1
|
Ma X, Pang Q, Gong Y, Li X, Liu W, Jiang Y, Wang O, Li M, Xing X, Xia W. Identification of Rare and Novel PHEX Variants in X-linked Hypophosphatemia. J Clin Endocrinol Metab 2024; 109:3176-3185. [PMID: 38722819 DOI: 10.1210/clinem/dgae299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Indexed: 11/19/2024]
Abstract
CONTEXT X-linked hypophosphatemia (XLH) is a rare metabolic bone disease caused by inactivation mutations in the PHEX gene. Despite the extensive number of reported PHEX variants, only a few cases of chromosomal abnormalities have been documented. OBJECTIVE We aimed to identify the pathogenic variants in 6 unrelated families with a clinical diagnosis of XLH and to propose a genetic workflow for hypophosphatemia patients suspected of having XLH. METHODS Multiple genetic testing assays were used to analyze the 6 families' genetic profiles, including whole exome sequencing, multiplex ligation-dependent probe amplification, whole genome sequencing, reverse transcript polymerase chain reaction, Sanger sequencing, and karyotyping. RESULTS The study identified 6 novel pathogenic variants, including 1 mosaic variant (exon 16-22 deletion), 3 chromosomal abnormalities (46, XN, inv[X][pter→p22.11::q21.31→p22.11::q21.31 →qter], 46, XN, inv[X][p22.11p22.11], and XXY), a nonclassical intron variant (NM_000444.6, c.1701_31A > G), and a deletion variant (NM_000444.6, c.64_5464-186 del5215) of PHEX. Additionally, a genetic testing workflow was proposed to aid in diagnosing patients suspected of XLH. CONCLUSION Our research expands the mutation spectrum of PHEX and highlights the significance of using multiple genetic testing methods to diagnose XLH.
Collapse
Affiliation(s)
- Xiaosen Ma
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Qianqian Pang
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yiyi Gong
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiang Li
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Wei Liu
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Yan Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Ou Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Mei Li
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xiaoping Xing
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
2
|
Zhu Z, Bo-Ran Ho B, Chen A, Amrhein J, Apetrei A, Carpenter TO, Lazaretti-Castro M, Colazo JM, McCrystal Dahir K, Geßner M, Gurevich E, Heier CA, Simmons JH, Hunley TE, Hoppe B, Jacobsen C, Kouri A, Ma N, Majumdar S, Molin A, Nokoff N, Ott SM, Peña HG, Santos F, Tebben P, Topor LS, Deng Y, Bergwitz C. An update on clinical presentation and responses to therapy of patients with hereditary hypophosphatemic rickets with hypercalciuria (HHRH). Kidney Int 2024; 105:1058-1076. [PMID: 38364990 PMCID: PMC11106756 DOI: 10.1016/j.kint.2024.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/23/2023] [Accepted: 01/08/2024] [Indexed: 02/18/2024]
Abstract
Pathogenic variants in solute carrier family 34, member 3 (SLC34A3), the gene encoding the sodium-dependent phosphate cotransporter 2c (NPT2c), cause hereditary hypophosphatemic rickets with hypercalciuria (HHRH). Here, we report a pooled analysis of clinical and laboratory records of 304 individuals from 145 kindreds, including 20 previously unreported HHRH kindreds, in which two novel SLC34A3 pathogenic variants were identified. Compound heterozygous/homozygous carriers show above 90% penetrance for kidney and bone phenotypes. The biochemical phenotype for heterozygous carriers is intermediate with decreased serum phosphate, tubular reabsorption of phosphate (TRP (%)), fibroblast growth factor 23, and intact parathyroid hormone, but increased serum 1,25-dihydroxy vitamin D, and urine calcium excretion causing idiopathic hypercalciuria in 38%, with bone phenotypes still observed in 23% of patients. Oral phosphate supplementation is the current standard of care, which typically normalizes serum phosphate. However, although in more than half of individuals this therapy achieves correction of hypophosphatemia it fails to resolve the other outcomes. The American College of Medical Genetics and Genomics score correlated with functional analysis of frequent SLC34A3 pathogenic variants in vitro and baseline disease severity. The number of mutant alleles and baseline TRP (%) were identified as predictors for kidney and bone phenotypes, baseline TRP (%) furthermore predicted response to therapy. Certain SLC34A3/NPT2c pathogenic variants can be identified with partial responses to therapy, whereas with some overlap, others present only with kidney phenotypes and a third group present only with bone phenotypes. Thus, our report highlights important novel clinical aspects of HHRH and heterozygous carriers, raises awareness to this rare group of disorders and can be a foundation for future studies urgently needed to guide therapy of HHRH.
Collapse
Affiliation(s)
- Zewu Zhu
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bryan Bo-Ran Ho
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Alyssa Chen
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, USA
| | - James Amrhein
- Pediatric Endocrinology and Diabetes, School of Medicine Greenville Campus, University of South Carolina, Greenville, South Carolina, USA
| | - Andreea Apetrei
- Caen University Hospital, Department of Genetics, UR7450 Biotargen, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, OSCAR Network, Caen, France
| | - Thomas Oliver Carpenter
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marise Lazaretti-Castro
- Division of Endocrinology, Escola Paulista de Medicina-Universidade Federal de Sao Paulo (EPM-UNIFESP), Sao Paulo, Brazil
| | - Juan Manuel Colazo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Kathryn McCrystal Dahir
- Division of Endocrinology, Program for Metabolic Bone Disorders, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michaela Geßner
- Pediatric Nephrology, Children's and Adolescents' Hospital, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Evgenia Gurevich
- Schneider Children's Medical Center of Israel, Pediatric Nephrology Institute, Petach Tikva, Israel; Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | - Jill Hickman Simmons
- Department of Pediatrics, Division of Endocrinology and Diabetes, Vanderbilt University School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Tracy Earl Hunley
- Division of Pediatric Nephrology, Vanderbilt University Medical Center, Monroe Carell Jr Children's Hospital at Vanderbilt, Nashville, Tennessee, USA
| | - Bernd Hoppe
- Division of Pediatric Nephrology, Department of Pediatrics, University of Bonn, Bonn, Germany
| | - Christina Jacobsen
- Division of Endocrinology, Harvard Medical School, Boston, Massachusetts, USA
| | - Anne Kouri
- Pediatric Nephrology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nina Ma
- Section of Pediatric Endocrinology, Children's Hospital Colorado, Aurora, Colorado, USA; Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Sachin Majumdar
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Arnaud Molin
- Caen University Hospital, Department of Genetics, UR7450 Biotargen, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, OSCAR Network, Caen, France
| | - Natalie Nokoff
- Department of Pediatrics, Section of Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Susan M Ott
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Helena Gil Peña
- Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Fernando Santos
- Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Peter Tebben
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, USA; Division of Pediatric Endocrinology, Mayo Clinic, Rochester, Minnesota, USA
| | - Lisa Swartz Topor
- Division of Pediatric Endocrinology, Hasbro Children's Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Yanhong Deng
- Yale School of Public Health, New Haven, Connecticut, USA
| | - Clemens Bergwitz
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
3
|
Portales-Castillo I, Rieg T, Khalid SB, Nigwekar SU, Neyra JA. Physiopathology of Phosphate Disorders. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:177-188. [PMID: 36868732 PMCID: PMC10565570 DOI: 10.1053/j.akdh.2022.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 03/05/2023]
Abstract
Intracellular phosphate is critical for cellular processes such as signaling, nucleic acid synthesis, and membrane function. Extracellular phosphate (Pi) is an important component of the skeleton. Normal levels of serum phosphate are maintained by the coordinated actions of 1,25-dihydroxyvitamin D3, parathyroid hormone and fibroblast growth factor-23, which intersect in the proximal tubule to control the reabsorption of phosphate via the sodium-phosphate cotransporters Npt2a and Npt2c. Furthermore, 1,25-dihydroxyvitamin D3 participates in the regulation of dietary phosphate absorption in the small intestine. Clinical manifestations associated with abnormal serum phosphate levels are common and occur as a result of genetic or acquired conditions affecting phosphate homeostasis. For example, chronic hypophosphatemia leads to osteomalacia in adults and rickets in children. Acute severe hypophosphatemia can affect multiple organs leading to rhabdomyolysis, respiratory dysfunction, and hemolysis. Patients with impaired kidney function, such as those with advanced CKD, have high prevalence of hyperphosphatemia, with approximately two-thirds of patients on chronic hemodialysis in the United States having serum phosphate levels above the recommended goal of 5.5 mg/dL, a cutoff associated with excess risk of cardiovascular complications. Furthermore, patients with advanced kidney disease and hyperphosphatemia (>6.5 mg/dL) have almost one-third excess risk of death than those with phosphate levels between 2.4 and 6.5 mg/dL. Given the complex mechanisms that regulate phosphate levels, the interventions to treat the various diseases associated with hypophosphatemia or hyperphosphatemia rely on the understanding of the underlying pathobiological mechanisms governing each patient condition.
Collapse
Affiliation(s)
- Ignacio Portales-Castillo
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, MA; Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL; James A. Haley Veterans' Hospital, Tampa, FL; Center for Hypertension and Kidney Research, University of South Florida, Tampa, FL
| | - Sheikh B Khalid
- Department of Internal Medicine, The Indus Hospital, Lahore Pakistan
| | - Sagar U Nigwekar
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, MA
| | - Javier A Neyra
- Department of Internal Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL.
| |
Collapse
|
4
|
Gong Y, Ni X, Jin C, Li X, Wang Y, Wang O, Li M, Xing X, Wu Z, Jiang Y, Xia W. Serum Metabolomics Reveals Dysregulation and Diagnostic Potential of Oxylipins in Tumor-induced Osteomalacia. J Clin Endocrinol Metab 2022; 107:1383-1391. [PMID: 34904633 DOI: 10.1210/clinem/dgab885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Excessive production of fibroblast growth factor 23 (FGF23) by a tumor is considered the main pathogenesis in tumor-induced osteomalacia (TIO). Despite its importance to comprehensive understanding of pathogenesis and diagnosis, the regulation of systemic metabolism in TIO remains unclear. OBJECTIVE We aimed to systematically characterize the metabolome alteration associated with TIO. METHODS By means of liquid chromatography-tandem mass spectrometry-based metabolomics, we analyzed the metabolic profile from 96 serum samples (32 from TIO patients at initial diagnosis, pairwise samples after tumor resection, and 32 matched healthy control (HC) subjects). In order to screen and evaluate potential biomarkers, statistical analyses, pathway enrichment and receiver operating characteristic (ROC) were performed. RESULTS Metabolomic profiling revealed distinct alterations between TIO and HC cohorts. Differential metabolites were screened and conducted to functional clustering and annotation. A significantly enriched pathway was found involving arachidonic acid metabolism. A combination of 5 oxylipins, 4-HDoHE, leukotriene B4, 5-HETE, 17-HETE, and 9,10,13-TriHOME, demonstrated a high sensitivity and specificity panel for TIO prediction screened by random forest algorithm (AUC = 0.951; 95% CI, 0.827-1). Supported vector machine modeling and partial least squares modeling were conducted to validate the predictive capabilities of the diagnostic panel. CONCLUSION Metabolite profiling of TIO showed significant alterations compared with HC. A high-sensitivity and high-specificity panel with 5 oxylipins was tested as diagnostic predictor. For the first time, we provide the global profile of metabolomes and identify potential diagnostic biomarkers of TIO. The present work may offer novel insights into the pathogenesis of TIO.
Collapse
Affiliation(s)
- Yiyi Gong
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
- Medical Research Center, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiaolin Ni
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Chenxi Jin
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiang Li
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yujie Wang
- Medical Research Center, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ou Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Mei Li
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiaoping Xing
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Zhihong Wu
- Medical Research Center, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yan Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
5
|
Christensen S, Tebben PJ, Sas D, Creo AL. Variable Clinical Presentation of Children with Hereditary Hypophosphatemic Rickets with Hypercalciuria: A Case Series and Review of the Literature. Horm Res Paediatr 2022; 94:374-389. [PMID: 34666334 DOI: 10.1159/000520299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/19/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is a rare condition of renal phosphate wasting due to SLC34A3 mutations [Am J Hum Genet. 2006;78(2):193-201]. Patients exhibit low serum phosphorus, high 1,25-dihydroxyvitamin D, and inappropriately high urine phosphate and calcium. However, symptoms vary, and little is known about specific phenotype-genotype correlations. METHODS We report 3 HHRH cases in unrelated 12-year-old, 9-year-old, and 14-year-old patients and perform a systematic literature review. RESULTS All 3 patients exhibited labs typical of HHRH. Yet, their presentations differed, and 2 novel SLC34A3 variants were identified. As found in the literature review, bone symptoms are most common (50%), followed by renal symptoms (17%), combined bone and renal symptoms (18%), and asymptomatic (9%). CONCLUSION These 3 cases highlight the variability of presenting signs and symptoms among individuals with HHRH. An accurate diagnosis is critical as treatment differs from other disorders of phosphate wasting, urinary stones, and mineralization defects.
Collapse
Affiliation(s)
- Stephanie Christensen
- Division of General Pediatrics, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Peter J Tebben
- Division of Pediatric Endocrinology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, USA
| | - David Sas
- Division of Pediatric Nephrology and Hypertension, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Ana L Creo
- Division of Pediatric Endocrinology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
6
|
Jiang Y, Li X, Feng J, Li M, Wang O, Xing XP, Xia WB. The genetic polymorphisms of XPR1 and SCL34A3 are associated with Fanconi syndrome in Chinese patients of tumor-induced osteomalacia. J Endocrinol Invest 2021; 44:773-780. [PMID: 32725396 DOI: 10.1007/s40618-020-01371-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE Tumor-induced osteomalacia (TIO) is an acquired form of hypophosphatemia caused by tumors with excess production of fibroblast growth factor 23 (FGF23). Some reports showed that TIO patients had renal Fanconi syndrome (FS) with unidentified mechanism. In this study, we investigated the association between genetic polymorphisms of phosphate transporters in renal proximal tubules and TIO with FS. METHODS We recruited 30 TIO patients with FS (TIO-FS) as well as 30 TIO patients (TIO-nonFS) without any urine abnormalities matched by age and gender. We collected clinical manifestations and conducted targeted sequencing of SLC34A1, SLC34A3 and XPR1 genes and the association analysis between variants in TIO with FS and phenotypes. RESULTS TIO-FS group had lower levels of serum phosphate (0.44 ± 0.12 vs. 0.51 ± 0.07 mmol/L, p < 0.05) than TIO-nonFS group. Among the 16 SNPs in SLC34A1, SLC34A3 and XPR1 genes, GG/GC genotypes of rs148196667 in XPR1 and AA/TA genotypes of rs35535797 in SLC34A3 were associated with a reduced susceptibility to have FS. The G allele of rs148196667 in XPR1 decreased the risk of FS. The GGAA haplotype in SLC34A3 and GCT haplotype in XPR1 were associated with a decreased risk for FS. CONCLUSIONS The polymorphisms of XPR1 and SCL34A3 are associated with TIO patients with Fanconi syndrome. It provides novel insight to the relationship of phosphate transportation and general functions of renal proximal tubules.
Collapse
Affiliation(s)
- Y Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China.
| | - X Li
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China
| | - J Feng
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China
- Department of Endocrinology and Metabolism, South Campus, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201112, China
| | - M Li
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China
| | - O Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China
| | - X-P Xing
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China
| | - W-B Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China.
| |
Collapse
|
7
|
Ni X, Li X, Zhang Q, Liu C, Gong Y, Wang O, Li M, Xing X, Jiang Y, Xia W. Clinical Characteristics and Bone Features of Autosomal Recessive Hypophosphatemic Rickets Type 1 in Three Chinese Families: Report of Five Chinese Cases and Review of the Literature. Calcif Tissue Int 2020; 107:636-648. [PMID: 32920683 DOI: 10.1007/s00223-020-00755-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022]
Abstract
Autosomal recessive hypophosphatemic rickets type 1 (ARHR1) was reported to be caused by homozygous mutation of dentin matrix protein 1 (DMP1). To date, very few cases have been reported. Here, we summarized clinical, laboratory and imaging findings of ARHR1 patients in our hospital. Literature review was performed to analyze genotype-phenotype correlation. Five Chinese patients from three unrelated pedigrees presented with lower extremity deformity and short stature. Hypophosphatemia, elevated alkaline phosphatase, high intact fibroblast growth factor 23 and sclerostin were found. X-ray uncovered coexistence of osteomalacia and osteosclerosis. Although areal bone mineral density (aBMD) of axial bone measured by dual-energy X-ray absorptiometry was relatively high in all patients, volumetric BMD (vBMD) and microstructure of one adult patient's peripheral bone detected by HR-pQCT were damaged. Mutation analyses of DMP1 revealed three homozygous mutations including two novel mutations, c.54 + 1G > C and c.94C > A (p.E32X), and a reported mutation c.184-1G > A. Genotype-phenotype correlation analysis including 30 cases (25 from literature review and 5 from our study) revealed that patients harboring mutations affecting C-terminal fragment of DMP1 presented with shorter stature (Z score of height = - 3.4 ± 1.6 vs - 1.0 ± 1.6, p = 0.001) and lower serum phosphate level (0.70 ± 0.15 vs 0.84 ± 0.16, p = 0.03) than those harboring mutations only affecting N-terminal fragment. In summary, we reported five Chinese ARHR1 patients and identified two novel DMP1 mutations. High aBMD and local osteosclerosis in axial bone with low vBMD and damaged microstructure in peripheral bone were featured. Genotype-phenotype correlation analysis confirmed the important role of C-terminal fragment of DMP1.
Collapse
Affiliation(s)
- Xiaolin Ni
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiang Li
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Qi Zhang
- Laboratory Department, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Chang Liu
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yiyi Gong
- Central Research Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Ou Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Mei Li
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiaoping Xing
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yan Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
8
|
Abstract
Kidney stone disease (nephrolithiasis) is a common problem that can be associated with alterations in urinary solute composition including hypercalciuria. Studies suggest that the prevalence of monogenic kidney stone disorders, including renal tubular acidosis with deafness, Bartter syndrome, primary hyperoxaluria and cystinuria, in patients attending kidney stone clinics is ∼15%. However, for the majority of individuals, nephrolithiasis has a multifactorial aetiology involving genetic and environmental factors. Nonetheless, the genetic influence on stone formation in these idiopathic stone formers remains considerable and twin studies estimate a heritability of >45% for nephrolithiasis and >50% for hypercalciuria. The contribution of polygenic influences from multiple loci have been investigated by genome-wide association and candidate gene studies, which indicate that a number of genes and molecular pathways contribute to the risk of stone formation. Genetic approaches, studying both monogenic and polygenic factors in nephrolithiasis, have revealed that the following have important roles in the aetiology of kidney stones: transporters and channels; ions, protons and amino acids; the calcium-sensing receptor (a G protein-coupled receptor) signalling pathway; and the metabolic pathways for vitamin D, oxalate, cysteine, purines and uric acid. These advances, which have increased our understanding of the pathogenesis of nephrolithiasis, will hopefully facilitate the future development of targeted therapies for precision medicine approaches in patients with nephrolithiasis.
Collapse
Affiliation(s)
- Sarah A Howles
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.,Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
9
|
Bhadada SK, Sridhar S, Dhiman V, Wong K, Bennetts B, Naot D, Jayaraman S, Cundy T. HYPOPHOSPHATEMIC RICKETS WITH HYPERCALCIURIA: A NOVEL HOMOZYGOUS MUTATION IN SLC34A3 AND LITERATURE REVIEW. AACE Clin Case Rep 2020; 6:e105-e112. [PMID: 32524022 PMCID: PMC7282280 DOI: 10.4158/accr-2019-0456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 12/30/2019] [Indexed: 11/21/2023] Open
Abstract
OBJECTIVE Hypophosphatemic rickets with hypercalciuria (HHRH) is a rare, recessively-inherited form of rickets caused by homozygous or compound heterozygous mutations in the SLC34A3 gene that encodes the renal tubular phosphate transporter protein NaPi2c. The bone phenotype varies from severe rickets to no disease. Accurate diagnosis is important as the treatment differs from other forms of rickets. METHODS The patient was a 12-year-old boy from the Indian subcontinent with florid hypophosphatemic rickets. A targeted gene panel to search for mutations in genes associated with inherited forms of rickets was performed. We also completed a literature search of published cases of HHRH. RESULTS The targeted gene panel demonstrated a novel homozygous SLC34A3 mutation: c.1339 G>A (p.Ala447Thr). His parents were heterozygous for the mutation. In our literature review we found that people with homozygous SLC34A3 mutations were more likely to have rickets than those with compound heterozygous mutations (85% versus 45%, p<0.002) and that serum phosphate z scores were lower in those with rickets than those without (-3.3 with a standard deviation of 1.5 versus -2.1 with a standard deviation of 1.5, p<0.005). CONCLUSION The bone phenotype of HHRH is related to the nature of the mutation and serum phosphate levels. Targeted gene panels can aid in the accurate diagnosis of inherited forms of rickets, and facilitate correct treatment.
Collapse
|
10
|
Wagner CA, Rubio-Aliaga I, Hernando N. Renal phosphate handling and inherited disorders of phosphate reabsorption: an update. Pediatr Nephrol 2019; 34:549-559. [PMID: 29275531 DOI: 10.1007/s00467-017-3873-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/08/2017] [Accepted: 12/12/2017] [Indexed: 01/12/2023]
Abstract
Renal phosphate handling critically determines plasma phosphate and whole body phosphate levels. Filtered phosphate is mostly reabsorbed by Na+-dependent phosphate transporters located in the brush border membrane of the proximal tubule: NaPi-IIa (SLC34A1), NaPi-IIc (SLC34A3), and Pit-2 (SLC20A2). Here we review new evidence for the role and relevance of these transporters in inherited disorders of renal phosphate handling. The importance of NaPi-IIa and NaPi-IIc for renal phosphate reabsorption and mineral homeostasis has been highlighted by the identification of mutations in these transporters in a subset of patients with infantile idiopathic hypercalcemia and patients with hereditary hypophosphatemic rickets with hypercalciuria. Both diseases are characterized by disturbed calcium homeostasis secondary to elevated 1,25-(OH)2 vitamin D3 as a consequence of hypophosphatemia. In vitro analysis of mutated NaPi-IIa or NaPi-IIc transporters suggests defective trafficking underlying disease in most cases. Monoallelic pathogenic mutations in both SLC34A1 and SLC34A3 appear to be very frequent in the general population and have been associated with kidney stones. Consistent with these findings, results from genome-wide association studies indicate that variants in SLC34A1 are associated with a higher risk to develop kidney stones and chronic kidney disease, but underlying mechanisms have not been addressed to date.
Collapse
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland. .,National Center for Competence in Research (NCCR) Kidney.CH, Zurich, Switzerland.
| | - Isabel Rubio-Aliaga
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,National Center for Competence in Research (NCCR) Kidney.CH, Zurich, Switzerland
| | - Nati Hernando
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,National Center for Competence in Research (NCCR) Kidney.CH, Zurich, Switzerland
| |
Collapse
|
11
|
Zhang C, Zhao Z, Sun Y, Xu L, JiaJue R, Cui L, Pang Q, Jiang Y, Li M, Wang O, He X, He S, Nie M, Xing X, Meng X, Zhou X, Yan L, Kaplan JM, Insogna KL, Xia W. Clinical and genetic analysis in a large Chinese cohort of patients with X-linked hypophosphatemia. Bone 2019; 121:212-220. [PMID: 30682568 DOI: 10.1016/j.bone.2019.01.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/11/2019] [Accepted: 01/20/2019] [Indexed: 01/09/2023]
Abstract
X-linked Hypophosphatemia (XLH) is caused by loss of function mutations in the PHEX gene. Given the recent availability of a new therapy for XLH, a retrospective analysis of the most recent 261 Chinese patients with XLH evaluated at Peking Union Medical College Hospital was conducted. Clinical, biochemical, radiographic studies, as well as genetic analyses, including Sanger sequencing for point mutations and Multiplex Ligation-dependent Probe Amplification (MLPA) to detect large deletions/duplications were employed. Based on the structure of Neprilysin (NEP), a member of M13 family that includes PHEX, a three-dimensional (3D) model of PHEX was constructed, missense and nonsense mutations were positioned on the predicted structure to visualize relative positions of these two types of variants. Sex differences and genotype-phenotype correlations were also undertaken. Genetic analyses identified 166 PHEX mutations in 261 XLH patients. One hundred and eleven of the 166 mutations were unreported. Four mutational 'hot-spots' were identified in this cohort (P534L, G579R, R747X, c.1645+1 G>A). Missense mutations, but not nonsense mutations, clustered in the two putative lobes of the PHEX protein, suggesting these are functionally important regions of the molecule. Circulating levels of intact FGF23 were significantly elevated (median level 101.9 pg/mL; reference range 16.1-42.2 pg/mL). No significant sex differences, as well as no phenotypic differences were identified between patients with putative truncating and non-truncating PHEX mutations. However, patients with N-terminal PHEX mutations had an earlier age of onset of disease (P = 0.015) and higher iFGF23 levels (P = 0.045) as compared to those with C-terminal mutations. These data provide a comprehensive characterization of the largest cohort of patients with XLH reported to date from China, which will help in evaluating the applicability of emerging therapies for this disease in this ethnic group.
Collapse
Affiliation(s)
- Cong Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan No. 1, Wangfujing, Dongcheng District, Beijing 100730, China
| | - Zhen Zhao
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan No. 1, Wangfujing, Dongcheng District, Beijing 100730, China; Department of Geriatrics, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing 100050, China
| | - Yue Sun
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan No. 1, Wangfujing, Dongcheng District, Beijing 100730, China
| | - Lijun Xu
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan No. 1, Wangfujing, Dongcheng District, Beijing 100730, China
| | - Ruizhi JiaJue
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan No. 1, Wangfujing, Dongcheng District, Beijing 100730, China
| | - Lijia Cui
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan No. 1, Wangfujing, Dongcheng District, Beijing 100730, China
| | - Qianqian Pang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan No. 1, Wangfujing, Dongcheng District, Beijing 100730, China
| | - Yan Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan No. 1, Wangfujing, Dongcheng District, Beijing 100730, China
| | - Mei Li
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan No. 1, Wangfujing, Dongcheng District, Beijing 100730, China
| | - Ou Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan No. 1, Wangfujing, Dongcheng District, Beijing 100730, China
| | - Xiaodong He
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan No. 1, Wangfujing, Dongcheng District, Beijing 100730, China; Department of Endocrinology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Shuli He
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan No. 1, Wangfujing, Dongcheng District, Beijing 100730, China
| | - Min Nie
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan No. 1, Wangfujing, Dongcheng District, Beijing 100730, China
| | - Xiaoping Xing
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan No. 1, Wangfujing, Dongcheng District, Beijing 100730, China
| | - Xunwu Meng
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan No. 1, Wangfujing, Dongcheng District, Beijing 100730, China
| | - Xueying Zhou
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan No. 1, Wangfujing, Dongcheng District, Beijing 100730, China
| | - Lina Yan
- Department of Endocrinology, Baogang Hospital, Baotou, Inner Mongolia 014000, China
| | - Jared M Kaplan
- Department of Medicine, Section of Endocrinology, Yale School of Medicine, New Haven, CT, USA
| | - Karl L Insogna
- Department of Medicine, Section of Endocrinology, Yale School of Medicine, New Haven, CT, USA
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Shuaifuyuan No. 1, Wangfujing, Dongcheng District, Beijing 100730, China.
| |
Collapse
|
12
|
Bergwitz C, Miyamoto KI. Hereditary hypophosphatemic rickets with hypercalciuria: pathophysiology, clinical presentation, diagnosis and therapy. Pflugers Arch 2018; 471:149-163. [PMID: 30109410 DOI: 10.1007/s00424-018-2184-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 12/24/2022]
Abstract
Hereditary hypophosphatemic rickets with hypercalciuria (HHRH; OMIM: 241530) is a rare autosomal recessive disorder with an estimated prevalence of 1:250,000 that was originally described by Tieder et al. Individuals with HHRH carry compound-heterozygous or homozygous (comp/hom) loss-of-function mutations in the sodium-phosphate co-transporter NPT2c. These mutations result in the development of urinary phosphate (Pi) wasting and hypophosphatemic rickets, bowing, and short stature, as well as appropriately elevated 1,25(OH)2D levels, which sets this fibroblast growth factor 23 (FGF23)-independent disorder apart from the more common X-linked hypophosphatemia. The elevated 1,25(OH)2D levels in turn result in hypercalciuria due to enhanced intestinal calcium absorption and reduced parathyroid hormone (PTH)-dependent calcium-reabsorption in the distal renal tubules, leading to the development of kidney stones and/or nephrocalcinosis in approximately half of the individuals with HHRH. Even heterozygous NPT2c mutations are frequently associated with isolated hypercalciuria (IH), which increases the risk of kidney stones or nephrocalcinosis threefold in affected individuals compared with the general population. Bone disease is generally absent in individuals with IH, in contrast to those with HHRH. Treatment of HHRH and IH consists of monotherapy with oral Pi supplements, while active vitamin D analogs are contraindicated, mainly because the endogenous 1,25(OH)2D levels are already elevated but also to prevent further worsening of the hypercalciuria. Long-term studies to determine whether oral Pi supplementation alone is sufficient to prevent renal calcifications and bone loss, however, are lacking. It is also unknown how therapy should be monitored, whether secondary hyperparathyroidism can develop, and whether Pi requirements decrease with age, as observed in some FGF23-dependent hypophosphatemic disorders, or whether this can lead to osteoporosis.
Collapse
Affiliation(s)
- Clemens Bergwitz
- Section Endocrinology and Metabolism, Yale University School of Medicine, Anlyan Center, Office S117, Lab S110, 1 Gilbert Street, New Haven, CT 06519, USA.
| | - Ken-Ichi Miyamoto
- Department of Molecular Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
13
|
Abstract
Rickets is a metabolic bone disease that develops as a result of inadequate mineralization of growing bone due to disruption of calcium, phosphorus and/or vitamin D metabolism. Nutritional rickets remains a significant child health problem in developing countries. In addition, several rare genetic causes of rickets have also been described, which can be divided into two groups. The first group consists of genetic disorders of vitamin D biosynthesis and action, such as vitamin D-dependent rickets type 1A (VDDR1A), vitamin D-dependent rickets type 1B (VDDR1B), vitamin D-dependent rickets type 2A (VDDR2A), and vitamin D-dependent rickets type 2B (VDDR2B). The second group involves genetic disorders of excessive renal phosphate loss (hereditary hypophosphatemic rickets) due to impairment in renal tubular phosphate reabsorption as a result of FGF23-related or FGF23-independent causes. In this review, we focus on clinical, laboratory and genetic characteristics of various types of hereditary rickets as well as differential diagnosis and treatment approaches.
Collapse
Affiliation(s)
- Sezer Acar
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey
| | - Korcan Demir
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey
| | - Yufei Shi
- King Faisal Specialist Hospital & Research Centre, Department of Genetics, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Asadzadeh Manjili F, Bakhshi Aliabad MH, Kalantar SM, Sahebzamani A, Safa A. Molecular and Biochemical Aspects of Hypophosphatemic Rickets; an Updated Review. INTERNATIONAL JOURNAL OF BASIC SCIENCE IN MEDICINE 2017. [DOI: 10.15171/ijbsm.2017.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|