1
|
Desterke C, Francés R, Monge C, Marchio A, Pineau P, Mata-Garrido J. Alternative Balance between Transcriptional and Epigenetic Regulation during Developmental Proliferation of Human Cranial Neural Crest Cells. Cells 2024; 13:1634. [PMID: 39404397 PMCID: PMC11476078 DOI: 10.3390/cells13191634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/19/2024] Open
Abstract
Cranial neural crest cells are implicated in multiple transcriptional events at the different stages of differentiation during development. The alteration of some transcription factors expressed during neural crest development, like PAX7, could be implicated in the etiology of face malformation in murine models. Epigenetic regulation has been shown to be an important mechanistic actor in the control of timing and the level of gene expression at different stages of neural crest development. During this work, we investigated the interconnection between epigenetics and transcription factors across a diversity of human development cranial neural crest cells. Across a diversity of neural cells from human developing cranial tissues, in accordance with their proliferation stage, an alternative balance of regulation between transcription factors and epigenetic factors was identified.
Collapse
Affiliation(s)
- Christophe Desterke
- Faculté de Médecine du Kremlin Bicêtre, Université Paris-Saclay and INSERM UMRS1310, 94270 Le Kremlin-Bicêtre, France;
| | - Raquel Francés
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75006 Paris, France;
| | - Claudia Monge
- Institut Pasteur, Unité Organisation Nucléaire et Oncogenèse, INSERM U993, 75015 Paris, France; (C.M.); (A.M.); (P.P.)
| | - Agnès Marchio
- Institut Pasteur, Unité Organisation Nucléaire et Oncogenèse, INSERM U993, 75015 Paris, France; (C.M.); (A.M.); (P.P.)
| | - Pascal Pineau
- Institut Pasteur, Unité Organisation Nucléaire et Oncogenèse, INSERM U993, 75015 Paris, France; (C.M.); (A.M.); (P.P.)
| | - Jorge Mata-Garrido
- Institut Pasteur, Unité Organisation Nucléaire et Oncogenèse, INSERM U993, 75015 Paris, France; (C.M.); (A.M.); (P.P.)
| |
Collapse
|
2
|
Singh N, Heuzé Y, Holmes G. Processes and Patterns: Insights On Cranial Covariation from An Apert Syndrome Mouse Model. Dev Dyn 2022; 251:1684-1697. [PMID: 35582939 DOI: 10.1002/dvdy.498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Major cell-to-cell signaling pathways, such as the fibroblast growth factors and their four receptors (FGF/FGFR), are conserved across a variety of animal forms. FGF/FGFRs are necessary to produce several "vertebrate-specific" structures, including the vertebrate head. Here, we examine the effects of the FGFR2 S252W mutation associated with Apert syndrome on patterns of cranial integration. Our data comprise micro-computed tomography images of newborn mouse skulls, bred to express the Fgfr2 S252W mutation exclusively in either neural crest or mesoderm-derived tissues, and mice that express the Fgfr2 S252W mutation ubiquitously. RESULTS Procrustes-based methods and partial least squares analysis were used to analyze craniofacial integration patterns. We found that deviations in the direction and degree of integrated shape change across the mouse models used in our study were potentially driven by the modular variation generated by differing expression of the Fgfr2 mutation in cranial tissues. CONCLUSIONS Our overall results demonstrate that covariation patterns can be biased by the spatial distribution and magnitude of variation produced by underlying developmental-genetic mechanisms that often impact the phenotype in disproportionate ways. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nandini Singh
- Department of Anthropology, California State University, Sacramento, CA
| | - Yann Heuzé
- Université de Bordeaux, CNRS, MC, PACEA, Pessac, France
| | - Greg Holmes
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
3
|
Liao J, Huang Y, Wang Q, Chen S, Zhang C, Wang D, Lv Z, Zhang X, Wu M, Chen G. Gene regulatory network from cranial neural crest cells to osteoblast differentiation and calvarial bone development. Cell Mol Life Sci 2022; 79:158. [PMID: 35220463 PMCID: PMC11072871 DOI: 10.1007/s00018-022-04208-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/02/2022] [Accepted: 02/14/2022] [Indexed: 11/03/2022]
Abstract
Calvarial bone is one of the most complex sequences of developmental events in embryology, featuring a uniquely transient, pluripotent stem cell-like population known as the cranial neural crest (CNC). The skull is formed through intramembranous ossification with distinct tissue lineages (e.g. neural crest derived frontal bone and mesoderm derived parietal bone). Due to CNC's vast cell fate potential, in response to a series of inductive secreted cues including BMP/TGF-β, Wnt, FGF, Notch, Hedgehog, Hippo and PDGF signaling, CNC enables generations of a diverse spectrum of differentiated cell types in vivo such as osteoblasts and chondrocytes at the craniofacial level. In recent years, since the studies from a genetic mouse model and single-cell sequencing, new discoveries are uncovered upon CNC patterning, differentiation, and the contribution to the development of cranial bones. In this review, we summarized the differences upon the potential gene regulatory network to regulate CNC derived osteogenic potential in mouse and human, and highlighted specific functions of genetic molecules from multiple signaling pathways and the crosstalk, transcription factors and epigenetic factors in orchestrating CNC commitment and differentiation into osteogenic mesenchyme and bone formation. Disorders in gene regulatory network in CNC patterning indicate highly close relevance to clinical birth defects and diseases, providing valuable transgenic mouse models for subsequent discoveries in delineating the underlying molecular mechanisms. We also emphasized the potential regenerative alternative through scientific discoveries from CNC patterning and genetic molecules in interfering with or alleviating clinical disorders or diseases, which will be beneficial for the molecular targets to be integrated for novel therapeutic strategies in the clinic.
Collapse
Affiliation(s)
- Junguang Liao
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yuping Huang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Qiang Wang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Sisi Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Chenyang Zhang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Dan Wang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhengbing Lv
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xingen Zhang
- Department of Orthopedics, Jiaxing Key Laboratory for Minimally Invasive Surgery in Orthopaedics & Skeletal Regenerative Medicine, Zhejiang Rongjun Hospital, Jiaxing, 314001, China
| | - Mengrui Wu
- Institute of Genetics, College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
- Institute of Genetics, College of Life Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Lesciotto KM, Tomlinson L, Leonard S, Richtsmeier JT. Embryonic and Early Postnatal Cranial Bone Volume and Tissue Mineral Density Values for C57BL/6J Laboratory Mice. Dev Dyn 2022; 251:1196-1208. [PMID: 35092111 PMCID: PMC9250594 DOI: 10.1002/dvdy.458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 11/27/2022] Open
Abstract
Background Laboratory mice are routinely used in craniofacial research based on the relatively close genetic relationship and conservation of developmental pathways between humans and mice. Since genetic perturbations and disease states may have localized effects, data from individual cranial bones are valuable for the interpretation of experimental assays. We employ high‐resolution microcomputed tomography to characterize cranial bones of C57BL/6J mice at embryonic day (E) 15.5 and E17.5, day of birth (P0), and postnatal day 7 (P7) and provide estimates of individual bone volume and tissue mineral density (TMD). Results Average volume and TMD values are reported for individual bones. Significant differences in volume and TMD during embryonic ages likely reflect early mineralization of cranial neural crest‐derived and intramembranously forming bones. Although bones of the face and vault had higher TMD values during embryonic ages, bones of the braincase floor had significantly higher TMD values by P7. Conclusions These ontogenetic data on cranial bone volume and TMD serve as a reference standard for future studies using mice bred on a C57BL/6J genetic background. Our findings also highlight the importance of differentiating “control” data from mice that are presented as “unaffected” littermates, particularly when carrying a single copy of a cre‐recombinase gene. Higher average volume and density of cranial neural crest‐derived and intramembranously‐forming bones during embryonic development. Higher average density in bones of the braincase floor during early postnatal development. Ontogenetic data on cranial bone volume and TMD serve as a reference standard for mice bred on a C57BL/6J genetic background.
Collapse
Affiliation(s)
- Kate M Lesciotto
- College of Osteopathic Medicine, Sam Houston State University, Conroe, TX, USA
| | | | - Steven Leonard
- College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Joan T Richtsmeier
- Department of Anthropology, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
5
|
Keratinocyte growth factor signaling promotes stem/progenitor cell proliferation under p63 expression during middle ear cholesteatoma formation. Curr Opin Otolaryngol Head Neck Surg 2021; 28:291-295. [PMID: 32796271 DOI: 10.1097/moo.0000000000000655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW Middle ear cholesteatoma is an epithelial lesion that expands into the middle ear, resulting in bone destruction. However, the pathogenesis of this has been unknown. The purpose of this review is to understand the role of keratinocyte growth factor (KGF) during epithelial stem and/or progenitor cell proliferation in middle ear cholesteatoma. RECENT FINDINGS Many researchers have investigated the molecular mechanism of middle ear cholesteatoma to establish a conservative treatment. Recently, some studies have focused on the stem cells of middle ear cholesteatoma and their detection, but the key molecules for stem cell formation were not shown. SUMMARY We established an animal model for middle ear cholesteatoma and are showing the results of our studies. KGF expression accelerates the proliferation of stem/progenitor cells through the induction of transcription factor p63 expression in the epithelium of the tympanic membrane and mucosal epithelium overlying the promontory of the cochlea and within the attic. This is typical in middle ear cholesteatoma. Moreover, the partial epithelial-mesenchymal transition under the p63 signaling pathway plays an essential role in epithelial cell growth in middle ear cholesteatoma formation. Understanding p63 expression following KGF expression and associated signaling events can improve therapeutic outcomes in patients with middle ear cholesteatoma.
Collapse
|
6
|
Lu X, Forte AJ, Park KE, Allam O, Mozaffari MA, Alperovich M, Steinbacher DM, Alonso N, Persing JA. Sphenoid Bone Structure and Its Influence on the Cranium in Syndromic Versus Nonsyndromic Craniosynostosis. J Craniofac Surg 2020; 32:67-72. [DOI: 10.1097/scs.0000000000006914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
7
|
Yamamoto-Fukuda T, Akiyama N, Kojima H. Keratinocyte growth factor (KGF) induces stem/progenitor cell growth in middle ear mucosa. Int J Pediatr Otorhinolaryngol 2020; 128:109699. [PMID: 31614241 DOI: 10.1016/j.ijporl.2019.109699] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/30/2019] [Accepted: 09/30/2019] [Indexed: 12/01/2022]
Abstract
OBJECTIVE The middle ear epithelium is derived from the neural crest and endoderm, which line distinct regions of the middle ear cavity. In this study, we investigated the localization of stem/progenitor cells in the middle ear mucosa of adult mice and the effects of keratinocyte growth factor (KGF) on the cell kinetics of stem/progenitor cells in vivo. METHODS In this study, after KGF-expression vector was transfected in the ear, two kinds of thymidine analogues, BrdU and EdU, were transferred at different time points. BrdU was detected by immunohistochemistry and EdU was detected by click chemistry. We also performed immunohistochemistry using anti-Keratin14 (K14) antibody (an undifferentiated epithelial cell marker), anti-p63 antibody (a stem/progenitor cell marker) and anti-acetylated α-tubulin antibody (a ciliated epithelial cell marker). RESULTS A large number of EdU-positive cells were detected in the thickened mucosal epithelium of the pars flaccida and attic region at Day 1 after KGF transfection. Interestingly, in the mucosal epithelium overlying the promontory of the cochlea, many EdU-positive cells were detected. These cells were also positive for K14 and p63. The acetylated α-tubulin positive cells were reduced in the attic region at Day 1 after KGF transfection. CONCLUSION These findings indicate that KGF over-expression may increase stem/progenitor cell proliferation in the mucosal epithelium not only within the attic which is typical in middle ear cholesteatoma, but also overlying the promontory of the cochlea.
Collapse
Affiliation(s)
- Tomomi Yamamoto-Fukuda
- Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan; Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - Naotaro Akiyama
- Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Department of Otorhinolaryngology, Toho University School of Medicine, Tokyo, Japan
| | - Hiromi Kojima
- Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Shin HR, Bae HS, Kim BS, Yoon HI, Cho YD, Kim WJ, Choi KY, Lee YS, Woo KM, Baek JH, Ryoo HM. PIN1 is a new therapeutic target of craniosynostosis. Hum Mol Genet 2019; 27:3827-3839. [PMID: 30007339 PMCID: PMC6216213 DOI: 10.1093/hmg/ddy252] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 07/05/2018] [Indexed: 01/14/2023] Open
Abstract
Gain-of-function mutations in fibroblast growth factor receptors (FGFRs) cause congenital skeletal anomalies, including craniosynostosis (CS), which is characterized by the premature closure of craniofacial sutures. Apert syndrome (AS) is one of the severest forms of CS, and the only treatment is surgical expansion of prematurely fused sutures in infants. Previously, we demonstrated that the prolyl isomerase peptidyl-prolyl cis-trans isomerase interacting 1 (PIN1) plays a critical role in mediating FGFR signaling and that Pin1+/- mice exhibit delayed closure of cranial sutures. In this study, using both genetic and pharmacological approaches, we tested whether PIN1 modulation could be used as a therapeutic regimen against AS. In the genetic approach, we crossbred Fgfr2S252W/+, a mouse model of AS, and Pin1+/- mice. Downregulation of Pin1 gene dosage attenuated premature cranial suture closure and other phenotypes of AS in Fgfr2S252W/+ mutant mice. In the pharmacological approach, we intraperitoneally administered juglone, a PIN1 enzyme inhibitor, to pregnant Fgfr2S252W/+ mutant mice and found that this treatment successfully interrupted fetal development of AS phenotypes. Primary cultured osteoblasts from Fgfr2S252W/+ mutant mice expressed high levels of FGFR2 downstream target genes, but this phenotype was attenuated by PIN1 inhibition. Post-translational stabilization and activation of Runt-related transcription factor 2 (RUNX2) in Fgfr2S252W/+ osteoblasts were also attenuated by PIN1 inhibition. Based on these observations, we conclude that PIN1 enzyme activity is important for FGFR2-induced RUNX2 activation and craniofacial suture morphogenesis. Moreover, these findings highlight that juglone or other PIN1 inhibitors represent viable alternatives to surgical intervention for treatment of CS and other hyperostotic diseases.
Collapse
Affiliation(s)
- H R Shin
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - H S Bae
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - B S Kim
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - H I Yoon
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Y D Cho
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea.,Department of Periodontology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - W J Kim
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - K Y Choi
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Y S Lee
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - K M Woo
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - J H Baek
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - H M Ryoo
- BK21 Program, Department of Molecular Genetics and Dental Pharmacology and Therapeutics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) are expressed throughout all stages of skeletal development. In the limb bud and in cranial mesenchyme, FGF signaling is important for formation of mesenchymal condensations that give rise to bone. Once skeletal elements are initiated and patterned, FGFs regulate both endochondral and intramembranous ossification programs. In this chapter, we review functions of the FGF signaling pathway during these critical stages of skeletogenesis, and explore skeletal malformations in humans that are caused by mutations in FGF signaling molecules.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States.
| | - Pierre J Marie
- UMR-1132 Inserm (Institut national de la Santé et de la Recherche Médicale) and University Paris Diderot, Sorbonne Paris Cité, Hôpital Lariboisière, Paris, France
| |
Collapse
|
10
|
Kumar S, Franz-Odendaal TA. Analysis of the FGFR spatiotemporal expression pattern within the chicken scleral ossicle system. Gene Expr Patterns 2018; 30:7-13. [DOI: 10.1016/j.gep.2018.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 12/26/2022]
|
11
|
Holmes G, O'Rourke C, Motch Perrine SM, Lu N, van Bakel H, Richtsmeier JT, Jabs EW. Midface and upper airway dysgenesis in FGFR2-related craniosynostosis involves multiple tissue-specific and cell cycle effects. Development 2018; 145:dev.166488. [PMID: 30228104 DOI: 10.1242/dev.166488] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/03/2018] [Indexed: 12/23/2022]
Abstract
Midface dysgenesis is a feature of more than 200 genetic conditions in which upper airway anomalies frequently cause respiratory distress, but its etiology is poorly understood. Mouse models of Apert and Crouzon craniosynostosis syndromes exhibit midface dysgenesis similar to the human conditions. They carry activating mutations of Fgfr2, which is expressed in multiple craniofacial tissues during development. Magnetic resonance microscopy of three mouse models of Apert and Crouzon syndromes revealed decreased nasal passage volume in all models at birth. Histological analysis suggested overgrowth of the nasal cartilage in the two Apert syndrome mouse models. We used tissue-specific gene expression and transcriptome analysis to further dissect the structural, cellular and molecular alterations underlying midface and upper airway dysgenesis in Apert Fgfr2+/S252W mutants. Cartilage thickened progressively during embryogenesis because of increased chondrocyte proliferation in the presence of Fgf2 Oral epithelium expression of mutant Fgfr2, which resulted in a distinctive nasal septal fusion defect, and premature facial suture fusion contributed to the overall dysmorphology. Midface dysgenesis in Fgfr2-related craniosynostosis is a complex phenotype arising from the combined effects of aberrant signaling in multiple craniofacial tissues.
Collapse
Affiliation(s)
- Greg Holmes
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Courtney O'Rourke
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Susan M Motch Perrine
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA
| | - Na Lu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joan T Richtsmeier
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
12
|
Luo F, Xie Y, Wang Z, Huang J, Tan Q, Sun X, Li F, Li C, Liu M, Zhang D, Xu M, Su N, Ni Z, Jiang W, Chang J, Chen H, Chen S, Xu X, Deng C, Wang Z, Du X, Chen L. Adeno-Associated Virus-Mediated RNAi against Mutant Alleles Attenuates Abnormal Calvarial Phenotypes in an Apert Syndrome Mouse Model. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 13:291-302. [PMID: 30321816 PMCID: PMC6197781 DOI: 10.1016/j.omtn.2018.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/19/2018] [Accepted: 09/19/2018] [Indexed: 12/01/2022]
Abstract
Apert syndrome (AS), the most severe form of craniosynostosis, is caused by missense mutations including Pro253Arg(P253R) of fibroblast growth factor receptor 2 (FGFR2), which leads to enhanced FGF/FGFR2-signaling activity. Surgical correction of the deformed skull is the typical treatment for AS. Because of constant maldevelopment of sutures, the corrective surgery is often executed several times, resulting in increased patient challenge and complications. Biological therapies targeting the signaling of mutant FGFR2 allele, in combination with surgery, may bring better outcome. Here we screened and found a small interfering RNA (siRNA) specifically targeting the Fgfr2-P253R allele, and we revealed that it inhibited osteoblastic differentiation and matrix mineralization by reducing the signaling of ERK1/2 and P38 in cultured primary calvarial cells and calvarial explants from Apert mice (Fgfr2+/P253R). Furthermore, AAV9 carrying short hairpin RNA (shRNA) (AAV9-Fgfr2-shRNA) against mutant Fgfr2 was delivered to the skulls of AS mice. Results demonstrate that AAV9-Fgfr2-shRNA attenuated the premature closure of coronal suture and the decreased calvarial bone volume of AS mice. Our study provides a novel practical biological approach, which will, in combination with other therapies, including surgeries, help treat patients with AS while providing experimental clues for the biological therapies of other genetic skeletal diseases.
Collapse
Affiliation(s)
- Fengtao Luo
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Yangli Xie
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Zuqiang Wang
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Junlan Huang
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Qiaoyan Tan
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xianding Sun
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Fangfang Li
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Can Li
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Mi Liu
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Dali Zhang
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Meng Xu
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Nan Su
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Zhenhong Ni
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Wanling Jiang
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Jinhong Chang
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Hangang Chen
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Shuai Chen
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xiaoling Xu
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Chuxia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaolan Du
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China.
| | - Lin Chen
- Laboratory for the Rehabilitation of Traumatic Injuries, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China.
| |
Collapse
|
13
|
Martínez-Abadías N, Mateu Estivill R, Sastre Tomas J, Motch Perrine S, Yoon M, Robert-Moreno A, Swoger J, Russo L, Kawasaki K, Richtsmeier J, Sharpe J. Quantification of gene expression patterns to reveal the origins of abnormal morphogenesis. eLife 2018; 7:36405. [PMID: 30234486 PMCID: PMC6199133 DOI: 10.7554/elife.36405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 09/09/2018] [Indexed: 01/03/2023] Open
Abstract
The earliest developmental origins of dysmorphologies are poorly understood in many congenital diseases. They often remain elusive because the first signs of genetic misregulation may initiate as subtle changes in gene expression, which are hard to detect and can be obscured later in development by secondary effects. Here, we develop a method to trace back the origins of phenotypic abnormalities by accurately quantifying the 3D spatial distribution of gene expression domains in developing organs. By applying Geometric Morphometrics to 3D gene expression data obtained by Optical Projection Tomography, we determined that our approach is sensitive enough to find regulatory abnormalities that have never been detected previously. We identified subtle but significant differences in the gene expression of a downstream target of a Fgfr2 mutation associated with Apert syndrome, demonstrating that these mouse models can further our understanding of limb defects in the human condition. Our method can be applied to different organ systems and models to investigate the etiology of malformations. Our development in the womb is complex. Genes need to switch on and off in a precise order, controlling the activity of millions of cells as they work together to form different tissues. For everything to happen smoothly, cells must use instructions provided by each gene exactly at the correct moment and in the correct place. In this biological assembly line, the slightest change can lead to a defect. Certain genetic mutations can change when and where cells use particular genes, and this can cause errors in development. These kinds of mutations are a common cause of birth defects, but we cannot always pinpoint how they begin. For example, a single mutation in a gene called FGFR2 causes malformations in the head, the heart and the limbs in a rare disease called Apert syndrome. The first signs that development has gone wrong can be subtle changes in the use of certain genes, impossible to detect with standard methods. As development continues, other processes can mask the impact of problems with certain genes. Ultimately, changes alter the shape of the developing embryo. Genetically engineered mouse models can mimic the gene defects that cause disease in humans. But current methods are not sensitive enough to detect the very first signs of defects. Now, Martínez-Abadías et al. developed a new method to detect these subtle changes and reveal the precise moment when development starts to go wrong. In mice, a specific mutation in the FGFR2 gene affects the activity of a series of other genes. To track the levels of one of these genes, Martínez-Abadías et al. marked mouse embryos using a chemical label. Scanning the embryos then revealed the pattern of the cells using the gene during the earliest stages of development. In mice carrying a mutation in the FGFR2 gene, subtle changes in gene expression began just a few hours after their limbs start to develop. But it took another half a day to see the effects of these changes on the shape and size of the growing limbs. This approach revealed changes in gene expression before any problems with development were visible by eye. Tracking subtle changes in the way cells use genes could allow us to detect the origins of embryo malformations before they appear, pointing at the best moment to start a treatment. With further development, the model could extend to other genes, proteins, animal models and diseases.
Collapse
Affiliation(s)
- Neus Martínez-Abadías
- Centre for Genomic Regulation, The Barcelona Institute for Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,EMBL Barcelona, European Molecular Biology Laboratory, Barcelona, Spain
| | | | | | | | - Melissa Yoon
- Pennsylvania State University, Pennsylvania, United States
| | - Alexandre Robert-Moreno
- Centre for Genomic Regulation, The Barcelona Institute for Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,EMBL Barcelona, European Molecular Biology Laboratory, Barcelona, Spain
| | - Jim Swoger
- Centre for Genomic Regulation, The Barcelona Institute for Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,EMBL Barcelona, European Molecular Biology Laboratory, Barcelona, Spain
| | - Lucia Russo
- Centre for Genomic Regulation, The Barcelona Institute for Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | - James Sharpe
- Centre for Genomic Regulation, The Barcelona Institute for Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,EMBL Barcelona, European Molecular Biology Laboratory, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
14
|
ACVR1 is essential for periodontium development and promotes alveolar bone formation. Arch Oral Biol 2018; 95:108-117. [PMID: 30098439 DOI: 10.1016/j.archoralbio.2018.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 07/10/2018] [Accepted: 07/30/2018] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To explore the role of a BMP type I receptor (ACVR1) in regulating periodontium development, Acvr1 was conditionally disrupted in Osterix-expressing cells. METHODS Mandibles from both control (Acvr1 fx/+; Osterix-Cre (+)/(-)) and cKO (Acvr1 fx/-; Osterix-Cre (+)/(-)) mice at postnatal day 21 (PN21) were scanned by micro-CT, followed by decalcification and histological observations. Distributions and levels of differentiation markers of fibroblasts, osteoblasts and cementocytes in the periodontium were detected by immunohistochemical (IHC) staining. RESULTS Micro-CT results showed that bone mass and bone mineral density of the alveolar bones in the cKO mice were lower than those in the controls. Histomorphometry within the alveolar bones revealed that the lower bone mass observed in the cKO mice was caused by increased numbers and resorption activities of osteoclasts. The markers for osteoblast differentiation, Col I and DMP1, were reduced and the signals of the RANKL/OPG ratio were increased in the alveolar bones of the cKO mice compared to those of the control mice. The periodontal ligament in the cKO mice exhibited disorganized collagen fibers with weaker signals of Col I and periostin. However, there was no difference in terms of the cellular cementum between the two groups. CONCLUSION ACVR1 is essential for normal periodontium development. ACVR1 in the osteoblasts negatively regulates osteoclast differentiation in association with the RANKL/OPG axis and thus promotes alveolar bone formation.
Collapse
|
15
|
Driessen C, van Veelen MLC, Joosten KFM, Versnel SL, van Nieuwenhoven CA, Wolvius EB, Bredero-Boelhouwer HH, Arnaud E, Mathijssen IMJ. Apert syndrome: the Paris and Rotterdam philosophy. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1335195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- C. Driessen
- Department of Plastic and Reconstructive Surgery, Dutch Craniofacial Center, Sophia children’s hospital, Rotterdam, The Netherlands
| | - M. L. C. van Veelen
- Department of Neurosurgery, Dutch Craniofacial Center, Sophia children’s hospital, Rotterdam, The Netherlands
| | - K. F. M. Joosten
- Department of Paediatric Intensive Care Medicine, Dutch Craniofacial Center, Sophia children’s hospital, Rotterdam, The Netherlands
| | - S. L. Versnel
- Department of Plastic and Reconstructive Surgery, Dutch Craniofacial Center, Sophia children’s hospital, Rotterdam, The Netherlands
| | - C. A. van Nieuwenhoven
- Department of Plastic and Reconstructive Surgery, Dutch Craniofacial Center, Sophia children’s hospital, Rotterdam, The Netherlands
| | - E. B. Wolvius
- Department of Maxillofacial surgery, Dutch Craniofacial Center, Sophia children’s hospital, Rotterdam, The Netherlands
| | - H. H. Bredero-Boelhouwer
- Department of Plastic and Reconstructive Surgery, Dutch Craniofacial Center, Sophia children’s hospital, Rotterdam, The Netherlands
| | - E. Arnaud
- Department of Plastic and Reconstructive Surgery, Pediatric Craniofacial Unit Hospital Necker, Paris, France
| | - I. M. J. Mathijssen
- Department of Plastic and Reconstructive Surgery, Dutch Craniofacial Center, Sophia children’s hospital, Rotterdam, The Netherlands
| |
Collapse
|
16
|
Das S, Munshi A. Research advances in Apert syndrome. J Oral Biol Craniofac Res 2017; 8:194-199. [PMID: 30191107 DOI: 10.1016/j.jobcr.2017.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/19/2017] [Indexed: 02/07/2023] Open
Abstract
Apert syndrome is one of the several genetic syndromes associated with craniosynostosis, a condition that includes premature fusion of one or multiple cranial sutures. There has been significant clinical variation among different sutural synostoses and also within particular suture synostosis. Enormous progress has been made in identifying various mutations associated with Apert Syndrome. Although a causal gene has been defined, the precise role of this mutation in producing craniofacial dysmorphology and other related abnormalities is in the process of discovery. Most of the understanding regarding this rare disorder has been possible due to mouse models that have helped in deciphering the elements of this rare human disease. Thus, molecular and cellular understanding of the disease has taken a leap and further with the advent of technology definitive diagnosis of the syndrome is no more of an issue. In this review, we have discussed and consolidated the possible molecular studies that have contributed in understanding of this rare syndrome. This article may help clinicians and researchers to inform about the latest progress in Apert syndrome.
Collapse
Affiliation(s)
- Satrupa Das
- Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Begumpet, Hyderabad, India.,Dr. NTR University of Health Sciences, Vijayawada, Andhra Pradesh, India
| | - Anjana Munshi
- Centre for Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
17
|
Ling IT, Rochard L, Liao EC. Distinct requirements of wls, wnt9a, wnt5b and gpc4 in regulating chondrocyte maturation and timing of endochondral ossification. Dev Biol 2016; 421:219-232. [PMID: 27908786 PMCID: PMC5266562 DOI: 10.1016/j.ydbio.2016.11.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/09/2016] [Accepted: 11/22/2016] [Indexed: 12/21/2022]
Abstract
Formation of the mandible requires progressive morphologic change, proliferation, differentiation and organization of chondrocytes preceding osteogenesis. The Wnt signaling pathway is involved in regulating bone development and maintenance. Chondrocytes that are fated to become bone require Wnt to polarize and orientate appropriately to initiate the endochondral ossification program. Although the canonical Wnt signaling has been well studied in the context of bone development, the effects of non-canonical Wnt signaling in regulating the timing of cartilage maturation and subsequent bone formation in shaping ventral craniofacial structure is not fully understood.. Here we examined the role of the non-canonical Wnt signaling pathway (wls, gpc4, wnt5b and wnt9a) in regulating zebrafish Meckel's cartilage maturation to the onset of osteogenic differentiation. We found that disruption of wls resulted in a significant loss of craniofacial bone, whereas lack of gpc4, wnt5b and wnt9a resulted in severely delayed endochondral ossification. This study demonstrates the importance of the non-canonical Wnt pathway in regulating coordinated ventral cartilage morphogenesis and ossification.
Collapse
Affiliation(s)
- Irving Tc Ling
- Center for Regenerative Medic ine, Massachusetts General Hospital, Shriners Hospital for Children, Harvard Medical School, Boston, MA 02114, USA; School of Medicine, Veterinary and Life Sciences, Glasgow University, UK
| | - Lucie Rochard
- Center for Regenerative Medic ine, Massachusetts General Hospital, Shriners Hospital for Children, Harvard Medical School, Boston, MA 02114, USA
| | - Eric C Liao
- Center for Regenerative Medic ine, Massachusetts General Hospital, Shriners Hospital for Children, Harvard Medical School, Boston, MA 02114, USA; Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
18
|
Teshima THN, Lourenco SV, Tucker AS. Multiple Cranial Organ Defects after Conditionally Knocking Out Fgf10 in the Neural Crest. Front Physiol 2016; 7:488. [PMID: 27826253 PMCID: PMC5078472 DOI: 10.3389/fphys.2016.00488] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/10/2016] [Indexed: 12/21/2022] Open
Abstract
Fgf10 is necessary for the development of a number of organs that fail to develop or are reduced in size in the null mutant. Here we have knocked out Fgf10 specifically in the neural crest driven by Wnt1cre. The Wnt1creFgf10fl/fl mouse phenocopies many of the null mutant defects, including cleft palate, loss of salivary glands, and ocular glands, highlighting the neural crest origin of the Fgf10 expressing mesenchyme surrounding these organs. In contrast tissues such as the limbs and lungs, where Fgf10 is expressed by the surrounding mesoderm, were unaffected, as was the pituitary gland where Fgf10 is expressed by the neuroepithelium. The circumvallate papilla of the tongue formed but was hypoplastic in the conditional and Fgf10 null embryos, suggesting that other sources of FGF can compensate in development of this structure. The tracheal cartilage rings showed normal patterning in the conditional knockout, indicating that the source of Fgf10 for this tissue is mesodermal, which was confirmed using Wnt1cre-dtTom to lineage trace the boundary of the neural crest in this region. The thyroid, thymus, and parathyroid glands surrounding the trachea were present but hypoplastic in the conditional mutant, indicating that a neighboring source of mesodermal Fgf10 might be able to partially compensate for loss of neural crest derived Fgf10.
Collapse
Affiliation(s)
- Tathyane H N Teshima
- Department of Stomatology, School of Dentistry, University of Sao Paulo São Paulo, Brazil
| | - Silvia V Lourenco
- Department of Stomatology, School of Dentistry, University of Sao Paulo São Paulo, Brazil
| | - Abigail S Tucker
- Department of Craniofacial Development and Stem Cell Biology, King's College London London, UK
| |
Collapse
|
19
|
Hermann CD, Hyzy SL, Olivares-Navarrete R, Walker M, Williams JK, Boyan BD, Schwartz Z. Craniosynostosis and Resynostosis: Models, Imaging, and Dental Implications. J Dent Res 2016; 95:846-52. [PMID: 27076448 DOI: 10.1177/0022034516643315] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Craniosynostosis occurs in approximately 1 in 2,000 children and results from the premature fusion of ≥1 cranial sutures. If left untreated, craniosynostosis can cause numerous complications as related to an increase in intracranial pressure or as a direct result from cranial deformities, or both. More than 100 known mutations may cause syndromic craniosynostosis, but the majority of cases are nonsyndromic, occurring as isolated defects. Most cases of craniosynostosis require complex cranial vault reconstruction that is associated with a high risk of morbidity. While the first operation typically has few complications, bone rapidly regrows in up to 40% of children who undergo it. This resynostosis typically requires additional surgical intervention, which can be associated with a high incidence of life-threatening complications. This article reviews work related to the dental and maxillofacial implications of craniosynostosis and discusses clinically relevant animal models related to craniosynostosis and resynostosis. In addition, information is provided on the imaging modalities used to study cranial defects in animals and humans.
Collapse
Affiliation(s)
- C D Hermann
- School of Medicine, Emory University, Atlanta, GA, USA
| | - S L Hyzy
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - R Olivares-Navarrete
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - M Walker
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, GA, USA
| | - J K Williams
- Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - B D Boyan
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA, USA Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, GA, USA
| | - Z Schwartz
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA, USA Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
20
|
Abstract
Fibroblast growth factor (FGF) signaling pathways are essential regulators of vertebrate skeletal development. FGF signaling regulates development of the limb bud and formation of the mesenchymal condensation and has key roles in regulating chondrogenesis, osteogenesis, and bone and mineral homeostasis. This review updates our review on FGFs in skeletal development published in Genes & Development in 2002, examines progress made on understanding the functions of the FGF signaling pathway during critical stages of skeletogenesis, and explores the mechanisms by which mutations in FGF signaling molecules cause skeletal malformations in humans. Links between FGF signaling pathways and other interacting pathways that are critical for skeletal development and could be exploited to treat genetic diseases and repair bone are also explored.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Pierre J Marie
- UMR-1132, Institut National de la Santé et de la Recherche Médicale, Hopital Lariboisiere, 75475 Paris Cedex 10, France; Université Paris Diderot, Sorbonne Paris Cité, 75475 Paris Cedex 10, France
| |
Collapse
|
21
|
Moazen M, Peskett E, Babbs C, Pauws E, Fagan MJ. Mechanical properties of calvarial bones in a mouse model for craniosynostosis. PLoS One 2015; 10:e0125757. [PMID: 25966306 PMCID: PMC4429024 DOI: 10.1371/journal.pone.0125757] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/25/2015] [Indexed: 11/25/2022] Open
Abstract
The mammalian cranial vault largely consists of five flat bones that are joined together along their edges by soft fibrous tissues called sutures. Premature closure of the cranial sutures, craniosynostosis, can lead to serious clinical pathology unless there is surgical intervention. Research into the genetic basis of the disease has led to the development of various animal models that display this condition, e.g. mutant type Fgfr2C342Y/+ mice which display early fusion of the coronal suture (joining the parietal and frontal bones). However, whether the biomechanical properties of the mutant and wild type bones are affected has not been investigated before. Therefore, nanoindentation was used to compare the elastic modulus of cranial bone and sutures in wild type (WT) and Fgfr2C342Y/+mutant type (MT) mice during their postnatal development. Further, the variations in properties with indentation position and plane were assessed. No difference was observed in the elastic modulus of parietal bone between the WT and MT mice at postnatal (P) day 10 and 20. However, the modulus of frontal bone in the MT group was lower than the WT group at both P10 (1.39±0.30 vs. 5.32±0.68 GPa; p<0.05) and P20 (5.57±0.33 vs. 7.14±0.79 GPa; p<0.05). A wide range of values was measured along the coronal sutures for both the WT and MT samples, with no significant difference between the two groups. Findings of this study suggest that the inherent mechanical properties of the frontal bone in the mutant mice were different to the wild type mice from the same genetic background. These differences may reflect variations in the degree of biomechanical adaptation during skull growth, which could have implications for the surgical management of craniosynostosis patients.
Collapse
Affiliation(s)
- Mehran Moazen
- Medical and Biological Engineering, School of Engineering, University of Hull, Hull, United Kingdom
- * E-mail:
| | - Emma Peskett
- UCL Institute of Child Health, London, United Kingdom
| | - Christian Babbs
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Erwin Pauws
- UCL Institute of Child Health, London, United Kingdom
| | - Michael J. Fagan
- Medical and Biological Engineering, School of Engineering, University of Hull, Hull, United Kingdom
| |
Collapse
|
22
|
Fadda MT, Ierardo G, Ladniak B, Di Giorgio G, Caporlingua A, Raponi I, Silvestri A. Treatment timing and multidisciplinary approach in Apert syndrome. ANNALI DI STOMATOLOGIA 2015; 6:58-63. [PMID: 26330906 PMCID: PMC4525098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Apert syndrome is a rare congenital disorder characterized by craniosynostosis, midface hypoplasia and symmetric syndactyly of hands and feet. Abnormalities associated with Apert syndrome include premature fusion of coronal sutures system (coronal sutures and less frequently lambdoid suture) resulting in brachiturricephalic dismorphism and impaired skull base growth. After this brief explanation it is clear that these anatomical abnormalities may have a negative impact on the ability to perform essential functions. Due to the complexity of the syndrome a multidisciplinary (respiratory, cerebral, maxillo-mandibular, dental, ophthalmic and orthopaedic) approach is necessary in treating the psychological, aesthetic and functional issues. The aim of this paper is to analyse the different functional issues and surgical methods trying to enhance results through a treatment plan which includes different specialities involved in Apert syndrome treatment. Reduced intellectual capacity is associated to the high number of general anaesthesia the small patients are subject to. Therefore the diagnostic and therapeutic treatment plan in these patients has established integrated and tailored surgical procedures based on the patients' age in order to reduce the number of general anaesthesia, thus simplifying therapy for both Apert patients and their family members.
Collapse
Affiliation(s)
- Maria Teresa Fadda
- Department of Oral and Maxillofacial Sciences, Maxillofacial Surgery Unit, Policlinico Umberto I, “Sapienza” University of Rome, Italy
| | - Gaetano Ierardo
- Department of Oral and Maxillofacial Sciences, Pediatric Unit, “Sapienza” University of Rome, Italy
| | - Barbara Ladniak
- Department of Oral and Maxillofacial Sciences, Pediatric Unit, “Sapienza” University of Rome, Italy
| | - Gianni Di Giorgio
- Department of Oral and Maxillofacial Sciences, Pediatric Unit, “Sapienza” University of Rome, Italy
| | - Alessandro Caporlingua
- Department of Oral and Maxillofacial Sciences, Maxillofacial Surgery Unit, Policlinico Umberto I, “Sapienza” University of Rome, Italy
| | - Ingrid Raponi
- Department of Oral and Maxillofacial Sciences, Maxillofacial Surgery Unit, Policlinico Umberto I, “Sapienza” University of Rome, Italy
| | - Alessandro Silvestri
- Department of Oral and Maxillofacial Sciences, Orthognathodontic Unit, “Sapienza” University of Rome, Italy
| | | |
Collapse
|
23
|
Znf385C mediates a novel p53-dependent transcriptional switch to control timing of facial bone formation. Dev Biol 2015; 400:23-32. [DOI: 10.1016/j.ydbio.2015.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 01/12/2015] [Indexed: 11/18/2022]
|
24
|
Integration of comprehensive 3D microCT and signaling analysis reveals differential regulatory mechanisms of craniofacial bone development. Dev Biol 2015; 400:180-90. [PMID: 25722190 DOI: 10.1016/j.ydbio.2015.02.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 12/31/2022]
Abstract
Growth factor signaling regulates tissue-tissue interactions to control organogenesis and tissue homeostasis. Specifically, transforming growth factor beta (TGFβ) signaling plays a crucial role in the development of cranial neural crest (CNC) cell-derived bone, and loss of Tgfbr2 in CNC cells results in craniofacial skeletal malformations. Our recent studies indicate that non-canonical TGFβ signaling is activated whereas canonical TGFβ signaling is compromised in the absence of Tgfbr2 (in Tgfbr2(fl/fl);Wnt1-Cre mice). A haploinsufficiency of Tgfbr1 (aka Alk5) (Tgfbr2(fl/fl);Wnt1-Cre;Alk5(fl/+)) largely rescues craniofacial deformities in Tgfbr2 mutant mice by reducing ectopic non-canonical TGFβ signaling. However, the relative involvement of canonical and non-canonical TGFβ signaling in regulating specific craniofacial bone formation remains unclear. We compared the size and volume of CNC-derived craniofacial bones (frontal bone, premaxilla, maxilla, palatine bone, and mandible) from E18.5 control, Tgfbr2(fl/fl);Wnt1-Cre, and Tgfbr2(fl/fl);Wnt1-Cre;Alk5(fl/+)mice. By analyzing three dimensional (3D) micro-computed tomography (microCT) images, we found that different craniofacial bones were restored to different degrees in Tgfbr2(fl/fl);Wnt1-Cre;Alk5(fl/+) mice. Our study provides comprehensive information on anatomical landmarks and the size and volume of each craniofacial bone, as well as insights into the extent that canonical and non-canonical TGFβ signaling cascades contribute to the formation of each CNC-derived bone. Our data will serve as an important resource for developmental biologists who are interested in craniofacial morphogenesis.
Collapse
|
25
|
Fantauzzo KA, Soriano P. Receptor tyrosine kinase signaling: regulating neural crest development one phosphate at a time. Curr Top Dev Biol 2015; 111:135-82. [PMID: 25662260 PMCID: PMC4363133 DOI: 10.1016/bs.ctdb.2014.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Receptor tyrosine kinases (RTKs) bind to a subset of growth factors on the surface of cells and elicit responses with broad roles in developmental and postnatal cellular processes. Receptors in this subclass consist of an extracellular ligand-binding domain, a single transmembrane domain, and an intracellular domain harboring a catalytic tyrosine kinase and regulatory sequences that are phosphorylated either by the receptor itself or by various interacting proteins. Once activated, RTKs bind signaling molecules and recruit effector proteins to mediate downstream cellular responses through various intracellular signaling pathways. In this chapter, we highlight the role of a subset of RTK families in regulating the activity of neural crest cells (NCCs) and the development of their derivatives in mammalian systems. NCCs are migratory, multipotent cells that can be subdivided into four axial populations, cranial, cardiac, vagal, and trunk. These cells migrate throughout the vertebrate embryo along defined pathways and give rise to unique cell types and structures. Interestingly, individual RTK families often have specific functions in a subpopulation of NCCs that contribute to the diversity of these cells and their derivatives in the mammalian embryo. We additionally discuss current methods used to investigate RTK signaling, including genetic, biochemical, large-scale proteomic, and biosensor approaches, which can be applied to study intracellular signaling pathways active downstream of this receptor subclass during NCC development.
Collapse
Affiliation(s)
- Katherine A Fantauzzo
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA.
| | - Philippe Soriano
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
26
|
Affiliation(s)
- Benedikt Hallgrimsson
- Department of Cell Biology and Anatomy and the Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| | - Washington Mio
- Department of Mathematics, Florida State University, Tallahassee, Florida, United States of America
| | - Ralph S. Marcucio
- Department of Orthopedics, University of California, San Francisco, San Francisco, California, United States of America
| | - Richard Spritz
- Department of Pediatrics and Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Denver, Colorado, United States of America
| |
Collapse
|
27
|
Closing the Gap: Genetic and Genomic Continuum from Syndromic to Nonsyndromic Craniosynostoses. CURRENT GENETIC MEDICINE REPORTS 2014; 2:135-145. [PMID: 26146596 DOI: 10.1007/s40142-014-0042-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Craniosynostosis, a condition that includes the premature fusion of one or multiple cranial sutures, is a relatively common birth defect in humans and the second most common craniofacial anomaly after orofacial clefts. There is a significant clinical variation among different sutural synostoses as well as significant variation within any given single-suture synostosis. Craniosynostosis can be isolated (i.e., nonsyndromic) or occurs as part of a genetic syndrome (e.g., Crouzon, Pfeiffer, Apert, Muenke, and Saethre-Chotzen syndromes). Approximately 85 % of all cases of craniosynostosis are nonsyndromic. Several recent genomic discoveries are elucidating the genetic basis for nonsyndromic cases and implicate the newly identified genes in signaling pathways previously found in syndromic craniosynostosis. Published epidemiologic and phenotypic studies clearly demonstrate that nonsyndromic craniosynostosis is a complex and heterogeneous condition supporting a strong genetic component accompanied by environmental factors that contribute to the pathogenetic network of this birth defect. Large population, rather than single-clinic or hospital-based studies is required with phenotypically homogeneous subsets of patients to further understand the complex genetic, maternal, environmental, and stochastic factors contributing to nonsyndromic craniosynostosis. Learning about these variables is a key in formulating the basis of multidisciplinary and lifelong care for patients with these conditions.
Collapse
|