted to delaying and hindering the collapse of the femoral head since their introduction in the last century. However, the isolated femoral head-preserving surgeries cannot prevent the natural progression of ONFH, and the combination of autogenous or allogeneic bone grafting often leads to many undesired complications. To tackle this dilemma, bone tissue engineering has been widely developed to compensate for the deficiencies of these surgeries. During the last decades, great progress has been made in ingenious bone tissue engineering for ONFH treatment. Herein, we comprehensively summarize the state-of-the-art progress made in bone tissue engineering for ONFH treatment. The definition, classification, etiology, diagnosis, and current treatments of ONFH are first described. Then, the recent progress in the development of various bone-repairing biomaterials, including bioceramics, natural polymers, synthetic polymers, and metals, for treating ONFH is presented. Thereafter, regenerative therapies for ONFH treatment are also discussed. Finally, we give some personal insights on the current challenges of these therapeutic strategies in the clinic and the future development of bone tissue engineering for ONFH treatment.
Collapse
Affiliation(s)
- Yixin Bian
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Tingting Hu
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingChina
| | - Zehui Lv
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Yiming Xu
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Yingjie Wang
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Han Wang
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Wei Zhu
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Bin Feng
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingChina
| | - Chaoliang Tan
- Department of ChemistryCity University of Hong KongKowloonHong Kong SARChina
| | - Xisheng Weng
- Department of Orthopedic SurgeryState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
6
|
Black C, Gibbs D, McEwan J, Kanczler J, Fernández MP, Tozzi G, Dawson J, Oreffo R. Comparison of bone formation mediated by bone morphogenetic protein delivered by nanoclay gels with clinical techniques (autograft and InductOs ®) in an ovine bone model. J Tissue Eng 2022; 13:20417314221113746. [PMID: 36147728 PMCID: PMC9486279 DOI: 10.1177/20417314221113746] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/29/2022] [Indexed: 01/12/2023] Open
Abstract
Development of a growth factor delivery vehicle providing appropriate temporal-spatial release together with an appropriate preclinical large animal model to evaluate bone formation is critical in the development of delivery strategies for bone tissue regeneration. Smectite nanoclays such as LAPONITE™ possess unique thixotropic and protein retention properties offering promise for use in growth factor delivery in bone repair and regeneration. This study has examined bone formation mediated by a clinically approved growth factor delivery system (InductOs®) in combination with Laponite gel in an aged female ovine femoral condyle defect preclinical model (10 weeks). Two different designs, one containing a low volume of Laponite gel (LLG) in combination with the InductOs® absorbable collagen sponge (ACS), the other in which Laponite gel formed the implant (HLG), were compared against InductOs® alone and an autograft positive control. Thus, five groups: (i) empty defect, (ii) autograft, (iii) BMP2 + ACS, (iv) BMP2 + ACS + LLG and (v) BMP2 + HLG + ACS were examined in 9 mm × 12 mm defects performed bilaterally in the medial femoral condyles of 24 aged (>5 years) sheep. Bone formation within the defect was assessed using micro-computed tomography (micro-CT), digital volume correlation (DVC) for biomechanical characterisation as well as histology. The autograft and InductOs® mediated enhanced bone formation (p < 0001) compared to blank controls, while no significant differences were observed between the Laponite/Collagen/BMP delivery vehicles. However, the current study illustrated the excellent biocompatibility of Laponite and its ability to deliver localised active BMP-2, with the opportunity for improved efficacy with further optimisation. Interestingly, DVC-computed strain distributions indicated that the regenerated bone structure is mechanically adapted to bear external loads from the early remodelling stages of the bone reparation cascade. The current studies of selected nanoclay delivery platforms for BMP, assessed in a clinically relevant large animal model auger well for the development of bone fracture therapeutics for an ageing population.
Collapse
Affiliation(s)
- Cameron Black
- Bone & Joint Research Group, Centre
for Human Development, Stem Cells and Regeneration, Human Development & Health,
Institute of Developmental Sciences, University of Southampton, Southampton,
UK
| | - David Gibbs
- Bone & Joint Research Group, Centre
for Human Development, Stem Cells and Regeneration, Human Development & Health,
Institute of Developmental Sciences, University of Southampton, Southampton,
UK
| | - Josephine McEwan
- Bone & Joint Research Group, Centre
for Human Development, Stem Cells and Regeneration, Human Development & Health,
Institute of Developmental Sciences, University of Southampton, Southampton,
UK
| | - Janos Kanczler
- Bone & Joint Research Group, Centre
for Human Development, Stem Cells and Regeneration, Human Development & Health,
Institute of Developmental Sciences, University of Southampton, Southampton,
UK
| | - Marta Peña Fernández
- Institute of Mechanical, Process and
Engineering, School of Engineering and Physical Sciences, Heriot Watt University,
Edinburgh, UK
| | - Gianluca Tozzi
- Zeiss Global Centre, School of
Mechanical and Design Engineering, University of Portsmouth, Portsmouth, UK
| | - Jonathan Dawson
- Bone & Joint Research Group, Centre
for Human Development, Stem Cells and Regeneration, Human Development & Health,
Institute of Developmental Sciences, University of Southampton, Southampton,
UK
| | - Richard Oreffo
- Bone & Joint Research Group, Centre
for Human Development, Stem Cells and Regeneration, Human Development & Health,
Institute of Developmental Sciences, University of Southampton, Southampton,
UK,College of Biomedical Engineering,
China Medical University, Taichung, Taiwan,Richard Oreffo, Bone & Joint Research
Group, Centre for Human Development, Stem Cells and Regeneration, Human
Development & Health, Institute of Developmental Sciences, University of
Southampton, Southampton General Hospital, Southampton SO16 6YD, UK.
| |
Collapse
|
7
|
Xu G, Shen C, Lin H, Zhou J, Wang T, Wan B, Binshabaib M, Forouzanfar T, Xu G, Alharbi N, Wu G. Development, In-Vitro Characterization and In-Vivo Osteoinductive Efficacy of a Novel Biomimetically-Precipitated Nanocrystalline Calcium Phosphate With Internally-Incorporated Bone Morphogenetic Protein-2. Front Bioeng Biotechnol 2022; 10:920696. [PMID: 35935495 PMCID: PMC9354744 DOI: 10.3389/fbioe.2022.920696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/30/2022] [Indexed: 12/02/2022] Open
Abstract
The repair of large-volume bone defects (LVBDs) remains a great challenge in the fields of orthopedics and maxillofacial surgery. Most clinically available bone-defect-filling materials lack proper degradability and efficient osteoinductivity. In this study, we synthesized a novel biomimetically-precipitated nanocrystalline calcium phosphate (BpNcCaP) with internally incorporated bone morphogenetic protein-2 (BpNcCaP + BMP-2) with an aim to develop properly degradable and highly osteoinductive granules to repair LVBDs. We first characterized the physicochemical properties of the granules with different incorporation amounts of BMP-2 using scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. We evaluated the cytotoxicity and cytocompatibility of BpNcCaP by assessing the viability and adhesion of MC3T3-E1 pre-osteoblasts using PrestoBlue assay, Rhodamine-Phalloidin and DAPI staining, respectively. We further assessed the in-vivo osteoinductive efficacy in a subcutaneous bone induction model in rats. In-vitro characterization data showed that the BpNcCaP + BMP-2 granules were comprised of hexagonal hydroxyapatite with an average crystallite size ranging from 19.7 to 25.1 nm and a grain size at 84.13 ± 28.46 nm. The vickers hardness of BpNcCaP was 32.50 ± 3.58 HV 0.025. BpNcCaP showed no obvious cytotoxicity and was favorable for the adhesion of pre-osteoblasts. BMP-2 incorporation rate could be as high as 65.04 ± 6.01%. In-vivo histomorphometric analysis showed that the volume of new bone induced by BpNcCaP exhibited a BMP-2 amount-dependent increasing manner. The BpNcCaP+50 μg BMP-2 exhibited significantly more degradation and fewer foreign body giant cells in comparison with BpNcCaP. These data suggested a promising application potential of BpNcCaP + BMP-2 in repairing LVBDs.
Collapse
Affiliation(s)
- Gaoli Xu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, Netherlands
- Department of Stomatology, Zhejiang Hospital, Hangzhou, China
| | - Chenxi Shen
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, Netherlands
- Hangzhou Huibo Science and Technology Co. Ltd., Xinjie Science Park, Hangzhou, China
| | - Haiyan Lin
- Department of Implantology, Hangzhou Stomatology Hospital, Hangzhou, China
- Savid School of Stomatology, Hangzhou Medical College, Hangzhou, China
| | - Jian Zhou
- Department of Implantology, Hangzhou Stomatology Hospital, Hangzhou, China
| | - Ting Wang
- Department of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ben Wan
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, Netherlands
- Hangzhou Huibo Science and Technology Co. Ltd., Xinjie Science Park, Hangzhou, China
| | - Munerah Binshabaib
- Department of Preventive Dental Sciences, College of Dentistry, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Tymour Forouzanfar
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, Netherlands
| | - Guochao Xu
- Department of Stomatology, Zhejiang Hospital, Hangzhou, China
| | - Nawal Alharbi
- Department of Prosthetic Dental Sciences, King Saud University, Riyadh, Saudi Arabia
- *Correspondence: Nawal Alharbi, ; Gang Wu,
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, Netherlands
- *Correspondence: Nawal Alharbi, ; Gang Wu,
| |
Collapse
|
8
|
Li X, Zhou D, Yang D, Fu Y, Tao X, Hu X, Dai Y, Yue H. Isoquercitrin Attenuates Osteogenic Injury in MC3T3 Osteoblastic Cells and the Zebrafish Model via the Keap1-Nrf2-ARE Pathway. Molecules 2022; 27:molecules27113459. [PMID: 35684398 PMCID: PMC9182080 DOI: 10.3390/molecules27113459] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022] Open
Abstract
Isoquercitrin (IQ) widely exists in natural products, with a variety of pharmacological activities. In this study, the anti-apoptotic and antioxidative activities of IQ were evaluated. IQ showed protective activity against 2, 2′-azobis [2-methylpropionamidine] dihydrochloride (AAPH)-induced cell damage, as well as a marked reduction in reactive oxygen species (ROS). The evidence of IQ regulating Keap1-Nrf2-ARE and the mitochondrial-mediated Caspase 3 pathway were found in the MC3T3 osteoblastic cell line. Furthermore, IQ significantly decreased ROS production, apoptosis, and lipid peroxidation in AAPH-treated 72 h post-fertilization (hpf) zebrafish, as observed via DCFH-DA, acridine orange (AO), and a 1,3-bis(diphenylphosphino) propane (DPPP) probe, respectively. In AAPH-treated 9 day post-fertilization (dpf) zebrafish, IQ strongly promoted osteogenic development, with increased concentrations by calcein staining, compared with the untreated group. In a molecular docking assay, among all signal proteins, Keap1 showed the strongest affinity with IQ at −8.6 kcal/mol, which might be the reason why IQ regulated the Keap1-Nrf2-ARE pathway in vitro and in vivo. These results indicated that IQ promotes bone development and repairs bone injury, which is valuable for the prevention and treatment of bone diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yulin Dai
- Correspondence: (Y.D.); (H.Y.); Tel.: +86-431-8676-3986 (H.Y.); Fax: +86-431-8676-3986 (H.Y.)
| | - Hao Yue
- Correspondence: (Y.D.); (H.Y.); Tel.: +86-431-8676-3986 (H.Y.); Fax: +86-431-8676-3986 (H.Y.)
| |
Collapse
|
9
|
Tu C, Bajwa A, Shi A, Wu G, Wang J. Effect of fibrin glue on the healing efficacy of deproteinized bovine bone and autologous bone in critical-sized calvarial defects in rats. Clin Oral Investig 2022; 26:2491-2502. [DOI: 10.1007/s00784-021-04217-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/30/2021] [Indexed: 11/24/2022]
|
10
|
Repair of segmental bone defect using tissue engineered heterogeneous deproteinized bone doped with lithium. Sci Rep 2021; 11:4819. [PMID: 33649409 PMCID: PMC7921440 DOI: 10.1038/s41598-021-84526-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/17/2021] [Indexed: 02/05/2023] Open
Abstract
Lithium have been shown to play an important role in improving the osteogenic properties of biomaterials. This study aims to explore the osteogenic improvement effect of tissue engineered heterogeneous deproteinized bone (HDPB) doped with lithium, and evaluate their effectiveness in the healing of bone defects. Bone marrow mesenchymal stem cells (BMSCs) were co-cultured with different concentration of lithium chloride. Cell proliferation in each group was analyzed by 3-(4, 5-dimetyl-2-thiazoly-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay. BMSCs were then co-cultured in osteogenic induction medium with different concentration of lithium chloride, and the expression of related mRNA was detected. The role of lithium in promoting BMSCs osteogenic differentiation and inhibiting BMSCs lipogenic differentiation was also investigated. Biomechanical properties of the tibia were evaluated at 8 weeks after operation. The tibial specimens of each group were collected at 4 and 8 weeks after surgery for histological examination and histological analysis. Micro-computed tomography (CT) scanning and 3D reconstruction were performed at 8 weeks. The results demonstrate that lithium can induce the osteogenic differentiation inhibit of adipogenic differentiation of BMSCs by regulating the Wnt signaling pathway. The histological evaluation further certified that average bone formation area in the group of tissue engineered HDPB doped with lithium was also significantly better than that of HDPB alone group. Based on the above evaluation, tissue engineered HDPB doped with lithium can effectively promote the regeneration of segmental bone defect, which can be used as a tissue engineering scaffold for clinical trials.
Collapse
|
11
|
Jiang S, Liu T, Wu G, Li W, Feng X, Pathak JL, Shi J. BMP2-Functionalized Biomimetic Calcium Phosphate Graft Promotes Alveolar Defect Healing During Orthodontic Tooth Movement in Beagle Dogs. Front Bioeng Biotechnol 2020; 8:517. [PMID: 32548104 PMCID: PMC7272671 DOI: 10.3389/fbioe.2020.00517] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/01/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Grafting of biomaterial in alveolar defect facilitates bone healing and orthodontic treatment. BMP2-functionalized biomimetic calcium phosphate (BioCaP) graft had shown excellent bone defect healing potential in many preclinical studies. In this study, we aimed to investigate the influence of BioCaP graft on surgical alveolar bone defect healing during orthodontic tooth movement (OTM) in beagle dogs. Methods: Nine Beagle dogs were randomly assigned to three groups: control, deproteinized bovine bone (DBB), and BioCaP. The maxillary second premolars were protracted into the defects of the extracted maxillary first premolar for 8 weeks. The rate of OTM, alveolar remodeling and bone defect healing were evaluated by histology, histomorphometry, and cone beam computed tomography (CBCT) imaging. Periodontal probing depth was analyzed. Gingival cervicular fluid was collected at week 4 and 8, and the IL-1β level was measured by ELISA. Results: The histological sections of the bone defect showed more newly formed bone in the BioCaP group. The percentage of new bone formation in the BioCaP group was 1.61-, and 1.25-fold higher compared to the control and DBB group, respectively. After 8 weeks of OTM, the resorption rate of BioCaP was 1.42-fold higher compared to DBB. The root resorption index in the DBB group was 1.87-, and 1.39-fold higher compared to the control and BioCaP group, respectively. CBCT images showed 1.92-, and 1.36-fold higher bone mineral density in the BioCaP group compared to the control and DBB group, respectively. There was no significant difference in OTM among the three groups. The distance between the enamel cementum and the crest of the alveolar ridge in the control group was 1.45-, and 1.69-fold higher compared to DBB and BioCaP group, respectively. Periodontal probing depth at week 8 was reduced in the BioCaP group compared to the control. IL-1β concentration in the gingival cervicular fluid was significantly lower in the BioCaP group compared to the control group at week 4 and 8. Conclusion: BioCaP graft robustly promoted bone regeneration and alveolar bone defect healing without affecting OTM. BioCaP graft caused less alveolar bone recession and root resorption of traction tooth with favorable periodontal attachment level indicating that BioCaP as a bioactive and functional bone filling material for alveolar bone defects during orthodontic treatment.
Collapse
Affiliation(s)
- Shijie Jiang
- Department of Orthodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Tie Liu
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China.,Department of Oral Implantology, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre of Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, Netherlands
| | - Wen Li
- Department of Orthodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Xiaoxia Feng
- Department of Orthodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Janak L Pathak
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiejun Shi
- Department of Orthodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| |
Collapse
|
12
|
KADİROĞLU ET, KARAYÜREK F, AKBALIK ME. Evaluation of the effects of bone morphogenetic protein-2 on the healing of bone calvarial defects in ovariectomized rats. TURKISH JOURNAL OF VETERINARY AND ANIMAL SCIENCES 2020. [DOI: 10.3906/vet-1911-24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Bertassoli BM, Silva GAB, Albergaria JD, Jorge EC. In vitro analysis of the influence of mineralized and EDTA-demineralized allogenous bone on the viability and differentiation of osteoblasts and dental pulp stem cells. Cell Tissue Bank 2020; 21:479-493. [PMID: 32385788 DOI: 10.1007/s10561-020-09834-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 04/07/2020] [Indexed: 01/09/2023]
Abstract
Grafting based on both autogenous and allogenous human bone is widely used to replace areas of critical loss to induce bone regeneration. Allogenous bones have the advantage of unlimited availability from tissue banks. However, their integration into the remaining bone is limited because they lack osteoinduction and osteogenic properties. Here, we propose to induce the demineralization of the allografts to improve these properties by exposing the organic components. Allografts fragments were demineralized in 10% EDTA at pH 7.2 solution. The influence of the EDTA-DAB and MAB fragments was evaluated with respect to the adhesion, growth and differentiation of MC3'T3-E1 osteoblasts, primary osteoblasts and dental pulp stem cells (DPSC). Histomorphological analyses showed that EDTA-demineralized fragments (EDTA-DAB) maintained a bone architecture and porosity similar to those of the mineralized (MAB) samples. BMP4, osteopontin, and collagen III were also preserved. All the cell types adhered, grew and colonized both the MAB and EDTA-DAB biomaterials after 7, 14 and 21 days. However, the osteoblastic cell lines showed higher viability indexes when they were cultivated on the EDTA-DAB fragments, while the MAB fragments induced higher DPSC viability. The improved osteoinductive potential of the EDTA-DAB bone was confirmed by alkaline phosphatase activity and calcium deposition analyses. This work provides guidance for the choice of the most appropriate allograft to be used in tissue bioengineering and for the transport of specific cell lineages to the surgical site.
Collapse
Affiliation(s)
| | | | - Juliano Douglas Albergaria
- Laboratório de Biologia Oral E Do Desevolvimento, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil.
| | - Erika Cristina Jorge
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
14
|
Wei L, Yu D, Wang M, Deng L, Wu G, Liu Y. Dose Effects of Slow-Released Bone Morphogenetic Protein-2 Functionalized β-Tricalcium Phosphate in Repairing Critical-Sized Bone Defects. Tissue Eng Part A 2020; 26:120-129. [DOI: 10.1089/ten.tea.2019.0161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Lingfei Wei
- Department of Oral Implantology, Yantai Stomatological Hospital, Yantai, China
- Department of Oral Implantology and Prosthetic Dentistry, Academic Center for Dentistry Amsterdam (ACTA), Amsterdam, the Netherlands
| | - Dedong Yu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Center for Dentistry Amsterdam (ACTA), Amsterdam, the Netherlands
- Department of Second Dental Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Mingjie Wang
- Department of Oral Implantology and Prosthetic Dentistry, Academic Center for Dentistry Amsterdam (ACTA), Amsterdam, the Netherlands
| | - Liquan Deng
- Key Laboratory of Stomatology, School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Center for Dentistry Amsterdam (ACTA), Amsterdam, the Netherlands
| | - Yuelian Liu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Center for Dentistry Amsterdam (ACTA), Amsterdam, the Netherlands
| |
Collapse
|
15
|
Fan YP, Lu JF, Xu AT, He FM. Physiochemical characterization and biological effect of anorganic bovine bone matrix and organic-containing bovine bone matrix in comparison with Bio-Oss in rabbits. J Biomater Appl 2019; 33:566-575. [PMID: 30326803 DOI: 10.1177/0885328218804926] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bovine origin matrix has been widely used in clinical applications and investigated by various research institutions. However, the potential factors that influence bone regeneration are still not thoroughly understood and need further investigations. In this study, bone regeneration properties of anorganic bovine bone matrix (ABBM), organic-containing bovine bone matrix (OBBM), and widely acknowledged anorganic bovine bone matrix (Bio-Oss) were compared. Besides, the correlations between physiochemical characterizations and bone regeneration properties of the three xenografts were also investigated. Physiochemical characterizations were measured by special instrumentations. In animal studies, the three xenografts were implanted into 8-mm-diameter cranial defects of 16 New Zealand white rabbits. The biological effects were evaluated by micro-computed tomography and histomorphometric analysis after 6 and 12 weeks of implantation. The physical characterizations showed that anorganic bovine bone matrix and Bio-Oss had more nanostructures, larger surface area, bigger pore volume, and bigger pore size than that of organic-containing bovine bone matrix. The chemical characterizations showed that anorganic bovine bone matrix and Bio-Oss had higher crystallinity than that of organic-containing bovine bone matrix, and organic-containing bovine bone matrix contained organic nitrogen (N) component. In vivo, anorganic bovine bone matrix and Bio-Oss possessed better bone regeneration properties than that of organic-containing bovine bone matrix. Taken together, nanostructures, larger surface area, bigger pore volume, and bigger pore size of xenografts played an active role in new bone formation. Besides, lower crystallinity and organic N element of xenografts produced a positive effect on graft degradation. The abovementioned findings could provide theoretical basis for better choice in clinical applications and better manufacturing hydroxyapatite-derived bone graft in the future.
Collapse
Affiliation(s)
- Yan-Pin Fan
- Zhejiang University School of Medicine, Stomatology Hospital, Hangzhou, China
| | - Jian-Feng Lu
- Zhejiang University School of Medicine, Stomatology Hospital, Hangzhou, China
| | - An-Tian Xu
- Zhejiang University School of Medicine, Stomatology Hospital, Hangzhou, China
| | - Fu-Ming He
- Zhejiang University School of Medicine, Stomatology Hospital, Hangzhou, China
| |
Collapse
|
16
|
Bai Y, Dai X, Yin Y, Wang J, Sun X, Liang W, Li Y, Deng X, Zhang X. Biomimetic piezoelectric nanocomposite membranes synergistically enhance osteogenesis of deproteinized bovine bone grafts. Int J Nanomedicine 2019; 14:3015-3026. [PMID: 31118619 PMCID: PMC6503198 DOI: 10.2147/ijn.s197824] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/03/2019] [Indexed: 12/26/2022] Open
Abstract
Purpose: The combination of a bone graft with a barrier membrane is the classic method for guided bone regeneration (GBR) treatment. However, the insufficient osteoinductivity of currently-available barrier membranes and the consequent limited bone regeneration often inhibit the efficacy of bone repair. In this study, we utilized the piezoelectric properties of biomaterials to enhance the osteoinductivity of barrier membranes. Methods: A flexible nanocomposite membrane mimicking the piezoelectric properties of natural bone was utilized as the barrier membrane. Its therapeutic efficacy in repairing critical-sized rabbit mandible defects in combination with xenogenic grafts of deproteinized bovine bone (DBB) was explored. The nanocomposite membranes were fabricated with a homogeneous distribution of piezoelectric BaTiO3 nanoparticles (BTO NPs) embedded within a poly(vinylidene fluoridetrifluoroethylene) (P(VDF-TrFE)) matrix. Results: The piezoelectric coefficient of the polarized nanocomposite membranes was close to that of human bone. The piezoelectric coefficient of the polarized nanocomposite membranes was highly stable, with more than 90% of the original piezoelectric coefficient (d33) remaining up to 28 days after immersion in culture medium. Compared with commercially-available polytetrafluoroethylene (PTFE) membranes, the polarized BTO/P(VDF-TrFE) nanocomposite membranes exhibited higher osteoinductivity (assessed by immunofluorescence staining for runt-related transcription factor 2 (RUNX-2) expression) and induced significantly earlier neovascularization and complete mature bone-structure formation within the rabbit mandible critical-sized defects after implantation with DBB Bio-Oss® granules. Conclusion: Our findings thus demonstrated that the piezoelectric BTO/P(VDF-TrFE) nanocomposite membranes might be suitable for enhancing the clinical efficacy of GBR.
Collapse
Affiliation(s)
- Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China.,Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China.,Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
| | - Xiaohan Dai
- Xiangya Stomatological Hospital, Central South University, Changsha 410078, People's Republic of China
| | - Ying Yin
- Xiangya Stomatological Hospital, Central South University, Changsha 410078, People's Republic of China
| | - Jiaqi Wang
- Xiangya Stomatological Hospital, Central South University, Changsha 410078, People's Republic of China
| | - Xiaowen Sun
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
| | - Weiwei Liang
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
| | - Yiping Li
- Xiangya Stomatological Hospital, Central South University, Changsha 410078, People's Republic of China
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China.,Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China.,Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
| |
Collapse
|
17
|
Lin X, Hunziker EB, Liu T, Hu Q, Liu Y. Enhanced biocompatibility and improved osteogenesis of coralline hydroxyapatite modified by bone morphogenetic protein 2 incorporated into a biomimetic coating. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 96:329-336. [PMID: 30606540 DOI: 10.1016/j.msec.2018.11.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/31/2018] [Accepted: 11/13/2018] [Indexed: 11/17/2022]
Abstract
OBJECTIVES (1) To determine whether the biocompatibility of coralline hydroxyapatite (CHA) granules could be improved by using an octacalcium phosphate (OCP) coating layer, and/or functionalized with bone morphogenetic protein 2 (BMP-2), and (2) to investigate if BMP-2 incorporated into this coating is able to enhance its osteoinductive efficiency, in comparison to its surface-adsorbed delivery mode. METHODS CHA granules (0.25 g per sample) bearing a coating-incorporated depot of BMP-2 (20 μg/sample) together with the controls (CHA bearing an adsorbed depot of BMP-2; CHA granules with an OCP coating without BMP-2; pure CHA granules) were implanted subcutaneously in rats (n = 6 animals per group). Five weeks later, the implants were retrieved for histomorphometric analysis to quantify the volume of newly generated bone, bone marrow, fibrous tissue and foreign body giant cells (FBGCs). The osteoinductive efficiency of BMP-2 and the rates of CHA degradation were also determined. RESULTS The group with an OCP coating-incorporated depot of BMP-2 showed the highest volume and quality or bone, and the highest osteoinductive efficacy. OCP coating was able to reduce inflammatory responses (improve biocompatibility), and also simple adsorption of BMP-2 to CHA achieved this. CONCLUSIONS The biocompatibility of CHA granules (reduction of inflammation) was significantly improved by coating with a layer of OCP. Pure surface adsorption of BMP-2 to CHA also reduced inflammation. Incorporation of BMP-2 into the OCP coatings was associated with the highest volume and quality of bone, and the highest biocompatibility degree of the CHA granules. CLINICAL SIGNIFICANCE Higher osteoinductivity and improved biocompatibility of CHA can be obtained when a layer of BMP-2 functionalized OCP is deposited on the surfaces of CHA granules.
Collapse
Affiliation(s)
- Xingnan Lin
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, 210008 Nanjing, China; Department of Oral Implantology and Prosthetic Dentistry, Academic Centre of Dentistry Amsterdam (ACTA), VU University and University of Amsterdam, 1081LA Amsterdam, the Netherlands.
| | - Ernst B Hunziker
- Departments of Osteoporosis and Orthopaedic Surgery, Inselspital (University Hospital), Bern, 3010 Bern, Switzerland.
| | - Tie Liu
- Department of Oral Implantology, Hospital/School of Stomatology, Zhejiang University, 310003 Hangzhou, Zhejiang, China
| | - Qingang Hu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Medical School, Nanjing University, 210008 Nanjing, China.
| | - Yuelian Liu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre of Dentistry Amsterdam (ACTA), VU University and University of Amsterdam, 1081LA Amsterdam, the Netherlands.
| |
Collapse
|
18
|
Guo H, Wang C, Wang J, He Y. Lithium-incorporated deproteinized bovine bone substitute improves osteogenesis in critical-sized bone defect repair. J Biomater Appl 2018; 32:1421-1434. [PMID: 29703129 DOI: 10.1177/0885328218768185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study aimed to explore the surface modification of deproteinized bovine bone using lithium-ion and evaluate its efficacy on osteogenesis improvement and critical-sized bone defect repair. Hydrothermal treatment was performed to produce lithium-incorporated deproteinized bovine bone. In vitro study, human osteosarcoma cell MG63 (MG63) was cultured with the bone substitute to evaluate the cell viability and then calcium deposition was measured to analyze the osteogenesis. In vivo studies, male adult goats were chosen to build critical-sized bone defect model and randomly divided into three groups. The goats were treated with autogenous cancellous bone, lithium-incorporated deproteinized bovine bone, and deproteinized bovine bone. Animals were evaluated using radiological analysis including X-ray, computed tomography, and Micro-CT; histological methods involving hematoxylin-eosin dyeing, Masson dyeing, and immunofluorescence detection at 4 and 12 weeks after surgery were carried out. According to the results, lithium-incorporated deproteinized bovine bone produced nano-structured surface layer. The lithium-incorporated deproteinized bovine bone could promote the osteoblast proliferation and increase the calcium deposition. In vivo studies, radiographic results revealed that lithium-incorporated deproteinized bovine bone scaffolds provided better performance in terms of mean gray values of X films, mean pixel values of computed tomography films, and bone volume and trabecular thickness of micro-computed tomography pictures when compared with the deproteinized bovine bone group. In addition, histological analysis showed that the lithium-incorporated deproteinized bovine bone group also significantly achieved larger new bone formation area. At the same time, when the expression of osteogenic factors in vivo was evaluated, runt-related transcription factor 2 (Runx2) and collagen type one (Col-1) were expressed more in lithium-incorporated deproteinized bovine bone group than those in deproteinized bovine bone group. However, the bone defect repair effect using autograft is still a little better than that of lithium-incorporated deproteinized bovine bone substitute based on our results. In conclusion, surface lithium-incorporated deproteinized bovine bone achieved improvement of osteogenesis effect and could enhance the new bone formation in critical-sized bone defects.
Collapse
Affiliation(s)
- Hongzhang Guo
- 1 Department of Orthopaedics, Gansu Provincial Hospital of TCM, GuaZhou Road, Qi Li He zone, Lanzhou, People's Republic of China
| | - Changde Wang
- 1 Department of Orthopaedics, Gansu Provincial Hospital of TCM, GuaZhou Road, Qi Li He zone, Lanzhou, People's Republic of China
| | - Jixiang Wang
- 1 Department of Orthopaedics, Gansu Provincial Hospital of TCM, GuaZhou Road, Qi Li He zone, Lanzhou, People's Republic of China
| | - Yufang He
- 2 The Third Hospital of Gansu Province, Lanzhou, People's Republic of China
| |
Collapse
|
19
|
Shi M, Wang C, Wang Y, Tang C, Miron RJ, Zhang Y. Deproteinized bovine bone matrix induces osteoblast differentiation via macrophage polarization. J Biomed Mater Res A 2018; 106:1236-1246. [PMID: 29280261 DOI: 10.1002/jbm.a.36321] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 12/17/2022]
Abstract
Bone grafts are widely used in bone regeneration to increase the speed and quality of new bone formation. While they are routinely characterized based on their biocompatible and bioactive properties, they also exert a profound impact on host immune responses, which in turn can display a significant effect on the healing and repair process. In this study, we investigated the role of macrophage behavior on deproteinized bovine bone matrix (DBBM, BioOss) to investigate their impact on creating either a pro- or anti-inflammatory microenvironment for tissue integration. RT-PCR and immunofluorescence staining results demonstrated the ability for RAW 264.7 cells to polarize toward M2 wound-healing macrophages in response to DBBM and positive control (IL-4). Interestingly, significantly higher expression of interleukin-10 and higher number of multinucleated giant cells (MNGCs) was observed in the DBBM group. Thereafter, conditioned media (CM) from macrophages cultured with DBBM seeded with MC3T3-E1 cells demonstrated a marked increase in osteoblast differentiation. Noteworthy, this effect was reversed by blocking IL10 with addition of IL10 antibody to CM from the DBBM macrophages. Furthermore, the use of dendritic cell specific transmembrane protein (DC-STAMP)-knockout to inhibit MNGC formation in the DBBM group resulted in a significant reduction in osteoblast differentiation, indication a pivotal role for MNGCs in biomaterials-induced osteogenesis. The results from this study indicate convincingly that the immune response of macrophages towards DBBM has a potent effect on osteoblast differentiation. Furthermore, DBBM promoted macrophage fusion and polarization towards an M2 wound-healing phenotype, further created a microenvironment favoring biomaterial-induced osteogenesis. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1236-1246, 2018.
Collapse
Affiliation(s)
- Miusi Shi
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, 430079, People's Republic of China.,Department of Dental Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, 430079, People's Republic of China
| | - Can Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, 430079, People's Republic of China
| | - Yulan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, 430079, People's Republic of China
| | - Cuizhu Tang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, 430079, People's Republic of China
| | - Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, 430079, People's Republic of China.,Department of Dental Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, 430079, People's Republic of China
| |
Collapse
|
20
|
Enezei HH, Ahmad A, Takeuchi K, Suzuki J, Khamis MF, Razak NHA, Rahman RA, Qabbani AA, Abdulhameed EA, Sugita Y, Maeda H, Alam MK. Osteoinductive Activity of Bone Scaffold Bioceramic Companied with Control Release of VEGF Protein Treated Dental stem cells as A New Concept for Bone Regeneration: Part II. J HARD TISSUE BIOL 2018. [DOI: 10.2485/jhtb.27.69] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Hamid Hammad Enezei
- Department of Oral & Maxillofacial Surgery, College of Dentistry, University of Anbar
- Department of Oral & Maxillofacial Surgery, School of Dental Sciences, Universiti Sains Malaysia Health Campus
| | - Azlina Ahmad
- Department of Biochemistry, School of Dental Sciences, Universiti Sains Malaysia Health Campus
| | - Kazuo Takeuchi
- Department of Gerodontology, School of Dentistry, Aichi Gakuin University
| | - Junji Suzuki
- Department of Oral Pathology, School of Dentistry, Aichi Gakuin University
| | - Mohd Fadhli Khamis
- Department of Oral Biology and Forensic Dentistry Unit, School of Dental Sciences, Universiti Sains Malaysia
| | - Noor Hayati Abdul Razak
- Department of Oral & Maxillofacial Surgery, School of Dental Sciences, Universiti Sains Malaysia Health Campus
| | - Roselinda Abd Rahman
- Department of Oral & Maxillofacial Surgery, School of Dental Sciences, Universiti Sains Malaysia Health Campus
| | - Ali Al Qabbani
- Department of Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah
| | | | - Yoshihiko Sugita
- Department of Oral Pathology, School of Dentistry, Aichi Gakuin University
| | - Hatsuhiko Maeda
- Department of Oral Pathology, School of Dentistry, Aichi Gakuin University
| | | |
Collapse
|
21
|
da Silva de Oliveira JC, Luvizuto ER, Sonoda CK, Okamoto R, Garcia-Junior IR. Immunohistochemistry evaluation of BMP-2 with β-tricalcium phosphate matrix, polylactic and polyglycolic acid gel, and calcium phosphate cement in rats. Oral Maxillofac Surg 2017; 21:247-258. [PMID: 28389833 DOI: 10.1007/s10006-017-0624-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 03/29/2017] [Indexed: 06/07/2023]
Abstract
PURPOSE The installation of implants has become a routine procedure in the clinic. However, it takes time and adequate bone thickness, and for that, tissue engineering has made efforts to develop substitutes for autografts, in view of certain disadvantages of this material. The decision to choose the most suitable graft material for each case is an important step in the success of bone reconstruction. This study was to verify, by means of immunohistochemical study, that the addition of bone morphogenetic protein had some influence on biomaterials commercially available, taking into account the formation of mineralized tissue, bone replacement, and the amount of degradation of biomaterials. METHODS The sample consisted of 72 rats that were divided into eight treatment groups, in which two defects of 5 mm were made in each animal calvaria. Euthanasia was performed at 5, 15, and 30 days postop. RESULTS A histologic and histometric analysis was performed to quantitate the area of mineralized tissue formed, the area of newly formed bone, and the area of degradation of the biomaterials. Data were analyzed with multiple comparisons of means by Tukey contrasts, and significant difference was assigned at the level of P < 0.05. The proteins used for immunohistochemical analysis accounted for the process of formation, mineralization, and bone resorption and was performed using ordinal qualitative analysis, where from assigning scores. CONCLUSIONS Bone morphogenetic protein 2 was shown to be effective as an inducer of bone formation process independent biomaterial used mainly for accelerating the resorption process of the framework.
Collapse
Affiliation(s)
| | - Eloá Rodrigues Luvizuto
- Department of Surgery and Integrated Clinic, Araçatuba Dentistry School, São Paulo State University, Araçatuba, SP, Brazil
| | - Celso Koogi Sonoda
- Department of Surgery and Integrated Clinic, Araçatuba Dentistry School, São Paulo State University, Araçatuba, SP, Brazil
| | - Roberta Okamoto
- Department of Surgery and Integrated Clinic, Araçatuba Dentistry School, São Paulo State University, Araçatuba, SP, Brazil
| | - Idelmo Rangel Garcia-Junior
- Department of Surgery and Integrated Clinic, Araçatuba Dentistry School, São Paulo State University, Araçatuba, SP, Brazil
| |
Collapse
|
22
|
Civantos A, Martínez-Campos E, Ramos V, Elvira C, Gallardo A, Abarrategi A. Titanium Coatings and Surface Modifications: Toward Clinically Useful Bioactive Implants. ACS Biomater Sci Eng 2017; 3:1245-1261. [DOI: 10.1021/acsbiomaterials.6b00604] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ana Civantos
- Tissue
Engineering Group, Institute of Biofunctional Studies, Associated
Unit to the Institute of Polymer Science and Technology (CSIC), Pharmacy
Faculty, Complutense University of Madrid (UCM), Paseo Juan XXIII 1, 28040 Madrid, Spain
- Polymer
Functionalization Group, Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Enrique Martínez-Campos
- Tissue
Engineering Group, Institute of Biofunctional Studies, Associated
Unit to the Institute of Polymer Science and Technology (CSIC), Pharmacy
Faculty, Complutense University of Madrid (UCM), Paseo Juan XXIII 1, 28040 Madrid, Spain
- Polymer
Functionalization Group, Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Viviana Ramos
- Tissue
Engineering Group, Institute of Biofunctional Studies, Associated
Unit to the Institute of Polymer Science and Technology (CSIC), Pharmacy
Faculty, Complutense University of Madrid (UCM), Paseo Juan XXIII 1, 28040 Madrid, Spain
- Noricum S.L., San Sebastián
de los Reyes, Av. Fuente Nueva, 14, 28703 Madrid, Spain
| | - Carlos Elvira
- Polymer
Functionalization Group, Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Alberto Gallardo
- Polymer
Functionalization Group, Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Ander Abarrategi
- Haematopoietic
Stem Cell Laboratory, The Francis Crick Institute, 1 Midland
Road, NW1 1AT London, U.K
| |
Collapse
|
23
|
BMP2-coprecipitated calcium phosphate granules enhance osteoinductivity of deproteinized bovine bone, and bone formation during critical-sized bone defect healing. Sci Rep 2017; 7:41800. [PMID: 28139726 PMCID: PMC5282552 DOI: 10.1038/srep41800] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/28/2016] [Indexed: 11/08/2022] Open
Abstract
Most materials used clinically for filling critical-sized bone defects (CSBD), such as deproteinized bovine bone (DBB), lack osteoinductivity so that their therapeutic effects are far from satisfactory. The effect of bone morphogenic protein 2 (BMP2)-coprecipitated biomimetic calcium phosphate granules (BMP2-cop.BioCaP) on osteoinduction of DBB graft(s) during CSBD healing is still unknown. We investigated whether BMP2-cop.BioCaP affects the osteoinductivity of DBB, bone formation, and foreign body reaction during CSBD healing. DBB + BMP2-cop.BioCaP, DBB, DBB + BMP2, DBB + BioCaP, and autologous bone grafts were implanted in the CSBD of sheep. Bone formation, DBB/BioCaP degradability, foreign body reaction, and osteoinductivity of DBB were analyzed histologically and histomorphometrically at week 4 and 8. Combination of BMP2-cop.BioCaP and DBB healed CSBD as effectively as autologous bone grafts. About 95% of the BMP2-cop.BioCaP had been degraded and replaced by new bone at week 8 in the DBB + BMP2-cop.BioCaP-group. Foreign body reaction was reduced in the DBB + BMP2-cop.BioCaP-group compared to the other groups. The independent use of the BMP2-cop.BioCaP did not achieve a satisfactory bone repair. In conclusion, the BMP2-cop.BioCaP showed good degradability and biocompatibility, and enhanced osteoinductivity of DBB during CSBD healing in sheep, suggesting BMP2-cop.BioCaP as a potential osteoinducer to enhance the therapeutic effects of the graft materials in clinic.
Collapse
|
24
|
Bosco AF, Faleiros PL, Carmona LR, Garcia VG, Theodoro LH, de Araujo NJ, Nagata MJH, de Almeida JM. Effects of low-level laser therapy on bone healing of critical-size defects treated with bovine bone graft. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 163:303-10. [DOI: 10.1016/j.jphotobiol.2016.08.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/25/2016] [Indexed: 10/21/2022]
|
25
|
E. Klontzas M, I. Kenanidis E, J. MacFarlane R, Michail T, E. Potoupnis M, Heliotis M, Mantalaris A, Tsiridis E. Investigational drugs for fracture healing: preclinical & clinical data. Expert Opin Investig Drugs 2016; 25:585-96. [DOI: 10.1517/13543784.2016.1161757] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Wang D, Tabassum A, Wu G, Deng L, Wismeijer D, Liu Y. Bone regeneration in critical-sized bone defect enhanced by introducing osteoinductivity to biphasic calcium phosphate granules. Clin Oral Implants Res 2016; 28:251-260. [PMID: 26970206 DOI: 10.1111/clr.12791] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Biphasic calcium phosphate (BCP) is frequently used as bone substitute and often needs to be combined with autologous bone to gain an osteoinductive property for guided bone regeneration in implant dentistry. Given the limitations of using autologous bone, bone morphogenetic protein-2 (BMP2)-coprecipitated, layer-by-layer assembled biomimetic calcium phosphate particles (BMP2-cop.BioCaP) have been developed as a potential osteoinducer. In this study, we hypothesized that BMP2-cop.BioCaP could introduce osteoinductivity to BCP and so could function as effectively as autologous bone for the repair of a critical-sized bone defect. MATERIALS AND METHODS We prepared BMP2-cop.BioCaP and monitored the loading and release kinetics of BMP2 from it in vitro. Seven groups (n = 6 animals/group) were established: (i) Empty defect; (ii) BCP; (iii) BCP mixed with biomimetic calcium phosphate particles (BioCaP); (iv) BCP mixed with BMP2-cop.BioCaP; (v) BioCaP; (vi) BMP2-cop.BioCaP; (vii) BCP mixed with autologous bone. They were implanted into 8-mm-diameter rat cranial critical-sized bone defects for an in vivo evaluation. Autologous bone served as a positive control. The osteoinductive efficacy and degradability of materials were evaluated using micro-CT, histology and histomorphometry. RESULTS The combined application of BCP and BMP2-cop.BioCaP resulted in significantly more new bone formation than BCP alone. The osteoinductive efficacy of BMP2-cop.BioCaP was comparable to the golden standard use of autologous bone. Compared with BCP alone, significantly more BCP degradation was found when mixed with BMP2-cop.BioCaP. CONCLUSION The combination of BCP and BMP2-cop.BioCaP showed a promising potential for guided bone regeneration clinically in the future.
Collapse
Affiliation(s)
- D Wang
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Research Institute MOVE, VU University and University of Amsterdam, Amsterdam, the Netherlands
| | - A Tabassum
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Research Institute MOVE, VU University and University of Amsterdam, Amsterdam, the Netherlands
| | - G Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Research Institute MOVE, VU University and University of Amsterdam, Amsterdam, the Netherlands
| | - L Deng
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - D Wismeijer
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Research Institute MOVE, VU University and University of Amsterdam, Amsterdam, the Netherlands
| | - Y Liu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Research Institute MOVE, VU University and University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
27
|
Chang W, Kim R, Park SI, Jung YJ, Ham O, Lee J, Kim JH, Oh S, Lee MY, Kim J, Park MS, Chung YA, Hwang KC, Maeng LS. Enhanced Healing of Rat Calvarial Bone Defects with Hypoxic Conditioned Medium from Mesenchymal Stem Cells through Increased Endogenous Stem Cell Migration via Regulation of ICAM-1 Targeted-microRNA-221. Mol Cells 2015; 38:643-50. [PMID: 26062554 PMCID: PMC4507031 DOI: 10.14348/molcells.2015.0050] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/22/2015] [Accepted: 04/24/2015] [Indexed: 01/08/2023] Open
Abstract
The use of conditioned medium from mesenchymal stem cells may be a feasible approach for regeneration of bone defects through secretion of various components of mesenchymal stem cells such as cytokines, chemokines, and growth factors. Mesenchymal stem cells secrete and accumulate multiple factors in conditioned medium under specific physiological conditions. In this study, we investigated whether the conditioned medium collected under hypoxic condition could effectively influence bone regeneration through enhanced migration and adhesion of endogenous mesenchymal stem cells. Cell migration and adhesion abilities were increased through overexpression of intercellular adhesion molecule-1 in hypoxic conditioned medium treated group. Intercellular adhesion molecule-1 was upregulated by microRNA-221 in mesenchymal stem cells because microRNAs are key regulators of various biological functions via gene expression. To investigate the effects in vivo, evaluation of bone regeneration by computed tomography and histological assays revealed that osteogenesis was enhanced in the hypoxic conditioned medium group relative to the other groups. These results suggest that behavioral changes of endogenous mesenchymal stem cells through microRNA-221 targeted-intercellular adhesion molecule-1 expression under hypoxic conditions may be a potential treatment for patients with bone defects.
Collapse
Affiliation(s)
- Woochul Chang
- Department of Biology Education, College of Education, Pusan National University, Busan 609-735,
Korea
| | - Ran Kim
- Department of Biology Education, College of Education, Pusan National University, Busan 609-735,
Korea
| | - Sang In Park
- Institute of Catholic Integrative Medicine, Incheon St. Mary’s Hospital, The Catholic University of Korea, College of Medicine, Incheon 403-720,
Korea
| | - Yu Jin Jung
- EIT/LOFUS Research Center, International St. Mary’s Hospital, Catholic Kwandong University, Incheon 404-834,
Korea
| | - Onju Ham
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752,
Korea
| | - Jihyun Lee
- Department of Biology Education, College of Education, Pusan National University, Busan 609-735,
Korea
| | - Ji Hyeong Kim
- Department of Biology Education, College of Education, Pusan National University, Busan 609-735,
Korea
| | - Sekyung Oh
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305,
USA
| | - Min Young Lee
- Department of Molecular Physiology, College of Pharmacy, Kyungpook National University, Daegu 702-701,
Korea
| | - Jongmin Kim
- Department of Life Systems, Sookmyung Women’s University, Seoul 140-742,
Korea
| | - Moon-Seo Park
- Department of Biology Education, College of Education, Pusan National University, Busan 609-735,
Korea
| | - Yong-An Chung
- Institute of Catholic Integrative Medicine, Incheon St. Mary’s Hospital, The Catholic University of Korea, College of Medicine, Incheon 403-720,
Korea
| | - Ki-Chul Hwang
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangwon 210-701,
Korea
- Catholic Kwandong University International, St. Mary’s Hospital, Incheon 404-834,
Korea
| | - Lee-So Maeng
- Institute of Catholic Integrative Medicine, Incheon St. Mary’s Hospital, The Catholic University of Korea, College of Medicine, Incheon 403-720,
Korea
| |
Collapse
|
28
|
Luo Z, Deng Y, Zhang R, Wang M, Bai Y, Zhao Q, Lyu Y, Wei J, Wei S. Peptide-laden mesoporous silica nanoparticles with promoted bioactivity and osteo-differentiation ability for bone tissue engineering. Colloids Surf B Biointerfaces 2015; 131:73-82. [DOI: 10.1016/j.colsurfb.2015.04.043] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/16/2015] [Accepted: 04/20/2015] [Indexed: 01/12/2023]
|
29
|
Meng S, Zhang X, Xu M, Heng BC, Dai X, Mo X, Wei J, Wei Y, Deng X. Effects of deer age on the physicochemical properties of deproteinized antler cancellous bone: an approach to optimize osteoconductivity of bone graft. Biomed Mater 2015; 10:035006. [DOI: 10.1088/1748-6041/10/3/035006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
30
|
Effects of oestrogen deficiency and 17β-estradiol therapy on bone healing in calvarial critical size defects treated with bovine bone graft. Arch Oral Biol 2015; 60:631-41. [DOI: 10.1016/j.archoralbio.2015.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/23/2014] [Accepted: 01/20/2015] [Indexed: 11/20/2022]
|
31
|
Lin X, de Groot K, Wang D, Hu Q, Wismeijer D, Liu Y. A review paper on biomimetic calcium phosphate coatings. Open Biomed Eng J 2015; 9:56-64. [PMID: 25893016 PMCID: PMC4391212 DOI: 10.2174/1874120701509010056] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 05/31/2014] [Accepted: 08/30/2014] [Indexed: 12/14/2022] Open
Abstract
Biomimetic calcium phosphate coatings have been developed for bone regeneration and repair because of their biocompatibility, osteoconductivity, and easy preparation. They can be rendered osteoinductive by incorporating an osteogenic agent, such as bone morphogenetic protein 2 (BMP-2), into the crystalline lattice work in physiological situations. The biomimetic calcium phosphate coating enables a controlled, slow and local release of BMP-2 when it undergoes cell mediated coating degradation induced by multinuclear cells, such as osteoclasts and foreign body giant cells, which mimics a physiologically similar release mode, to achieve sustained ectopic or orthotopic bone formation. Therefore, biomimetic calcium phosphate coatings are considered to be a promising delivery vehicle for osteogenic agents. In this review, we present an overview of biomimetic calcium phosphate coatings including their preparation techniques, physico-chemical properties, potential as drug carrier, and their pre-clinical application both in ectopic and orthotopic animal models. We briefly review some features of hydroxyapatite coatings and their clinical applications to gain insight into the clinical applications of biomimetic calcium phosphate coatings in the near future.
Collapse
Affiliation(s)
- X Lin
- Department of Oral Implantology, Academic Centre of Dentistry Amsterdam (ACTA), VU University and University of Amsterdam, Amsterdam, The Netherlands ; Department of Orthodontics, Affiliated Stomatological Hospital of Medical School, Nanjing University, Nanjing, China
| | - K de Groot
- Department of Oral Implantology, Academic Centre of Dentistry Amsterdam (ACTA), VU University and University of Amsterdam, Amsterdam, The Netherlands
| | - D Wang
- Department of Oral Implantology, Academic Centre of Dentistry Amsterdam (ACTA), VU University and University of Amsterdam, Amsterdam, The Netherlands
| | - Q Hu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Medical School, Nanjing University, Nanjing, China
| | - D Wismeijer
- Department of Oral Implantology, Academic Centre of Dentistry Amsterdam (ACTA), VU University and University of Amsterdam, Amsterdam, The Netherlands
| | - Y Liu
- Department of Oral Implantology, Academic Centre of Dentistry Amsterdam (ACTA), VU University and University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
32
|
Horváthy DB, Vácz G, Szabó T, Szigyártó IC, Toró I, Vámos B, Hornyák I, Renner K, Klára T, Szabó BT, Dobó-Nagy C, Doros A, Lacza Z. Serum albumin coating of demineralized bone matrix results in stronger new bone formation. J Biomed Mater Res B Appl Biomater 2015; 104:126-32. [DOI: 10.1002/jbm.b.33359] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/30/2014] [Accepted: 12/09/2014] [Indexed: 11/12/2022]
Affiliation(s)
- Dénes B. Horváthy
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University; Budapest Hungary
- Department of Orthopedics; Semmelweis University; Budapest Hungary
| | - Gabriella Vácz
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University; Budapest Hungary
| | - Tamás Szabó
- Department of Interfaces and Surface Modification; Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences; Budapest Hungary
| | - Imola C. Szigyártó
- Department of Biological Nanochemistry; Institute of Molecular Pharmacology, Research Centre for Natural Sciences, Hungarian Academy of Sciences; Budapest Hungary
| | - Ildikó Toró
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University; Budapest Hungary
| | - Boglárka Vámos
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University; Budapest Hungary
| | - István Hornyák
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University; Budapest Hungary
| | - Károly Renner
- Department of Physical Chemistry and Material Science; Budapest University of Technology and Economics; Budapest Hungary
| | - Tamás Klára
- Department of Orthopedics; Semmelweis University; Budapest Hungary
| | - Bence T. Szabó
- Department of Oral Diagnostics; Semmelweis University; Budapest Hungary
| | - Csaba Dobó-Nagy
- Department of Oral Diagnostics; Semmelweis University; Budapest Hungary
| | - Attila Doros
- Department of Transplantation and Surgery; Semmelweis University; Budapest Hungary
| | - Zsombor Lacza
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University; Budapest Hungary
- Department of Orthopedics; Semmelweis University; Budapest Hungary
| |
Collapse
|
33
|
Choy J, Albers CE, Siebenrock KA, Dolder S, Hofstetter W, Klenke FM. Incorporation of RANKL promotes osteoclast formation and osteoclast activity on β-TCP ceramics. Bone 2014; 69:80-8. [PMID: 25245204 DOI: 10.1016/j.bone.2014.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 09/11/2014] [Accepted: 09/12/2014] [Indexed: 01/01/2023]
Abstract
β-Tricalcium phosphate (β-TCP) ceramics are approved for the repair of osseous defects. In large defects, however, the substitution of the material by authentic bone is inadequate to provide sufficient long-term mechanical stability. We aimed to develop composites of β-TCP ceramics and receptor activator of nuclear factor κ-B ligand (RANKL) to enhance the formation of osteoclasts and promote cell mediated calcium phosphate resorption. RANKL was adsorbed superficially onto β-TCP ceramics or incorporated into a crystalline layer of calcium phosphate by the use of a co-precipitation technique. Murine osteoclast precursors were seeded onto the ceramics. After 15 days, the formation of osteoclasts was quantified cytologically and colorimetrically with tartrate-resistant acidic phosphatase (TRAP) staining and TRAP activity measurements, respectively. Additionally, the expression of transcripts encoding the osteoclast gene products cathepsin K, calcitonin receptor, and of the sodium/hydrogen exchanger NHA2 were quantified by real-time PCR. The activity of newly formed osteoclasts was evaluated by means of a calcium phosphate resorption assay. Superficially adsorbed RANKL did not induce the formation of osteoclasts on β-TCP ceramics. When co-precipitated onto β-TCP ceramics RANKL supported the formation of mature osteoclasts. The development of osteoclast lineage cells was further confirmed by the increased expression of cathepsin K, calcitonin receptor, and NHA2. Incorporated RANKL stimulated the cells to resorb crystalline calcium phosphate. Our in vitro study shows that RANKL incorporated into β-TCP ceramics induces the formation of active, resorbing osteoclasts on the material surface. Once formed, osteoclasts mediate the release of RANKL thereby perpetuating their differentiation and activation. In vivo, the stimulation of osteoclast-mediated resorption may contribute to a coordinated sequence of material resorption and bone formation. Further in vivo studies are needed to confirm the current in vitro findings.
Collapse
Affiliation(s)
- John Choy
- Group for Bone Biology and Orthopedic Research, Department of Clinical Research, University of Bern, CH-3010 Bern, Switzerland
| | - Christoph E Albers
- Department of Orthopaedic Surgery, Inselspital, Bern University Hospital, CH-3010 Bern, Switzerland
| | - Klaus A Siebenrock
- Department of Orthopaedic Surgery, Inselspital, Bern University Hospital, CH-3010 Bern, Switzerland
| | - Silvia Dolder
- Group for Bone Biology and Orthopedic Research, Department of Clinical Research, University of Bern, CH-3010 Bern, Switzerland
| | - Wilhelm Hofstetter
- Group for Bone Biology and Orthopedic Research, Department of Clinical Research, University of Bern, CH-3010 Bern, Switzerland
| | - Frank M Klenke
- Department of Orthopaedic Surgery, Inselspital, Bern University Hospital, CH-3010 Bern, Switzerland.
| |
Collapse
|
34
|
Affiliation(s)
- Tie Liu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Research Institute MOVE, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands; Department of Oral implantology, Hospital/School of Stomatology, Zhejiang University, Yan'an Road 395, 310006, Hangzhou, Zhejiang, China
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Research Institute MOVE, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Zhiyuan Gu
- School of Stomatology/Dental Clinic, Zhejiang Chinese Medical University, Mailbox 97, Binwen Road 548, Binjiang District, 310053, Hangzhou, Zhejiang, China
| | - Daniel Wismeijer
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Research Institute MOVE, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Yuelian Liu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Research Institute MOVE, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands.
| |
Collapse
|
35
|
Tissue-engineered bone constructed in a bioreactor for repairing critical-sized bone defects in sheep. INTERNATIONAL ORTHOPAEDICS 2014; 38:2399-406. [PMID: 24916136 DOI: 10.1007/s00264-014-2389-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/18/2014] [Indexed: 12/21/2022]
Abstract
PURPOSE Repair of bone defects, particularly critical-sized bone defects, is a considerable challenge in orthopaedics. Tissue-engineered bones provide an effective approach. However, previous studies mainly focused on the repair of bone defects in small animals. For better clinical application, repairing critical-sized bone defects in large animals must be studied. This study investigated the effect of a tissue-engineered bone for repairing critical-sized bone defect in sheep. METHODS A tissue-engineered bone was constructed by culturing bone marrow mesenchymal-stem-cell-derived osteoblast cells seeded in a porous β-tricalcium phosphate ceramic (β-TCP) scaffold in a perfusion bioreactor. A critical-sized bone defect in sheep was repaired with the tissue-engineered bone. At the eighth and 16th week after the implantation of the tissue-engineered bone, X-ray examination and histological analysis were performed to evaluate the defect. The bone defect with only the β-TCP scaffold served as the control. RESULT X-ray showed that the bone defect was successfully repaired 16 weeks after implantation of the tissue-engineered bone; histological sections showed that a sufficient volume of new bones formed in β-TCP 16 weeks after implantation. Eight and 16 weeks after implantation, the volume of new bones that formed in the tissue-engineered bone group was more than that in the β-TCP scaffold group (P < 0.05). CONCLUSION Tissue-engineered bone improved osteogenesis in vivo and enhanced the ability to repair critical-sized bone defects in large animals.
Collapse
|
36
|
Fu Y, Zhang Q, Sun Y, Liao W, Bai X, Zhang L, Du L, Jin Y, Wang Q, Li Z, Wang Y. Controlled-release of bone morphogenetic protein-2 from a microsphere coating applied to acid-etched Ti6AL4V implants increases biological bone growth in vivo. J Orthop Res 2014; 32:744-51. [PMID: 24536004 DOI: 10.1002/jor.22594] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 01/17/2014] [Indexed: 02/04/2023]
Abstract
A central clinical challenge regarding the surgical treatment of bone and joint conditions is the eventual loosening of an orthopedic implant as a result of insufficient bone ingrowth at the bone-implant interface. We investigated the in vivo effectiveness of a coating containing recombinant human bone morphogenetic protein-2 (rhBMP-2)-loaded microspheres applied to acid-etched Ti6Al4V cylinders for implantation. Three groups of rabbits (24 per group) were used for implantation: (1) acid-etched Ti6Al4V implants coated with a mixture of rhBMP-2-loaded microspheres (125 ng rhBMP-2/mg microspheres) and α-butyl cyanoacrylate; (2) acid-etched, uncoated implants; and (3) bare, smooth uncoated implants. After implantation, 12 rabbits from each group were used for bone ingrowth determination at 4, 5, 6, 7, 8, and 12 weeks (2 rabbits per time point), while the remainder were used for histological analysis and push-out testing at 12 weeks. Scanning electron microscopy showed significant improvement in bone growth of the rhBMP-2 microspheres/α-butyl cyanoacrylate group compared with the other groups (p<0.01). Histological analysis and push-out testing also demonstrated enhanced bone growth of the rhBMP-2 group over that in the other two groups (p<0.01). The rhBMP-2 group showed the most significant bone growth, suggesting that coating acid-etched implants with a mixture of rhBMP-2-loaded microspheres and α-butyl cyanoacrylate may be an effective method to improve the osseointegration of orthopedic implants.
Collapse
Affiliation(s)
- Yangmu Fu
- Department of Orthopedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Stimulation of bone healing by sustained bone morphogenetic protein 2 (BMP-2) delivery. Int J Mol Sci 2014; 15:8539-52. [PMID: 24830556 PMCID: PMC4057747 DOI: 10.3390/ijms15058539] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/24/2014] [Accepted: 05/04/2014] [Indexed: 12/12/2022] Open
Abstract
The aim of the study was to investigate the effect of a sustained release of bone morphogenetic protein2 (BMP-2) incorporated in a polymeric implant coating on bone healing. In vitro analysis revealed a sustained, but incomplete BMP-2 release until Day 42. For the in vivo study, the rat tibia osteotomy was stabilized either with control or BMP-2 coated wires, and the healing progress was followed by micro computed tomography (μCT), biomechanical testing and histology at Days 10, 28, 42 and 84. MicroCT showed an accelerated formation of mineralized callus, as well as remodeling and an increase of mineralized/total callus volume (p = 0.021) at Day 42 in the BMP-2 group compared to the control. Histology revealed an increased callus mineralization at Days 42 and 84 (p = 0.006) with reduced cartilage at Day 84 (p = 0.004) in the BMP-2 group. Biomechanical stiffness was significantly higher in the BMP-2 group (p = 0.045) at Day 42. In summary, bone healing was enhanced after sustained BMP-2 application compared to the control. Using the same drug delivery system, but a burst release of BMP-2, a previous published study showed a similar positive effect on bone healing. Distinct differences in the healing outcome might be explained due to the different BMP release kinetics and dosages. However, further studies are necessary to adapt the optimal release profiles to physiological mechanisms.
Collapse
|
38
|
Rentsch C, Schneiders W, Manthey S, Rentsch B, Rammelt S. Comprehensive histological evaluation of bone implants. BIOMATTER 2014; 4:27993. [PMID: 24504113 DOI: 10.4161/biom.27993] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To investigate and assess bone regeneration in sheep in combination with new implant materials classical histological staining methods as well as immunohistochemistry may provide additional information to standard radiographs or computer tomography. Available published data of bone defect regenerations in sheep often present none or sparely labeled histological images. Repeatedly, the exact location of the sample remains unclear, detail enlargements are missing and the labeling of different tissues or cells is absent. The aim of this article is to present an overview of sample preparation, staining methods and their benefits as well as a detailed histological description of bone regeneration in the sheep tibia. General histological staining methods like hematoxylin and eosin, Masson-Goldner trichrome, Movat's pentachrome and alcian blue were used to define new bone formation within a sheep tibia critical size defect containing a polycaprolactone-co-lactide (PCL) scaffold implanted for 3 months (n = 4). Special attention was drawn to describe the bone healing patterns down to cell level. Additionally one histological quantification method and immunohistochemical staining methods are described.
Collapse
Affiliation(s)
- Claudia Rentsch
- Department of Trauma and Reconstructive Surgery; University Hospital Carl Gustav Carus; Technische Universität Dresden; Dresden, Germany; University Hospital and Medical Faculty; Technische Universität Dresden; Centre for Translational Bone, Joint and Soft Tissue Research; Dresden, Germany
| | - Wolfgang Schneiders
- Department of Trauma and Reconstructive Surgery; University Hospital Carl Gustav Carus; Technische Universität Dresden; Dresden, Germany
| | - Suzanne Manthey
- Department of Trauma and Reconstructive Surgery; University Hospital Carl Gustav Carus; Technische Universität Dresden; Dresden, Germany; University Hospital and Medical Faculty; Technische Universität Dresden; Centre for Translational Bone, Joint and Soft Tissue Research; Dresden, Germany
| | - Barbe Rentsch
- University Hospital and Medical Faculty; Technische Universität Dresden; Centre for Translational Bone, Joint and Soft Tissue Research; Dresden, Germany
| | - Stephan Rammelt
- Department of Trauma and Reconstructive Surgery; University Hospital Carl Gustav Carus; Technische Universität Dresden; Dresden, Germany; University Hospital and Medical Faculty; Technische Universität Dresden; Centre for Translational Bone, Joint and Soft Tissue Research; Dresden, Germany
| |
Collapse
|
39
|
Zhang X, Xu M, Song L, Wei Y, Lin Y, Liu W, Heng BC, Peng H, Wang Y, Deng X. Effects of compatibility of deproteinized antler cancellous bone with various bioactive factors on their osteogenic potential. Biomaterials 2013; 34:9103-14. [DOI: 10.1016/j.biomaterials.2013.08.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 08/12/2013] [Indexed: 11/26/2022]
|