1
|
Tang MJ, Graham HK, Davidson KE. Botulinum Toxin A and Osteosarcopenia in Experimental Animals: A Scoping Review. Toxins (Basel) 2021; 13:213. [PMID: 33799488 PMCID: PMC8001269 DOI: 10.3390/toxins13030213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 01/24/2023] Open
Abstract
We conducted a scoping review to investigate the effects of intramuscular injection of Botulinum Toxin A (BoNT-A) on bone morphology. We investigated if the muscle atrophy associated with Injection of BoNT-A had effects on the neighboring bone. We used the search terms: osteopenia, bone atrophy, Botulinum Toxin A, Micro-CT, mice or rat. The following databases were searched: Medline, Embase, PubMed and the Cochrane Library, between 1990 and 2020. After removal of duplicates, 228 abstracts were identified of which 49 studies satisfied our inclusion and exclusion criteria. The majority of studies (41/49) reported a quantitative reduction in at least one measure of bone architecture based on Micro-CT. The reduction in the ratio of bone volume to tissue volume varied from 11% to 81% (mean 43%) according to the experimental set up and study time points. While longer term studies showed muscle recovery, no study showed complete recovery of all bone properties at the termination of the study. In experimental animals, intramuscular injection of BoNT-A resulted in acute muscle atrophy and acute degradation of the neighboring bone segment. These findings may have implications for clinical protocols in the use of Botulinum Toxin in children with cerebral palsy, with restraint recommended in injection protocols and consideration for monitoring bone density. Clinical studies in children with cerebral palsy receiving injections of Botulinum are indicated.
Collapse
Affiliation(s)
- Min Jia Tang
- Department of Orthopaedics, The Royal Children’s Hospital, Parkville, VIC 3052, Australia;
| | - H. Kerr Graham
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3010, Australia;
| | - Kelsey E. Davidson
- Department of Orthopedics, Shriners Hospitals for Children, Chicago, IL 60707, USA
| |
Collapse
|
2
|
Liu D, Qin H, Yang J, Yang L, He S, Chen S, Bao Q, Zhao Y, Zong Z. Different effects of Wnt/β-catenin activation and PTH activation in adult and aged male mice metaphyseal fracture healing. BMC Musculoskelet Disord 2020; 21:110. [PMID: 32075627 PMCID: PMC7031971 DOI: 10.1186/s12891-020-3138-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/12/2020] [Indexed: 12/25/2022] Open
Abstract
Background Fractures in older men are not uncommon and need to be healed as soon as possible to avoid related complications. Anti-osteoporotic drugs targeting Wnt/β-catenin and PTH (parathyroid hormone) to promote fracture healing have become an important direction in recent years. The study is to observe whether there is a difference in adult and aged situations by activating two signal paths. Methods A single cortical hole with a diameter of 0.6 mm was made in the femoral metaphysis of Catnblox(ex3) mice and wild-type mice. The fracture healing effects of CA (Wnt/β-catenin activation) and PTH (activated by PTH (1–34) injections) were assessed by X-ray and CT imaging on days 7, 14, and 21 after fracture. The mRNA levels of β-catenin, PTH1R(Parathyroid hormone 1 receptor), and RUNX2(Runt-related transcription factor 2) in the fracture defect area were detected using RT-PCR. Angiogenesis and osteoblasts were observed by immunohistochemistry and osteoclasts were observed by TRAP (Tartrate-resistant Acid Phosphatase). Result Adult CA mice and adult PTH mice showed slightly better fracture healing than adult wild-type (WT) mice, but there was no statistical difference. Aged CA mice showed better promotion of angiogenesis and osteoblasts and better fracture healing than aged PTH mice. Conclusion The application of Wnt/β-catenin signaling pathway drugs for fracture healing in elderly patients may bring better early effects than PTH signaling pathway drugs, but the long-term effects need to be observed.
Collapse
Affiliation(s)
- Daocheng Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, 400042, China
| | - Hao Qin
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, 400042, China
| | - Jiazhi Yang
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, 400042, China
| | - Lei Yang
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, 400042, China
| | - Sihao He
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, 400042, China
| | - Sixu Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, 400042, China
| | - Quanwei Bao
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, 400042, China
| | - Yufeng Zhao
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, 400042, China
| | - Zhaowen Zong
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
3
|
Arfat Y, Rani A, Jingping W, Hocart CH. Calcium homeostasis during hibernation and in mechanical environments disrupting calcium homeostasis. J Comp Physiol B 2020; 190:1-16. [DOI: 10.1007/s00360-019-01255-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/21/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022]
|
4
|
Liu D, He S, Chen S, Yang L, Yang J, Bao Q, Qin H, Zhao Y, Zong Z. Different effects of Wnt/β-catenin activation and parathyroid hormone on diaphyseal and metaphyseal in the early phase of femur bone healing of mice. Clin Exp Pharmacol Physiol 2019; 46:652-663. [PMID: 30908657 PMCID: PMC6593981 DOI: 10.1111/1440-1681.13088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/01/2019] [Accepted: 03/18/2019] [Indexed: 11/27/2022]
Abstract
Parathyroid hormone (PTH) and agents related to the manipulation of Wnt/β-catenin signalling are two promising anabolic anti-osteoporotic therapies that have been shown to promote the healing of bone fractures. Now, it is widely accepted that cortical bone and trabecular bone are two different compartments, and should be treated as separate compartments in pathological processes, such as fracture healing. It is currently unknown whether PTH and the activation of β-catenin signalling would demonstrate different effects on cortical bone and trabecular bone healing. In the current study, single 0.6-mm cortex holes were made in the femur metaphysis and diaphysis of mice, and then, PTH application and β-catenin activation were used to observe the promoting effect on bone healing. The effects of β-catenin and PTH signalling on fracture healing were observed by X-ray and CT at 3, 6, and 14 days after fracture, and the levels of β-catenin were detected by RT-PCR assay, and the number of specific antigen-positive cells of BRDU, OCN, RUNX2 was counted by immunohistochemical staining. While β-catenin activation and PTH were found to demonstrate similar effects on accelerating metaphyseal bone healing, activation of β-catenin showed a more striking effect than PTH on promoting diaphyseal bone healing. These findings might be helpful for selecting proper medication to accelerate fracture healing of different bone compartments.
Collapse
Affiliation(s)
- Daocheng Liu
- State Key Laboratory of Trauma, Burn and Combined injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, China
| | - Sihao He
- State Key Laboratory of Trauma, Burn and Combined injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, China
| | - Sixu Chen
- State Key Laboratory of Trauma, Burn and Combined injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, China
| | - Lei Yang
- State Key Laboratory of Trauma, Burn and Combined injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, China
| | - Jiazhi Yang
- State Key Laboratory of Trauma, Burn and Combined injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, China
| | - Quanwei Bao
- State Key Laboratory of Trauma, Burn and Combined injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, China
| | - Hao Qin
- State Key Laboratory of Trauma, Burn and Combined injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, China
| | - Yufeng Zhao
- State Key Laboratory of Trauma, Burn and Combined injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, China
| | - Zhaowen Zong
- State Key Laboratory of Trauma, Burn and Combined injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, China
| |
Collapse
|
5
|
Liu GY, Cao GL, Tian FM, Song HP, Yuan LL, Geng LD, Zheng ZY, Zhang L. Parathyroid hormone (1-34) promotes fracture healing in ovariectomized rats with type 2 diabetes mellitus. Osteoporos Int 2017; 28:3043-3053. [PMID: 28808745 DOI: 10.1007/s00198-017-4148-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/04/2017] [Indexed: 01/06/2023]
Abstract
UNLABELLED Ovariectomized (OVX) rats with type 2 diabetes mellitus (T2DM) with femur fracture received vehicle, insulin, or insulin plus parathyroid hormone (PTH) treatment for 2 and 3 weeks. Radiography, histomorphometry, histology, and immunohistochemistry in callus were evaluated. INTRODUCTION Reports about effects of PTH plus insulin on callus formation of osteoporotic fracture with T2DM were limited. This study was designed to investigate the effects of the combination of PTH and insulin on fracture healing in OVX rats with T2DM. METHODS Two-month-old female rats were randomly divided into five groups: normal fracture (F), OVX fracture (OF), T2DM + OVX fracture (DOF), insulin-treated (2-4 u/daylight, 4-6 u/night, DOFI), and treated with insulin and PTH (50 μg/kg/day, 5 days/week, DOFIP). A closed mid-shaft fracture was established in the right femurs of all rats after 6 weeks of OVX. Rats were euthanized at 2 and 3 weeks post-fracture according to the time schedule, respectively. RESULTS The administration of insulin alone or insulin combined with PTH significantly increased mineralized bone volume fraction (BV/TV) and connectivity density (Conn.D) compared with those of the DOF group at 3 weeks post-fracture and also increased cartilaginous callus area ratio in the DOFI and DOFIP groups at 2 weeks and bony callus area ratio in the DOFIP groups at both the 2 and 3 weeks post-fracture. CONCLUSIONS OVX rats with T2DM exhibited a marked delay in the fracture healing process; insulin treatment ameliorated these effects, and the healing process was enhanced following treatment with a combination of insulin and PTH.
Collapse
Affiliation(s)
- G Y Liu
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, China
| | - G L Cao
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, China
| | - F M Tian
- Medical Research Center, North China University of Science and Technology, Tangshan, China
| | - H P Song
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - L L Yuan
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - L D Geng
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Z Y Zheng
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - L Zhang
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, China.
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, China.
| |
Collapse
|
6
|
Harlow L, Sahbani K, Nyman JS, Cardozo CP, Bauman WA, Tawfeek HA. Daily parathyroid hormone administration enhances bone turnover and preserves bone structure after severe immobilization-induced bone loss. Physiol Rep 2017; 5:5/18/e13446. [PMID: 28963125 PMCID: PMC5617932 DOI: 10.14814/phy2.13446] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/10/2017] [Accepted: 08/21/2017] [Indexed: 02/06/2023] Open
Abstract
Immobilization, as a result of motor‐complete spinal cord injury (SCI), is associated with severe osteoporosis. Whether parathyroid hormone (PTH) administration would reduce bone loss after SCI remains unclear. Thus, female mice underwent sham or surgery to produce complete spinal cord transection. PTH (80 μg/kg) or vehicle was injected subcutaneously (SC) daily starting on the day of surgery and continued for 35 days. Isolated tibias and femurs were examined by microcomputed tomography scanning (micro‐CT) and histology and serum markers of bone turnover were measured. Micro‐CT analysis of tibial metaphysis revealed that the SCI‐vehicle animals exhibited 49% reduction in fractional trabecular bone volume and 18% in trabecular thickness compared to sham‐vehicle controls. SCI‐vehicle animals also had 15% lower femoral cortical thickness and 16% higher cortical porosity than sham‐vehicle counterparts. Interestingly, PTH administration to SCI animals restored 78% of bone volume, increased connectivity to 366%, and lowered structure model index by 10% compared to sham‐vehicle animals. PTH further favorably attenuated femoral cortical bone loss to 5% and prevented the SCI‐associated cortical porosity. Histomorphometry evaluation of femurs of SCI‐vehicle animals demonstrated a marked 49% and 38% decline in osteoblast and osteoclast number, respectively, and 35% reduction in bone formation rate. In contrast, SCI‐PTH animals showed preserved osteoblast and osteoclast numbers and enhanced bone formation rate. Furthermore, SCI‐PTH animals had higher levels of bone formation and resorption markers than either SCI‐ or sham‐vehicle groups. Collectively, these findings suggest that intermittent PTH receptor activation is an effective therapeutic strategy to preserve bone integrity after severe immobilization.
Collapse
Affiliation(s)
- Lauren Harlow
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York
| | - Karim Sahbani
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery & Rehabilitation, Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Biomedical Engineering, Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Christopher P Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York.,Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Rehabilitation Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Pharmacologic Science, The Icahn School of Medicine at Mount Sinai, New York, New York
| | - William A Bauman
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York.,Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hesham A Tawfeek
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York .,Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
7
|
Effects of Intermittent Administration of Parathyroid Hormone (1-34) on Bone Differentiation in Stromal Precursor Antigen-1 Positive Human Periodontal Ligament Stem Cells. Stem Cells Int 2016; 2016:4027542. [PMID: 27069479 PMCID: PMC4812479 DOI: 10.1155/2016/4027542] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 02/17/2016] [Indexed: 12/13/2022] Open
Abstract
Periodontitis is the most common cause of tooth loss and bone destruction in adults worldwide. Human periodontal ligament stem cells (hPDLSCs) may represent promising new therapeutic biomaterials for tissue engineering applications. Stromal precursor antigen-1 (STRO-1) has been shown to have roles in adherence, proliferation, and multipotency. Parathyroid hormone (PTH) has been shown to enhance proliferation in osteoblasts. Therefore, in this study, we aimed to compare the functions of STRO-1(+) and STRO-1(-) hPDLSCs and to investigate the effects of PTH on the osteogenic capacity of STRO-1(+) hPDLSCs in order to evaluate their potential applications in the treatment of periodontitis. Our data showed that STRO-1(+) hPDLSCs expressed higher levels of the PTH-1 receptor (PTH1R) than STRO-1(-) hPDLSCs. In addition, intermittent PTH treatment enhanced the expression of PTH1R and osteogenesis-related genes in STRO-1(+) hPDLSCs. PTH-treated cells also exhibited increased alkaline phosphatase activity and mineralization ability. Therefore, STRO-1(+) hPDLSCs represented a more promising cell resource for biomaterials and tissue engineering applications. Intermittent PTH treatment improved the capacity for STRO-1(+) hPDLSCs to repair damaged tissue and ameliorate the symptoms of periodontitis.
Collapse
|
8
|
Ammann P, Zacchetti G, Gasser JA, Lavet C, Rizzoli R. Protein malnutrition attenuates bone anabolic response to PTH in female rats. Endocrinology 2015; 156:419-28. [PMID: 25396268 DOI: 10.1210/en.2014-1033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PTH is indicated for the treatment of severe osteoporosis. Elderly osteoporotic patients frequently suffer from protein malnutrition, which may contribute to bone loss. It is unknown whether this malnutrition may affect the response to PTH. Therefore, the aim of the present study was to assess whether an isocaloric low-protein (LP) diet may influence the bone anabolic response to intermittent PTH in 6-month-old female rats. Six-month-old female rats were either pair fed an isocaloric LP diet (2.5% casein) or a normal-protein (NP) diet (15% casein) for 2 weeks. The rats continued on their respective diet while being treated with 5- or 40-μg/kg recombinant human PTH amino-terminal fragment 1-34 (PTH-[1-34]) daily, or with vehicle for 4 weeks. At the end of this period, areal bone mineral density, bone mineral content, microstructure, and bone strength in axial compression of proximal tibia or 3-point bending for midshaft tibia tests were measured. Blood was collected for the determination of IGF-I and osteocalcin. After 4 weeks of PTH-(1-34), the dose-dependent increase of proximal tibia bone mineral density, trabecular microstructure variables, and bone strength was attenuated in rats fed a LP diet as compared with rats on a NP intake. At the level of midshaft tibia cortical bone, PTH-(1-34) exerted an anabolic effect only in the NP but not in the LP diet group. Protein malnutrition was associated with lower IGF-I levels. Protein malnutrition attenuates the bone anabolic effects of PTH-(1-34) in rats. These results suggest that a sufficient protein intake should be recommended for osteoporotic patients undergoing PTH therapy.
Collapse
Affiliation(s)
- P Ammann
- Division of Bone Disease (P.A., G.Z., C.L., R.R.), Department of Internal Medicine Specialties, Geneva University Hospitals and Faculty of Medicine, CH 1211 Geneva, Switzerland; and Novartis Institutes for BioMedical Research (J.A.G.), CH 4001 Basel, Switzerland
| | | | | | | | | |
Collapse
|