1
|
Akitomo T, Iwamoto Y, Kametani M, Kaneki A, Nishimura T, Mitsuhata C, Nomura R. Eruption Disturbance in Children Receiving Bisphosphonates: Two Case Reports. Pharmaceuticals (Basel) 2024; 17:1521. [PMID: 39598431 PMCID: PMC11597784 DOI: 10.3390/ph17111521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Bisphosphonates used for the treatment of osteoporosis, hypercalcemia, or heterotopic calcifications can cause serious adverse dental events such as osteonecrosis of the maxillary and mandibular bones. However, the effects in childhood remain scarcely explored. CASE PRESENTATIONS We encountered two children who had started bisphosphonate therapy before completion of the primary dentition. No systemic disease causing congenital delayed tooth eruption was diagnosed. Although the children's height and weight increased with age, their tooth eruption was significantly delayed compared with the mean. The primary teeth gradually erupted in the follow-up period; however, some teeth did not completely erupt and needed to be extracted to allow for permanent tooth eruption. CONCLUSIONS We report a case of children with early use of bisphosphonates and eruption disturbance, highlighting the need for further investigation into the relationship between these factors.
Collapse
|
2
|
Arai Y, English JD, Ono N, Ono W. Effects of antiresorptive medications on tooth root formation and tooth eruption in paediatric patients. Orthod Craniofac Res 2023; 26 Suppl 1:29-38. [PMID: 36714970 PMCID: PMC10864015 DOI: 10.1111/ocr.12637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/09/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023]
Abstract
Tooth eruption is a pivotal milestone for children's growth and development. This process involves with the formation of the tooth root, the periodontal ligament (PDL) and the alveolar bone, as the tooth crown penetrates the bone and gingiva to enter the oral cavity. This review aims to outline current knowledge of the adverse dental effects of antiresorptive medications. Recently, paediatric indications for antiresorptive medications, such as bisphosphonates (BPs), have emerged, and these agents are increasingly used in children and adolescents to cure pathological bone resorption associated with bone diseases and cancers. Since tooth eruption is accompanied by osteoclastic bone resorption, it is expected that the administration of antiresorptive medications during this period affects tooth development. Indeed, several articles studying human patient cohorts and animal models report the dental defects associated with the use of these antiresorptive medications. This review shows the summary of the possible factors related to tooth eruption and introduces the future research direction to understand the mechanisms underlying the dental defects caused by antiresorptive medications.
Collapse
Affiliation(s)
- Yuki Arai
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| | - Jeryl D. English
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| | - Noriaki Ono
- Department of Diagnostic & Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| | - Wanida Ono
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| |
Collapse
|
3
|
Calsa B, Bortolança TJ, Masiero BC, Esquisatto MAM, de Oliveira CA, Catisti R, Santamaria-Jr M. Maxillary and dental development in the offspring of protein-restricted female rats. Eur J Oral Sci 2022; 130:e12895. [PMID: 36199171 DOI: 10.1111/eos.12895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/31/2022] [Indexed: 12/13/2022]
Abstract
Nutritional restriction during developmental periods impairs organ physiology. Female rats were subjected to protein restriction during pregnancy and lactation to analyze dental and maxillary development. Four exposure groups were considered: normal-protein diet during pregnancy and lactation (NP, 17% casein), low-protein diet during lactation (LP-L, 6% casein), low-protein diet during pregnancy and lactation (LP), and low-protein diet during pregnancy (LP-G). Maxillae from 15-day-old male pups were collected. All protein-restricted groups presented increased dentin thickness and reduced alveolar bone area. When protein restriction was applied during both gestation and lactation (LP), harmful effects were observed in the form of loss of protective OPG (osteoprotegerin) in tooth epithelium-mesenchyme, due to higher RANKL expression, delay in odontoblast maturation, less dental pulp vascularity, reduction in amount of alveolar bone, and less matrix mineralization. In the LP-L group, effects of protein restriction seemed less harmful, and despite less alveolar bone, the enhancement in BMP-7, VEGF, and RANKL seems a compensatory signal to maintain maxillary osteogenesis. In LP-G animals, Dspp expression was higher, suggesting a delay in odontoblast maturation or expression recuperation. In conclusion, maternal protein restriction affects dental and maxillary development. A low-protein diet only in gestation allows for normal development. A low-protein diet during gestation-lactation results in impaired odontogenesis that may increase susceptibility of dental anomalies.
Collapse
Affiliation(s)
- Bruno Calsa
- Graduate Program of Biomedical Sciences, Herminio Ometto University Center, Araras, São Paulo, Brazil
| | | | - Beatriz Calloni Masiero
- Graduate Program of Biomedical Sciences, Herminio Ometto University Center, Araras, São Paulo, Brazil
| | | | - Camila Andrea de Oliveira
- Graduate Program of Biomedical Sciences, Herminio Ometto University Center, Araras, São Paulo, Brazil
| | - Rosana Catisti
- Graduate Program of Biomedical Sciences, Herminio Ometto University Center, Araras, São Paulo, Brazil
| | - Milton Santamaria-Jr
- Graduate Program of Biomedical Sciences, Herminio Ometto University Center, Araras, São Paulo, Brazil.,Graduate Program of Orthodontics, Herminio Ometto University Center, Araras, São Paulo, Brazil
| |
Collapse
|
4
|
Poxleitner P, Voss PJ, Steybe D, Seibert LM, Zeiter S, Stoddart MJ, Schmelzeisen R, Otto S. Computed Tomography-Based Investigation on the Effects of Intravenous Bisphosphonate Administration on Tooth Growth in a Minipig Animal Model. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58060778. [PMID: 35744041 PMCID: PMC9230135 DOI: 10.3390/medicina58060778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022]
Abstract
Background and Objectives: The objective of this study was to evaluate the effects of bisphosphonate (BP) administration on tooth growth, using CT-data of a minipig animal model investigation. Materials and Methods: Tooth growth was evaluated in minipigs, with eight animals receiving weekly zoledronate (ZOL) and three animals serving as the control group. Tooth growth was evaluated at the right 2nd molar (M2) in the maxilla. A computed tomography-based measuring method was applied to evaluate tooth growth in the coronal-apical, buccal-oral and mesial-distal axis. Results: ZOL-administration was found to impact tooth growth in all evaluated measuring axes, with the highest effect observed in the coronal-apical axis. Conclusions: Detrimental effects of BP administration on growing teeth have been reported by a number of investigators. The results of this investigation demonstrate that intravenous ZOL affects the growth of the whole tooth within a short period of administration. With BPs being administered to a growing number of pediatric patients, further studies should be conducted to qualify and quantify the effects of BPs on developing teeth.
Collapse
Affiliation(s)
- Philipp Poxleitner
- Department of Oral and Maxillofacial Surgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (P.J.V.); (D.S.); (L.-M.S.); (R.S.)
- Correspondence:
| | - Pit J. Voss
- Department of Oral and Maxillofacial Surgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (P.J.V.); (D.S.); (L.-M.S.); (R.S.)
| | - David Steybe
- Department of Oral and Maxillofacial Surgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (P.J.V.); (D.S.); (L.-M.S.); (R.S.)
| | - Lisa-Marie Seibert
- Department of Oral and Maxillofacial Surgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (P.J.V.); (D.S.); (L.-M.S.); (R.S.)
| | - Stephan Zeiter
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland; (S.Z.); (M.J.S.)
| | - Martin J. Stoddart
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland; (S.Z.); (M.J.S.)
| | - Rainer Schmelzeisen
- Department of Oral and Maxillofacial Surgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (P.J.V.); (D.S.); (L.-M.S.); (R.S.)
| | - Sven Otto
- Department of Oral and Maxillofacial Surgery, Ludwig-Maximilians-University Munich, Lindwurmstr. 2a, 80337 Munich, Germany;
| |
Collapse
|
5
|
Inhibiting Endothelin Receptors with Macitentan Strengthens the Bone Protective Action of RANKL Inhibition and Reduces Metastatic Dissemination in Osteosarcoma. Cancers (Basel) 2022; 14:cancers14071765. [PMID: 35406536 PMCID: PMC8997105 DOI: 10.3390/cancers14071765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary The efficacy of current osteosarcoma therapy is diminished by two adverse events, namely resistance to chemotherapy and metastatic dissemination. In recent decades, research has been devoted to reducing these adverse events. Inhibiting bone resorption has shown promising effects on metastatic dissemination and tumor growth, with, however, the formation of significant tumoral mineralized tissue. Endothelin signaling is implicated in activating the cell that forms the mineralized tissues, consequently the impact of inhibiting it alone and in combination with the inhibition of bone resorption was evaluated using osteosarcoma models. The results obtained showed that inhibiting endothelin signaling significantly reduced the formation of mineralized tumor tissue concomitantly to metastatic dissemination without affecting sensitivity to chemotherapy. This inhibition appears to be a promising new therapeutic tool in the fight against osteosarcoma. Abstract Current treatments for osteosarcoma, combining conventional polychemotherapy and surgery, make it possible to attain a five-year survival rate of 70% in affected individuals. The presence of chemoresistance and metastases significantly shorten the patient’s lifespan, making identification of new therapeutic tools essential. Inhibiting bone resorption has been shown to be an efficient adjuvant strategy impacting the metastatic dissemination of osteosarcoma, tumor growth, and associated bone destruction. Unfortunately, over-apposition of mineralized matrix by normal and tumoral osteoblasts was associated with this inhibition. Endothelin signaling is implicated in the functional differentiation of osteoblasts, raising the question of the potential value of inhibiting it alone, or in combination with bone resorption repression. Using mouse models of osteosarcoma, the impact of macitentan, an endothelin receptor inhibitor, was evaluated regarding tumor growth, metastatic dissemination, matrix over-apposition secondary to RANKL blockade, and safety when combined with chemotherapy. The results showed that macitentan has no impact on tumor growth or sensitivity to ifosfamide, but significantly reduces tumoral osteoid tissue formation and the metastatic capacity of the osteosarcoma. To conclude, macitentan appears to be a promising therapeutic adjuvant for osteosarcoma alone or associated with bone resorption inhibitors.
Collapse
|
6
|
Characterization of Macrophages and Osteoclasts in the Osteosarcoma Tumor Microenvironment at Diagnosis: New Perspective for Osteosarcoma Treatment? Cancers (Basel) 2021; 13:cancers13030423. [PMID: 33498676 PMCID: PMC7866157 DOI: 10.3390/cancers13030423] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/06/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Due to the great genetic instability of osteosarcoma (OS), a recurrent molecular therapeutic target has not been identified to date. Therefore, characterization of the OS tumor microenvironment (TME) might offer new therapeutic perspectives. The OS2006 trial, originally designed to evaluate the impact of zoledronic acid (ZA, osteoclast-inhibitor) addition to conventional OS-therapies, was ended preliminary due to a negative impact on patient survival. Through retrospective biomarker analysis of the unique biological samples collected during the trial, we demonstrate here that ZA not only acts on harmful osteoclasts but also on protective macrophages, clarifying its detrimental effect. By multiplex immunohistochemistry, applied on additional OS biopsies, an important bipotent macrophage-population (CD168+/CD163+), homogenously distributed throughout OS tumor areas, was identified. These bipotent cells might play a determining role in the evolution of OS and offer a novel therapeutic approach. A clear definition of the macrophage populations present at diagnosis could re-enforce therapeutic decisions. Abstract Biological and histopathological techniques identified osteoclasts and macrophages as targets of zoledronic acid (ZA), a therapeutic agent that was detrimental for patients in the French OS2006 trial. Conventional and multiplex immunohistochemistry of microenvironmental and OS cells were performed on biopsies of 124 OS2006 patients and 17 surgical (“OSNew”) biopsies respectively. CSF-1R (common osteoclast/macrophage progenitor) and TRAP (osteoclast activity) levels in serum of 108 patients were correlated to response to chemotherapy and to prognosis. TRAP levels at surgery and at the end of the protocol were significantly lower in ZA+ than ZA− patients (padj = 0.0011; 0.0132). For ZA+-patients, an increase in the CSF-1R level between diagnosis and surgery and a high TRAP level in the serum at biopsy were associated with a better response to chemotherapy (p = 0.0091; p = 0.0251). At diagnosis, high CD163+ was associated with good prognosis, while low TRAP activity was associated with better overall survival in ZA− patients only. Multiplex immunohistochemistry demonstrated remarkable bipotent CD68+/CD163+ macrophages, homogeneously distributed throughout OS regions, aside osteoclasts (CD68+/CD163−) mostly residing in osteolytic territories and osteoid-matrix-associated CD68−/CD163+ macrophages. We demonstrate that ZA not only acts on harmful osteoclasts but also on protective macrophages, and hypothesize that the bipotent CD68+/CD163+ macrophages might present novel therapeutic targets.
Collapse
|
7
|
Heymann MF, Lezot F, Heymann D. Bisphosphonates in common pediatric and adult bone sarcomas. Bone 2020; 139:115523. [PMID: 32622877 DOI: 10.1016/j.bone.2020.115523] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 01/23/2023]
Abstract
The therapeutic strategies proposed currently for bone sarcomas are based on neo-adjuvant chemotherapy, delayed en-bloc wide resection, and adjuvant chemotherapy. Unfortunately, bone sarcomas are characterized by high rates of poor drug response, with a high risk of drug resistance, local recurrence and/or a high propensity for induced metastases. The pathogenesis of bone sarcomas is strongly associated with dysregulation of local bone remodeling and increased osteolysis that plays a part in tumor development. In this context, bisphosphonates (BPs) have been proposed as a single agent or in combination with conventional drugs to block bone resorption and the vicious cycle established between bone and sarcoma cells. Pre-clinical in vitro studies revealed the potential "anti-tumor" activities of nitrogen-bisphosphonates (N-BPs). In pre-clinical models, N-BPs reduced significantly primary tumor growth in osteosarcoma and Ewing sarcoma, and the installation of lung metastases. In chondrosarcoma, N-BPs reduced the recurrence of local tumors after intralesional curettage, and increased overall survival. In pediatric and adult osteosarcoma patients, N-BPs have been assessed in combination with conventional chemotherapy and surgery in randomized phase 3 studies with no improvement in clinical outcome. The lack of benefit may potentially be explained by the biological impact of N-BPs on macrophage differentiation/recruitment which may alter CD8+-T lymphocyte infiltration. Thanks to their considerable affinity for the mineralized extracellular matrix, BPs are an excellent platform for drug delivery in malignant bone sites with reduced systemic toxicity, which opens up new opportunities for their future use.
Collapse
Affiliation(s)
- Marie-Francoise Heymann
- Institut de Cancérologie de l'Ouest, Saint-Herblain, France; Université de Nantes, Nantes, France
| | - Frederic Lezot
- Université de Nantes, Inserm, U1238, Faculty of Medicine, Nantes, France
| | - Dominique Heymann
- Institut de Cancérologie de l'Ouest, Saint-Herblain, France; Université de Nantes, Nantes, France; University of Sheffield, Dept of Oncology and Metabolism, School of Medicine, Sheffield, UK.
| |
Collapse
|
8
|
Primary Retention of Molars and RANKL Signaling Alteration during Craniofacial Growth. J Clin Med 2020; 9:jcm9040898. [PMID: 32218136 PMCID: PMC7231205 DOI: 10.3390/jcm9040898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 12/21/2022] Open
Abstract
The primary retention of molars observed in clinic corresponds to a still-unexplained absence of molar eruption despite the presence of an eruption pathway, resembling the experimental transient inhibition of RANKL signaling in mice. The aim of the present study was to confront the hypothesis according to which the primary retention of molars is associated with transitory perturbations to RANKL signaling during growth as part of a wider craniofacial skeleton pattern. The experimental strategy was based on combining a clinical study and an animal study corresponding to the characterization of the craniofacial phenotypes of patients with primary retention of molars and analyses in mice of the consequences of transient inhibition of RANKL signaling on molar eruption and craniofacial growth. The clinical study validated the existence of a particular craniofacial phenotype in patients with primary retention of molars: a retromandibular skeletal class II typology with reduced mandibular dimensions which manifests itself at the dental level by a class II/2 with palatoversion of the upper incisors and anterior overbite. The animal study demonstrated that transient invalidation of RANKL signaling had an impact on the molar eruption process, the severity of which was dependent on the period of inhibition and was associated with a reduction in two craniofacial morphometric parameters: total skull length and craniofacial vault length. In conclusion, primary retention of molars may be proposed as part of the craniofacial skeleton phenotype associated with a transitory alteration in RANKL signaling during growth.
Collapse
|
9
|
Isawa M, Karakawa A, Sakai N, Nishina S, Kuritani M, Chatani M, Negishi-Koga T, Sato M, Inoue M, Shimada Y, Takami M. Biological Effects of Anti-RANKL Antibody and Zoledronic Acid on Growth and Tooth Eruption in Growing Mice. Sci Rep 2019; 9:19895. [PMID: 31882595 PMCID: PMC6934544 DOI: 10.1038/s41598-019-56151-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 12/03/2019] [Indexed: 11/30/2022] Open
Abstract
The anti-bone resorptive drugs denosumab, an anti-human-RANKL antibody, and zoledronic acid (ZOL), a nitrogen-containing bisphosphonate, have recently been applied for treatment of pediatric patients with bone diseases, though details regarding their effects in growing children have yet to be fully elucidated. In the present study, we administered these anti-resorptive drugs to mice from the age of 1 week and continued once-weekly injections for a total of 7 times. Mice that received the anti-RANKL antibody displayed normal growth and tooth eruption, though osteopetrotic bone volume gain in long and alveolar bones was noted, while there were nearly no osteoclasts and a normal of number osteoblasts observed. In contrast, ZOL significantly delayed body growth, tooth root formation, and tooth eruption, with increased osteoclast and decreased osteoblast numbers. These findings suggest regulation of tooth eruption via osteoblast differentiation by some types of anti-resorptive drugs.
Collapse
Affiliation(s)
- Motoki Isawa
- Department of Pediatric Dentistry, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo, 145-8515, Japan
- Department of Pharmacology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Akiko Karakawa
- Department of Pharmacology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
- Pharmacological Research Center, Showa University, Tokyo, 142-8555, Japan
| | - Nobuhiro Sakai
- Department of Pharmacology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
- Pharmacological Research Center, Showa University, Tokyo, 142-8555, Japan
| | - Saki Nishina
- Department of Pharmacology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Miku Kuritani
- Department of Pharmacology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
- Department of Special Needs Dentistry for Persons with Disabilities, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo, 145-8515, Japan
| | - Masahiro Chatani
- Department of Pharmacology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
- Pharmacological Research Center, Showa University, Tokyo, 142-8555, Japan
| | - Takako Negishi-Koga
- Department of Pharmacology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
- Pharmacological Research Center, Showa University, Tokyo, 142-8555, Japan
- Department of Mucosal Barriology, International Research and Development for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Masashi Sato
- Department of Pediatric Dentistry, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo, 145-8515, Japan
| | - Mitsuko Inoue
- Department of Pediatric Dentistry, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo, 145-8515, Japan
| | - Yukie Shimada
- Department of Pediatric Dentistry, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo, 145-8515, Japan
| | - Masamichi Takami
- Department of Pharmacology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
- Pharmacological Research Center, Showa University, Tokyo, 142-8555, Japan.
| |
Collapse
|
10
|
Vargas-Franco JW, Castaneda B, Gama A, Mueller CG, Heymann D, Rédini F, Lézot F. Genetically-achieved disturbances to the expression levels of TNFSF11 receptors modulate the effects of zoledronic acid on growing mouse skeletons. Biochem Pharmacol 2019; 168:133-148. [PMID: 31260659 DOI: 10.1016/j.bcp.2019.06.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 06/26/2019] [Indexed: 01/17/2023]
Abstract
Zoledronic acid (ZOL), a nitrogen bisphosphonate (N-BP), is currently used to treat and control pediatric osteolytic diseases. Variations in the intensity of the effects and side effects of N-BPs have been reported with no clear explanations regarding their origins. We wonder if such variations could be associated with different levels of RANKL signaling activity in growing bone during and after the treatment with N-BPs. To answer this question, ZOL was injected into neonate C57BL/6J mice with different genetically-determined RANKL signaling activity levels (Opg+/+\RankTg-, Opg+/+\RankTg+, Opg+/-\RankTg-, Opg+/-\RankTg+, Opg-/-\RankTg- and Opg-/-\RankTg+ mice) following a protocol (4 injections from post-natal day 1 to 7 at the dose of 50 μg/kg) that mimics those used in onco-pediatric patients. At the end of pediatric growth (1 and half months) and at an adult age (10 months), the bone morphometric and mineral parameters were measured using μCT in the tibia and skull for the different mice. A histologic analysis of the dental and periodontal tissues was also performed. At the end of pediatric growth, a delay in long bone and skull bone growth, a blockage of tooth eruption, some molar root alterations and a neoplasia-like structure associated with incisor development were found. Interestingly, the magnitude of these side effects was reduced by Opg deficiency (Opg-/-) but increased by Rank overexpression (RankTg). Analysis of the skeletal phenotype at ten months confirmed respectively the beneficial and harmful effects of Opg deficiency and Rank overexpression. These results validated the hypothesis that the RANKL signaling activity level in the bone microenvironment is implicated in the modulation of the response to ZOL. Further studies will be necessary to understand the underlying molecular mechanisms, which will help decipher the variability in the effects of N-BPs reported in the human population. SIGNIFICANT STATEMENTS: The present study establishes that in mice the RANKL signaling activity level is a major modulator of the effects and side-effects of bisphosphonates on the individual skeleton during growth. However, the modulatory actions are dependent on the ways in which this level of activity is increased. A decrease in OPG expression is beneficial to the skeletal phenotype observed at the end of growth, while RANK overexpression deteriorates it. Far removed from pediatric treatment, in adults, the skeletal phenotypes initially observed at the end of growth for the different levels of RANKL signaling activity were maintained, although significant improvement was associated only with reductions in OPG expression.
Collapse
Affiliation(s)
- Jorge William Vargas-Franco
- INSERM, UMR-1238, Equipe 1, Faculté de Médecine, Université de Nantes, Nantes F-44035, France; Department of Basic Studies, Faculty of Odontology, University of Antioquia, Medellin, Colombia
| | - Beatriz Castaneda
- Service d'Odontologie-Stomatologie, Hôpital Pitié-Salpêtrière, AP-HP, Paris F-75013, France
| | - Andrea Gama
- INSERM, UMR-1138, Equipe 5, Centre de Recherche des Cordeliers, Paris F-75006, France; Odontology Center of District Federal Military Police, Brasília, Brazil; Oral Histopathology Laboratory, Health Sciences Faculty, University of Brasília, Brasília, Brazil
| | - Christopher G Mueller
- CNRS, UPR 9021, Institut de Biologie Moléculaire et Cellulaire (IBMC), Laboratoire Immunologie et Chimie Thérapeutiques, Université de Strasbourg, Strasbourg F-67084, France
| | - Dominique Heymann
- INSERM, LEA Sarcoma Research Unit, University of Sheffield, Department of Oncology and Human Metabolism, Medical School, Sheffield S10 2RX, UK; INSERM, UMR 1232, LabCT, Université de Nantes, Université d'Angers, Institut de Cancérologie de l'Ouest, site René Gauducheau, Saint-Herblain F-44805, France
| | - Françoise Rédini
- INSERM, UMR-1238, Equipe 1, Faculté de Médecine, Université de Nantes, Nantes F-44035, France
| | - Frédéric Lézot
- INSERM, UMR-1238, Equipe 1, Faculté de Médecine, Université de Nantes, Nantes F-44035, France.
| |
Collapse
|
11
|
Vargas-Franco JW, Castaneda B, Rédiní F, Gómez DF, Heymann D, Lézot F. Paradoxical side effects of bisphosphonates on the skeleton: What do we know and what can we do? J Cell Physiol 2018; 233:5696-5715. [PMID: 29323712 DOI: 10.1002/jcp.26465] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/05/2018] [Indexed: 12/15/2022]
Abstract
Bisphosphonates are considered the most effective drugs for controlling adult and pediatric osteolytic diseases. Although they have been used successfully for many years, several side effects, such as osteonecrosis of the jaw, delayed dental eruption, atypical femoral fracture, and alterations to the bone growth system, have been described. After an overview of nitrogenous bisphosphonate, the purpose of this article is to describe their mechanisms of action and current applications, review the preclinical and clinical evidence of their side effects in the skeleton ("what we know"), and describe current recommendations for preventing and managing these effects ("what we can do"). Finally, promising future directions on how to limit the occurrence of these side effects will be presented.
Collapse
Affiliation(s)
- Jorge W Vargas-Franco
- UMR-1238, INSERM, Equipe 1, Faculté de Médecine de l'Université de Nantes, Nantes, France.,Department of Basic Studies, Faculty of Odontology, University of Antioquia, Medellin, Colombia
| | - Beatriz Castaneda
- INSERM, UMR-1138, Equipe 5, Centre de Recherche des Cordeliers, Paris, France
| | - Françoise Rédiní
- UMR-1238, INSERM, Equipe 1, Faculté de Médecine de l'Université de Nantes, Nantes, France
| | - David F Gómez
- Department of Basic Studies, Faculty of Odontology, University of Antioquia, Medellin, Colombia
| | - Dominique Heymann
- INSERM, LEA Sarcoma Research Unit, Department of Oncology and Human Metabolism, Medical School, University of Sheffield, Sheffield, UK.,UMR-1232, Institut de Cancérologie de l'Ouest, Site René Gauducheau, INSERM, Boulevard Professeur Jacques Monod, Saint-Herblain, France
| | - Frédéric Lézot
- UMR-1238, INSERM, Equipe 1, Faculté de Médecine de l'Université de Nantes, Nantes, France
| |
Collapse
|
12
|
Understanding the Progression of Bone Metastases to Identify Novel Therapeutic Targets. Int J Mol Sci 2018; 19:ijms19010148. [PMID: 29300334 PMCID: PMC5796097 DOI: 10.3390/ijms19010148] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/22/2017] [Accepted: 01/02/2018] [Indexed: 12/15/2022] Open
Abstract
Bone is one of the most preferential target site for cancer metastases, particularly for prostate, breast, kidney, lung and thyroid primary tumours. Indeed, numerous chemical signals and growth factors produced by the bone microenvironment constitute factors promoting cancer cell invasion and aggression. After reviewing the different theories proposed to provide mechanism for metastatic progression, we report on the gene expression profile of bone-seeking cancer cells. We also discuss the cross-talk between the bone microenvironment and invading cells, which impacts on the tumour actions on surrounding bone tissue. Lastly, we detail therapies for bone metastases. Due to poor prognosis for patients, the strategies mainly aim at reducing the impact of skeletal-related events on patients' quality of life. However, recent advances have led to a better understanding of molecular mechanisms underlying bone metastases progression, and therefore of novel therapeutic targets.
Collapse
|
13
|
Bowden SA, Mahan JD. Zoledronic acid in pediatric metabolic bone disorders. Transl Pediatr 2017; 6:256-268. [PMID: 29184807 PMCID: PMC5682380 DOI: 10.21037/tp.2017.09.10] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 09/19/2017] [Indexed: 01/06/2023] Open
Abstract
Zoledronic acid (ZA), a highly potent intravenous bisphosphonate (BP), has been increasingly used in children with primary and secondary osteoporosis due to its convenience of shorter infusion time and less frequent dosing compared to pamidronate. Many studies have also demonstrated beneficial effects of ZA in other conditions such as hypercalcemia of malignancy, fibrous dysplasia (FD), chemotherapy-related osteonecrosis (ON) and metastatic bone disease. This review summarizes pharmacologic properties, mechanism of action, dosing regimen, and therapeutic outcomes of ZA in a variety of metabolic bone disorders in children. Several potential novel uses of ZA are also discussed. Safety concerns and adverse effects are also highlighted.
Collapse
Affiliation(s)
- Sasigarn A. Bowden
- Division of Endocrinology, Department of Pediatrics, Nationwide Children’s Hospital/the Ohio State University College of Medicine, Columbus, Ohio, USA
| | - John D. Mahan
- Division of Nephrology, Department of Pediatrics, Nationwide Children’s Hospital/the Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
14
|
Vuorimies I, Arponen H, Valta H, Tiesalo O, Ekholm M, Ranta H, Evälahti M, Mäkitie O, Waltimo-Sirén J. Timing of dental development in osteogenesis imperfecta patients with and without bisphosphonate treatment. Bone 2017; 94:29-33. [PMID: 27725317 DOI: 10.1016/j.bone.2016.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 07/11/2016] [Accepted: 10/06/2016] [Indexed: 12/29/2022]
Abstract
Bisphosphonates have established their role as medical therapy for pediatric osteogenesis imperfecta (OI) patients. Since bisphosphonates have also been shown to delay tooth development in animal models, we aimed to assess whether the medication has a similar effect on children with OI. In this cross-sectional study, bisphosphonate-treated OI patients of whom dental panoramic tomograph was taken between 3 and 16years of age formed the study group. The patients, 22 in total, had been treated with pamidronate, zoledronic acid or risedronate for at least one year before the radiography. Developmental stage of the permanent teeth, resorption of the deciduous teeth, and number of the erupted permanent teeth were radiographically assessed in the left mandibular quadrant. Dental panoramic tomographs of 50 OI patients, naïve to bisphosphonates, and of 50 healthy individuals of the same age were used as controls. The dental development was statistically significantly accelerated in the OI group naïve to bisphosphonates showing median advancement of dental age by 0.63years from chronological age and median increase in the number of erupted teeth by 0.31 as compared to Finnish norms. Bisphosphonate-treated OI patients displayed, however, age-appropriate dental development. The OI patients not treated with bisphosphonates also showed statistically significantly faster resorption of the deciduous teeth than the treated ones, and displayed an altered interrelationship between the resorption stage of an individual primary tooth and the developmental stage of the succedaneous permanent tooth, unlike the OI patients treated with bisphosphonate. No correlation between either cumulative bisphosphonate dose or between treatment length and any measured component of the dental development was found. To conclude, OI itself was found to lead to advanced dental development. Bisphosphonate treatment had a delaying effect in all the three aspects studied, resulting in a rate of dental development indistinguishable from normal.
Collapse
Affiliation(s)
- Ilkka Vuorimies
- Folkhälsan Institute of Genetics, Helsinki, Finland; Children's Hospital, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Heidi Arponen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Helena Valta
- Children's Hospital, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Outi Tiesalo
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Marja Ekholm
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Helena Ranta
- Forensic Dentistry, Department of Forensic Medicine, University of Helsinki, Helsinki, Finland
| | - Marjut Evälahti
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Outi Mäkitie
- Folkhälsan Institute of Genetics, Helsinki, Finland; Children's Hospital, University of Helsinki, Helsinki University Hospital, Helsinki, Finland; Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.
| | - Janna Waltimo-Sirén
- Children's Hospital, University of Helsinki, Helsinki University Hospital, Helsinki, Finland; Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| |
Collapse
|
15
|
Hernandez M, Phulpin B, Mansuy L, Droz D. Use of new targeted cancer therapies in children: effects on dental development and risk of jaw osteonecrosis: a review. J Oral Pathol Med 2016; 46:321-326. [DOI: 10.1111/jop.12516] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Magali Hernandez
- Pediatric Dentistry Department; CHRU of Nancy; Vandoeuvre-les-Nancy France
- Pediatric Dentistry Department; Faculty of Dentistry; Nancy France
| | - Bérengère Phulpin
- Head and Neck Surgery and Dental Units; Oncology Surgery Department; Institute of Cancerology of Lorraine; Vandoeuvre-lès-Nancy France
- Oral Surgery Department; Faculty of Dentistry; Nancy France
| | - Ludovic Mansuy
- Pediatric Oncology Department; CHRU of Nancy; Vandoeuvre-les-Nancy France
| | - Dominique Droz
- Pediatric Dentistry Department; CHRU of Nancy; Vandoeuvre-les-Nancy France
- Pediatric Dentistry Department; Faculty of Dentistry; Nancy France
| |
Collapse
|
16
|
Redini F, Heymann D. Bone Tumor Environment as a Potential Therapeutic Target in Ewing Sarcoma. Front Oncol 2015; 5:279. [PMID: 26779435 PMCID: PMC4688361 DOI: 10.3389/fonc.2015.00279] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 11/27/2015] [Indexed: 12/18/2022] Open
Abstract
Ewing sarcoma is the second most common pediatric bone tumor, with three cases per million worldwide. In clinical terms, Ewing sarcoma is an aggressive, rapidly fatal malignancy that mainly develops not only in osseous sites (85%) but also in extra-skeletal soft tissue. It spreads naturally to the lungs, bones, and bone marrow with poor prognosis in the two latter cases. Bone lesions from primary or secondary (metastases) tumors are characterized by extensive bone remodeling, more often due to osteolysis. Osteoclast activation and subsequent bone resorption are responsible for the clinical features of bone tumors, including pain, vertebral collapse, and spinal cord compression. Based on the “vicious cycle” concept of tumor cells and bone resorbing cells, drugs, which target osteoclasts, may be promising agents as adjuvant setting for treating bone tumors, including Ewing sarcoma. There is also increasing evidence that cellular and molecular protagonists present in the bone microenvironment play a part in establishing a favorable “niche” for tumor initiation and progression. The purpose of this review is to discuss the potential therapeutic value of drugs targeting the bone tumor microenvironment in Ewing sarcoma. The first part of the review will focus on targeting the bone resorbing function of osteoclasts by means of bisphosphonates or drugs blocking the pro-resorbing cytokine receptor activator of NF-kappa B ligand. Second, the role of this peculiar hypoxic microenvironment will be discussed in the context of resistance to chemotherapy, escape from the immune system, or neo-angiogenesis. Therapeutic interventions based on these specificities could be then proposed in the context of Ewing sarcoma.
Collapse
Affiliation(s)
- Françoise Redini
- INSERM UMR_S 957, Nantes, France; Equipe labellisée Ligue contre le Cancer 2012, Nantes, France; Laboratoire de Physiopathologie de la Résorption osseuse et Thérapie des tumeurs osseuses primitives, Faculté de Médecine, Nantes, France
| | - Dominique Heymann
- INSERM UMR_S 957, Nantes, France; Equipe labellisée Ligue contre le Cancer 2012, Nantes, France; Laboratoire de Physiopathologie de la Résorption osseuse et Thérapie des tumeurs osseuses primitives, Faculté de Médecine, Nantes, France; CHU Hôtel-Dieu, Nantes, France
| |
Collapse
|
17
|
Ealba EL, Jheon AH, Hall J, Curantz C, Butcher KD, Schneider RA. Neural crest-mediated bone resorption is a determinant of species-specific jaw length. Dev Biol 2015; 408:151-63. [PMID: 26449912 PMCID: PMC4698309 DOI: 10.1016/j.ydbio.2015.10.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/29/2015] [Accepted: 10/01/2015] [Indexed: 11/28/2022]
Abstract
Precise control of jaw length during development is crucial for proper form and function. Previously we have shown that in birds, neural crest mesenchyme (NCM) confers species-specific size and shape to the beak by regulating molecular and histological programs for the induction and deposition of cartilage and bone. Here we reveal that a hitherto unrecognized but similarly essential mechanism for establishing jaw length is the ability of NCM to mediate bone resorption. Osteoclasts are considered the predominant cells that resorb bone, although osteocytes have also been shown to participate in this process. In adults, bone resorption is tightly coupled to bone deposition as a means to maintain skeletal homeostasis. Yet, the role and regulation of bone resorption during growth of the embryonic skeleton have remained relatively unexplored. We compare jaw development in short-beaked quail versus long-billed duck and find that quail have substantially higher levels of enzymes expressed by bone-resorbing cells including tartrate-resistant acid phosphatase (TRAP), Matrix metalloproteinase 13 (Mmp13), and Mmp9. Then, we transplant NCM destined to form the jaw skeleton from quail to duck and generate chimeras in which osteocytes arise from quail donor NCM and osteoclasts come exclusively from the duck host. Chimeras develop quail-like jaw skeletons coincident with dramatically elevated expression of TRAP, Mmp13, and Mmp9. To test for a link between bone resorption and jaw length, we block resorption using a bisphosphonate, osteoprotegerin protein, or an MMP13 inhibitor, and this significantly lengthens the jaw. Conversely, activating resorption with RANKL protein shortens the jaw. Finally, we find that higher resorption in quail presages their relatively lower adult jaw bone mineral density (BMD) and that BMD is also NCM-mediated. Thus, our experiments suggest that NCM not only controls bone resorption by its own derivatives but also modulates the activity of mesoderm-derived osteoclasts, and in so doing enlists bone resorption as a key patterning mechanism underlying the functional morphology and evolution of the jaw.
Collapse
Affiliation(s)
- Erin L Ealba
- Department of Orofacial Sciences, University of California, San Francisco, USA; Department of Orthopaedic Surgery, University of California, San Francisco, USA
| | - Andrew H Jheon
- Department of Orofacial Sciences, University of California, San Francisco, USA; Department of Orthopaedic Surgery, University of California, San Francisco, USA
| | - Jane Hall
- Department of Orthopaedic Surgery, University of California, San Francisco, USA
| | - Camille Curantz
- Department of Orthopaedic Surgery, University of California, San Francisco, USA
| | - Kristin D Butcher
- Department of Orthopaedic Surgery, University of California, San Francisco, USA
| | - Richard A Schneider
- Department of Orofacial Sciences, University of California, San Francisco, USA; Department of Orthopaedic Surgery, University of California, San Francisco, USA.
| |
Collapse
|
18
|
Gama A, Navet B, Vargas JW, Castaneda B, Lézot F. Bone resorption: an actor of dental and periodontal development? Front Physiol 2015; 6:319. [PMID: 26594180 PMCID: PMC4633481 DOI: 10.3389/fphys.2015.00319] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/21/2015] [Indexed: 12/23/2022] Open
Abstract
Dental and periodontal tissue development is a complex process involving various cell-types. A finely orchestrated network of communications between these cells is implicated. During early development, communications between cells from the oral epithelium and the underlying mesenchyme govern the dental morphogenesis with successive bud, cap and bell stages. Later, interactions between epithelial and mesenchymal cells occur during dental root elongation. Root elongation and tooth eruption require resorption of surrounding alveolar bone to occur. For years, it was postulated that signaling molecules secreted by dental and periodontal cells control bone resorbing osteoclast precursor recruitment and differentiation. Reverse signaling originating from bone cells (osteoclasts and osteoblasts) toward dental cells was not suspected. Dental defects reported in osteopetrosis were associated with mechanical stress secondary to defective bone resorption. In the last decade, consequences of bone resorption over-activation on dental and periodontal tissue formation have been analyzed with transgenic animals (RANKTg and Opg−∕− mice). Results suggest the existence of signals originating from osteoclasts toward dental and periodontal cells. Meanwhile, experiments consisting in transitory inhibition of bone resorption during root elongation, achieved with bone resorption inhibitors having different mechanisms of action (bisphosphonates and RANKL blocking antibodies), have evidenced dental and periodontal defects that support the presence of signals originating bone cells toward dental cells. The aim of the present manuscript is to present the data we have collected in the last years that support the hypothesis of a role of bone resorption in dental and periodontal development.
Collapse
Affiliation(s)
- Andrea Gama
- Institut National de la Santé et de la Recherche Médicale, UMR-1138, Equipe 5, Centre de Recherche des Cordeliers Paris, France ; Odontologic Center of District Federal Military Police Brasilia, Brazil
| | - Benjamin Navet
- Institut National de la Santé et de la Recherche Médicale, UMR-957, Equipe Ligue Nationale Contre le Cancer Nantes, France ; Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Faculté de Médecine, Université de Nantes Nantes, France
| | - Jorge William Vargas
- Institut National de la Santé et de la Recherche Médicale, UMR-957, Equipe Ligue Nationale Contre le Cancer Nantes, France ; Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Faculté de Médecine, Université de Nantes Nantes, France ; Department of Basic Studies, Faculty of Odontology, University of Antioquia Medellin, Colombia
| | - Beatriz Castaneda
- Institut National de la Santé et de la Recherche Médicale, UMR-1138, Equipe 5, Centre de Recherche des Cordeliers Paris, France ; Department of Basic Studies, Faculty of Odontology, University of Antioquia Medellin, Colombia
| | - Frédéric Lézot
- Institut National de la Santé et de la Recherche Médicale, UMR-957, Equipe Ligue Nationale Contre le Cancer Nantes, France ; Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Faculté de Médecine, Université de Nantes Nantes, France
| |
Collapse
|
19
|
Abstract
Molecular and cellular mechanisms that control jaw length are becoming better understood. This is significant since the jaws are not only critical for species-specific adaptation and survival, but they are often affected by a variety of size-related anomalies including mandibular hypoplasia, retrognathia, asymmetry, and clefting. This chapter overviews how jaw length is established during the allocation, proliferation, differentiation, and growth of jaw precursor cells, which originate from neural crest mesenchyme (NCM). The focus is mainly on results from experiments transplanting NCM between quail and duck embryos. Quail have short jaws whereas those of duck are relatively long. Quail-duck chimeras reveal that the determinants of jaw length are NCM mediated throughout development and include species-specific differences in jaw progenitor number, differential regulation of various signaling pathways, and the autonomous activation of programs for skeletal matrix deposition and resorption. Such insights help make the goal of devising new therapies for birth defects, diseases, and injuries to the jaw skeleton seem ever more likely.
Collapse
Affiliation(s)
- Richard A Schneider
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California, USA.
| |
Collapse
|
20
|
Lézot F, Chesneau J, Navet B, Gobin B, Amiaud J, Choi Y, Yagita H, Castaneda B, Berdal A, Mueller CG, Rédini F, Heymann D. Skeletal consequences of RANKL-blocking antibody (IK22-5) injections during growth: mouse strain disparities and synergic effect with zoledronic acid. Bone 2015; 73:51-9. [PMID: 25532478 DOI: 10.1016/j.bone.2014.12.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/06/2014] [Accepted: 12/13/2014] [Indexed: 10/24/2022]
Abstract
High doses of bone resorption inhibitors are currently under evaluation in pediatric oncology. Previous works have evidenced transient arrest in long bone and skull bone growth and tooth eruption blockage when mice were treated with zoledronic acid (ZOL). The question of potential similar effects with a RANKL-blocking antibody (IK22.5) was raised. Sensitivity disparities in these inhibitors between mouse strains and synergic effects of zoledronic acid and a RANKL-blocking antibody were subsidiary questions. In order to answer these questions, newborn C57BL/6J and CD1 mice were injected every two or three days (4 injections in total so 7 or 10 days of treatment length) with high doses of a RANKL-blocking antibody. The consequences on the tibia, craniofacial bones and teeth were analyzed by μCT and histology at the end of the treatment and one, two and three months later. The results obtained showed that RANKL-blocking antibody injections induced a transient arrest of tibia and skull bone growth and an irreversible blockage of tooth eruption in C57BL/6J mice. In CD1 mice, tooth eruption defects were also present but only at much higher doses. Similar mouse strain differences were obtained with zoledronic acid. Finally, a synergic effect of the two inhibitors was evidenced. In conclusion as previously observed for bisphosphonates (ZOL), a RANKL-blocking antibody induced a transient arrest in long bone and skull bone growth and a blockage of tooth eruption with however disparities between mouse strains with regard to this last effect. A synergic effect of both bone resorption inhibitors was also demonstrated.
Collapse
Affiliation(s)
- Frédéric Lézot
- INSERM, UMR-957, Equipe Ligue Nationale Contre le Cancer 2012, Nantes F-44035, France; Université de Nantes, Faculté de Médecine, Laboratoire de physiopathologie de la résorption osseuse et thérapie des tumeurs osseuses primitives, Nantes F-44035, France.
| | - Julie Chesneau
- INSERM, UMR-957, Equipe Ligue Nationale Contre le Cancer 2012, Nantes F-44035, France; Université de Nantes, Faculté de Médecine, Laboratoire de physiopathologie de la résorption osseuse et thérapie des tumeurs osseuses primitives, Nantes F-44035, France
| | - Benjamin Navet
- INSERM, UMR-957, Equipe Ligue Nationale Contre le Cancer 2012, Nantes F-44035, France; Université de Nantes, Faculté de Médecine, Laboratoire de physiopathologie de la résorption osseuse et thérapie des tumeurs osseuses primitives, Nantes F-44035, France
| | - Bérengère Gobin
- INSERM, UMR-957, Equipe Ligue Nationale Contre le Cancer 2012, Nantes F-44035, France; Université de Nantes, Faculté de Médecine, Laboratoire de physiopathologie de la résorption osseuse et thérapie des tumeurs osseuses primitives, Nantes F-44035, France
| | - Jérome Amiaud
- INSERM, UMR-957, Equipe Ligue Nationale Contre le Cancer 2012, Nantes F-44035, France; Université de Nantes, Faculté de Médecine, Laboratoire de physiopathologie de la résorption osseuse et thérapie des tumeurs osseuses primitives, Nantes F-44035, France
| | - YongWon Choi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, USA
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Beatriz Castaneda
- INSERM, UMR-1138, Equipe 5, Centre de Recherche des Cordeliers, Paris F-75006 France; Department of Basic Studies, Faculty of Odontology, University of Antioquia, Medellin AA 1226, Colombia
| | - Ariane Berdal
- INSERM, UMR-1138, Equipe 5, Centre de Recherche des Cordeliers, Paris F-75006 France
| | - Christopher G Mueller
- CNRS, UPR-9021, Institut de Biologie Moléculaire et Cellulaire (IBMC), Laboratoire Immunologie et Chimie Thérapeutiques, Université de Strasbourg, Strasbourg F-67084, France
| | - Françoise Rédini
- INSERM, UMR-957, Equipe Ligue Nationale Contre le Cancer 2012, Nantes F-44035, France; Université de Nantes, Faculté de Médecine, Laboratoire de physiopathologie de la résorption osseuse et thérapie des tumeurs osseuses primitives, Nantes F-44035, France
| | - Dominique Heymann
- INSERM, UMR-957, Equipe Ligue Nationale Contre le Cancer 2012, Nantes F-44035, France; Université de Nantes, Faculté de Médecine, Laboratoire de physiopathologie de la résorption osseuse et thérapie des tumeurs osseuses primitives, Nantes F-44035, France
| |
Collapse
|