1
|
Carrasco ME, Thaler R, Nardocci G, Dudakovic A, van Wijnen AJ. Inhibition of Ezh2 redistributes bivalent domains within transcriptional regulators associated with WNT and Hedgehog pathways in osteoblasts. J Biol Chem 2023; 299:105155. [PMID: 37572850 PMCID: PMC10506106 DOI: 10.1016/j.jbc.2023.105155] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023] Open
Abstract
Bivalent epigenomic regulatory domains containing both activating histone 3 lysine 4 (H3K4me3) and repressive lysine 27 (H3K27me3) trimethylation are associated with key developmental genes. These bivalent domains repress transcription in the absence of differentiation signals but maintain regulatory genes in a poised state to allow for timely activation. Previous studies demonstrated that enhancer of zeste homolog 2 (Ezh2), a histone 3 lysine 27 (H3K27) methyltransferase, suppresses osteogenic differentiation and that inhibition of Ezh2 enhances commitment of osteoblast progenitors in vitro and bone formation in vivo. Here, we examined the mechanistic effects of Tazemetostat (EPZ6438), an Food and Drug Administration approved Ezh2 inhibitor for epithelioid sarcoma treatment, because this drug could potentially be repurposed to stimulate osteogenesis for clinical indications. We find that Tazemetostat reduces H3K27me3 marks in bivalent domains in enhancers required for bone formation and stimulates maturation of MC3T3 preosteoblasts. Furthermore, Tazemetostat activates bivalent genes associated with the Wingless/integrated (WNT), adenylyl cyclase (cAMP), and Hedgehog (Hh) signaling pathways based on transcriptomic (RNA-seq) and epigenomic (chromatin immunoprecipitation [ChIP]-seq) data. Functional analyses using selective pathway inhibitors and silencing RNAs demonstrate that the WNT and Hh pathways modulate osteogenic differentiation after Ezh2 inhibition. Strikingly, we show that loss of the Hh-responsive transcriptional regulator Gli1, but not Gli2, synergizes with Tazemetostat to accelerate osteoblast differentiation. These studies establish epigenetic cooperativity of Ezh2, Hh-Gli1 signaling, and bivalent regulatory genes in suppressing osteogenesis. Our findings may have important translational ramifications for anabolic applications requiring bone mass accrual and/or reversal of bone loss.
Collapse
Affiliation(s)
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Gino Nardocci
- Program in Molecular Biology and Bioinformatics, Faculty of Medicine, Center for Biomedical Research and Innovation (CIIB), Universidad de los Andes, Santiago, Chile; IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA.
| | - Andre J van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA.
| |
Collapse
|
2
|
Smith N, Shirazi S, Cakouros D, Gronthos S. Impact of Environmental and Epigenetic Changes on Mesenchymal Stem Cells during Aging. Int J Mol Sci 2023; 24:ijms24076499. [PMID: 37047469 PMCID: PMC10095074 DOI: 10.3390/ijms24076499] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Many crucial epigenetic changes occur during early skeletal development and throughout life due to aging, disease and are heavily influenced by an individual’s lifestyle. Epigenetics is the study of heritable changes in gene expression as the result of changes in the environment without any mutation in the underlying DNA sequence. The epigenetic profiles of cells are dynamic and mediated by different mechanisms, including histone modifications, non-coding RNA-associated gene silencing and DNA methylation. Given the underlining role of dysfunctional mesenchymal tissues in common age-related skeletal diseases such as osteoporosis and osteoarthritis, investigations into skeletal stem cells or mesenchymal stem cells (MSC) and their functional deregulation during aging has been of great interest and how this is mediated by an evolving epigenetic landscape. The present review describes the recent findings in epigenetic changes of MSCs that effect growth and cell fate determination in the context of aging, diet, exercise and bone-related diseases.
Collapse
Affiliation(s)
- Nicholas Smith
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Suzanna Shirazi
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Dimitrios Cakouros
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
- Correspondence: (D.C.); (S.G.); Tel.: +61-8-8128-4395 (S.G.)
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
- Correspondence: (D.C.); (S.G.); Tel.: +61-8-8128-4395 (S.G.)
| |
Collapse
|
3
|
Chen JR, Caviness PC, Zhao H, Belcher B, Wankhade UD, Shankar K, Blackburn ML, Lazarenko OP. Maternal high-fat diet modifies epigenetic marks H3K27me3 and H3K27ac in bone to regulate offspring osteoblastogenesis in mice. Epigenetics 2022; 17:2209-2222. [PMID: 35950595 PMCID: PMC9665156 DOI: 10.1080/15592294.2022.2111759] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/05/2022] [Indexed: 11/03/2022] Open
Abstract
Studies from both humans and animal models indicated that maternal chronic poor-quality diet, especially a high fat diet (HFD), is significantly associated with reduced bone density and childhood fractures in offspring. When previously studied in a rat model, our data suggested that maternal HFD changes epigenetic marks such as DNA methylation and histone modifications to control osteoblast metabolism. In mouse embryonic and postnatal offspring bone samples, a ChIP-sequencing (ChIP-Seq)-based genome-wide method was used to locate the repressive histone mark H3K27me3 (mediated via the polycomb histone methyltransferase, Ezh2) and expressive histone mark H3K27ac (p300/CBP mediated) throughout the genome. Using isolated mouse embryonic cells from foetal calvaria (osteoblast-like cells), H3K27me3 ChIP-Seq showed that 147 gene bodies and 26 gene promoters in HFD embryotic samples had a greater than twofold increase in H3K27me peaks compared to controls. Among the HFD samples, Pthlh and Col2a1 that are important genes playing roles during chondro- and osteogenesis had significantly enriched levels of H3K27me3. Their decreased mRNA expression was confirmed by real-time PCR and standard ChIP analysis, indicating a strong association with Ezh2 mediated H3K27me3 epigenetic changes. Using embryonic calvaria osteoblastic cells and offspring bone samples, H3K27ac ChIP-Seq analysis showed that osteoblast inhibitor genes Tnfaip3 and Twist1 had significantly enriched peaks of H3K27ac in HFD samples compared to controls. Their increased gene expression and association with H3K27ac were also confirmed by real-time PCR and standard ChIP analysis. These findings indicate that chronic maternal HFD changes histone trimethylation and acetylation epigenetic marks to regulate expression of genes controlling osteoblastogenesis.
Collapse
Affiliation(s)
- Jin-Ran Chen
- Arkansas Children’s Nutrition CenterLittle Rock, AR 72202, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Perry C. Caviness
- Arkansas Children’s Nutrition CenterLittle Rock, AR 72202, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Haijun Zhao
- Arkansas Children’s Nutrition CenterLittle Rock, AR 72202, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Beau Belcher
- Arkansas Children’s Nutrition CenterLittle Rock, AR 72202, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Umesh D. Wankhade
- Arkansas Children’s Nutrition CenterLittle Rock, AR 72202, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kartik Shankar
- Department of Pediatrics, Section of Nutrition, University of Colorado School of Medicine, Aurora, CO, USA
| | - Michael L Blackburn
- Arkansas Children’s Nutrition CenterLittle Rock, AR 72202, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Oxana P. Lazarenko
- Arkansas Children’s Nutrition CenterLittle Rock, AR 72202, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
4
|
Sun C, Janjic Rankovic M, Folwaczny M, Otto S, Wichelhaus A, Baumert U. Effect of Tension on Human Periodontal Ligament Cells: Systematic Review and Network Analysis. Front Bioeng Biotechnol 2021; 9:695053. [PMID: 34513810 PMCID: PMC8429507 DOI: 10.3389/fbioe.2021.695053] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/10/2021] [Indexed: 01/09/2023] Open
Abstract
Orthodontic tooth movement is based on the remodeling of tooth-surrounding tissues in response to mechanical stimuli. During this process, human periodontal ligament cells (hPDLCs) play a central role in mechanosensing and mechanotransduction. Various in vitro models have been introduced to investigate the effect of tension on hPDLCs. They provide a valuable body of knowledge on how tension influences relevant genes, proteins, and metabolites. However, no systematic review summarizing these findings has been conducted so far. Aim of this systematic review was to identify all related in vitro studies reporting tension application on hPDLCs and summarize their findings regarding force parameters, including magnitude, frequency and duration. Expression data of genes, proteins, and metabolites was extracted and summarized. Studies' risk of bias was assessed using tailored risk of bias tools. Signaling pathways were identified by protein-protein interaction (PPI) networks using STRING and GeneAnalytics. According to our results, Flexcell Strain Unit® and other silicone-plate or elastic membrane-based apparatuses were mainly adopted. Frequencies of 0.1 and 0.5 Hz were predominantly applied for dynamic equibiaxial and uniaxial tension, respectively. Magnitudes of 10 and 12% were mostly employed for dynamic tension and 2.5% for static tension. The 10 most commonly investigated genes, proteins and metabolites identified, were mainly involved in osteogenesis, osteoclastogenesis or inflammation. Gene-set enrichment analysis and PPI networks gave deeper insight into the involved signaling pathways. This review represents a brief summary of the massive body of knowledge in this field, and will also provide suggestions for future researches on this topic.
Collapse
Affiliation(s)
- Changyun Sun
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Munich, Germany
| | - Mila Janjic Rankovic
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Munich, Germany
| | - Matthias Folwaczny
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Munich, Germany
| | - Sven Otto
- Department of Oral and Maxillofacial Plastic Surgery, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Andrea Wichelhaus
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Munich, Germany
| | - Uwe Baumert
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
5
|
Hu Y, Zhao X. Role of m6A in osteoporosis, arthritis and osteosarcoma (Review). Exp Ther Med 2021; 22:926. [PMID: 34306195 PMCID: PMC8281110 DOI: 10.3892/etm.2021.10358] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 03/11/2021] [Indexed: 12/18/2022] Open
Abstract
RNA modification is a type of post-transcriptional modification that regulates important cellular pathways, such as the processing and metabolism of RNA. The most abundant form of methylation modification is RNA N6-methyladenine (m6A), which plays various post-transcriptional regulatory roles in cellular biological functions, including cell differentiation, embryonic development and disease occurrence. Bones play a pivotal role in the skeletal system as they support and protect muscles and other organs, facilitate movement and ensure haematopoiesis. The development and remodelling of bones require a delicate and accurate regulation of gene expression by epigenetic mechanisms that involve modifications of histone, DNA and RNA. The present review discusses the enzymes and proteins involved in mRNA m6A methylation modification and summarises current research progress and the mechanisms of mRNA m6A methylation in common orthopaedic diseases, including osteoporosis, arthritis and osteosarcoma.
Collapse
Affiliation(s)
- Yibo Hu
- Department of Orthopaedic Trauma, The Affiliated Hospital of Qinghai University, Xining, Qinghai 810000, P.R. China
| | - Xiaohui Zhao
- Department of Orthopaedic Trauma, The Affiliated Hospital of Qinghai University, Xining, Qinghai 810000, P.R. China
| |
Collapse
|
6
|
Abuna RPF, Almeida LO, Souza ATP, Fernandes RR, Sverzut TFV, Rosa AL, Beloti MM. Osteoporosis and osteoblasts cocultured with adipocytes inhibit osteoblast differentiation by downregulating histone acetylation. J Cell Physiol 2021; 236:3906-3917. [PMID: 33124698 DOI: 10.1002/jcp.30131] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022]
Abstract
Osteoporosis is characterized by decreased bone mass and adipocyte accumulation within the bone marrow that inhibits osteoblast maturation, leading to a high risk of fractures. Thus, we hypothesized that osteoblasts, besides being negatively affected by interacting with adipocytes, reduce the differentiation of neighboring osteoblasts through the same mechanisms that affect osteoblasts under osteoporotic conditions. We investigated the effect of osteoporosis on osteoblast differentiation and the effect of the conditioned medium of osteoblasts cocultured with adipocytes on the differentiation of other osteoblasts. Osteoporosis was induced by orchiectomy in rats and bone marrow mesenchymal stromal cells (MSCs) were differentiated into osteoblasts. Also, the bone marrow and adipose tissue MSCs were obtained from healthy rats and differentiated into osteoblasts and adipocytes, respectively. Messenger RNA expression, in situ alkaline phosphatase activity, and mineralization confirmed the inhibitory effect of osteoporosis on osteoblast differentiation. This harmful effect was mimicked by the in vitro model using the conditioned medium and it was demonstrated that osteoblasts keep the memory of the negative impact of interacting with adipocytes, revealing an unknown mechanism relevant to the osteoporotic bone loss. Finally, we showed the involvement of acetyl-histone 3 (AcH3) in bone homeostasis as its reduction induced by osteoporosis and conditioned medium impaired osteoblast differentiation. The AcH3 involvement was proved by treating osteoblasts with Trichostatin A that recovered the AcH3 expression and osteoblast differentiation capacity in both situations. Together, our findings indicated that AcH3 might be a target for future studies focused on epigenetic-based therapies to treat bone diseases.
Collapse
Affiliation(s)
- Rodrigo P F Abuna
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luciana O Almeida
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Alann T P Souza
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Roger R Fernandes
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Thales F V Sverzut
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Adalberto L Rosa
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcio M Beloti
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
7
|
Busby T, Chen Y, Godfrey TC, Rehan M, Wildman BJ, Smith CM, Hassan Q. Baf45a Mediated Chromatin Remodeling Promotes Transcriptional Activation for Osteogenesis and Odontogenesis. Front Endocrinol (Lausanne) 2021; 12:763392. [PMID: 35046892 PMCID: PMC8762305 DOI: 10.3389/fendo.2021.763392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Chromatin remodeling, specifically the tissue-specific regulation in mineralized tissues, is an understudied avenue of gene regulation. Here we show that Baf45a and Baf45d, two Baf45 homologs belong to ATPase-dependent SWI/SNF chromatin remodeling complex, preferentially expressed in osteoblasts and odontoblasts compared to Baf45b and Baf45c. Recently, biochemical studies revealed that BAF45A associates with Polybromo-associated BAF (PBAF) complex. However, the BAF45D subunit belongs to the polymorphic canonical BRG1-associated factor (cBAF) complex. Protein profiles of osteoblast and odontoblast differentiation uncovered a significant increase of BAF45A and PBAF subunits during early osteoblast and odontoblast maturation. Chromatin immunoprecipitation sequencing (ChIP-seq) during the bone marrow stromal cells (BMSCs) differentiation showed higher histone H3K9 and H3K27 acetylation modifications in the promoter of Baf45a and Baf45d and increased binding of bone and tooth specific transcription factor RUNX2. Overexpression of Baf45a in osteoblasts activates genes essential for the progression of osteoblast maturation and mineralization. Furthermore, shRNA-mediated knockdown of Baf45a in odontoblasts leads to markedly altered genes responsible for the proliferation, apoptosis, DNA repair, and modest decrease in dentinogenic marker gene expression. Assay for Transposase-Accessible Chromatin sequencing (ATAC-seq) assay in Baf45a knockout osteoblasts revealed a noticeable reduction in chromatin accessibility of osteoblast and odontoblast specific genes, along with transcription factor Atf4 and Klf4. Craniofacial mesenchyme-specific loss of Baf45a modestly reduced the mineralization of the tooth and mandibular bone. These findings indicated that BAF45A-dependent mineralized tissue-specific chromatin remodeling through PBAF-RUNX2 crosstalk results in transcriptional activation is critical for early differentiation and matrix maturation of mineralized tissues.
Collapse
|
8
|
Aguilar R, Bustos FJ, Nardocci G, van Zundert B, Montecino M. Epigenetic silencing of the osteoblast-lineage gene program during hippocampal maturation. J Cell Biochem 2020; 122:367-384. [PMID: 33135214 DOI: 10.1002/jcb.29865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022]
Abstract
Accumulating evidence indicates that epigenetic control of gene expression plays a significant role during cell lineage commitment and subsequent cell fate maintenance. Here, we assess epigenetic mechanisms operating in the rat brain that mediate silencing of genes that are expressed during early and late stages of osteogenesis. We report that repression of the osteoblast master regulator Sp7 in embryonic (E18) hippocampus is mainly mediated through the Polycomb complex PRC2 and its enzymatic product H3K27me3. During early postnatal (P10), juvenile (P30), and adult (P90) hippocampal stages, the repressive H3K27me3 mark is progressively replaced by nucleosome enrichment and increased CpG DNA methylation at the Sp7 gene promoter. In contrast, silencing of the late bone phenotypic Bglap gene in the hippocampus is PRC2-independent and accompanied by strong CpG methylation from E18 through postnatal and adult stages. Forced ectopic expression of the primary master regulator of osteogenesis Runx2 in embryonic hippocampal neurons activates the expression of its downstream target Sp7 gene. Moreover, transcriptomic analyses show that several genes associated with the mesenchymal-osteogenic lineages are transcriptionally activated in these hippocampal cells that express Runx2 and Sp7. This effect is accompanied by a loss in neuronal properties, including a significant reduction in secondary processes at the dendritic arbor and reduced expression of critical postsynaptic genes like PSD95. Together, our results reveal a developmental progression in epigenetic control mechanisms that repress the expression of the osteogenic program in hippocampal neurons at embryonic, postnatal, and adult stages.
Collapse
Affiliation(s)
- Rodrigo Aguilar
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile.,FONDAP Center for Genome Regulation, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernando J Bustos
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
| | - Gino Nardocci
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
| | - Brigitte van Zundert
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile.,CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Martin Montecino
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile.,FONDAP Center for Genome Regulation, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
9
|
Mashhadikhan M, Kheiri H, Dehghanifard A. DNA methylation and gene expression of sFRP2, sFRP4, Dkk 1, and Wif1 during osteoblastic differentiation of bone marrow derived mesenchymal stem cells. J Oral Biosci 2020; 62:349-356. [PMID: 32835781 DOI: 10.1016/j.job.2020.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/06/2020] [Accepted: 08/12/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Bone marrow derived mesenchymal stem cells (BMSCs) are an irresistible choice for use in stem cell therapy and regenerative medicine. BMSCs osteoblastic differentiation is also important in bone development, diseases, malignancies, and cancers studies. Wnt signaling pathway antagonists, Dickkopf-1 (Dkk 1), Secreted Frizzled-Related Proteins (sFRPs), and Wnt Inhibitory Factor 1 (Wif1) play important roles in inducing osteoblastic differentiation. This study is the first to investigate the association between DNA methylation and gene expression of Dkk1, sFRP2, sFRP4, and Wif1 during BMSCs osteoblastic differentiation. METHODS Human BMSCs were isolated and characterized using flow cytometry. Then, cells were treated with osteo-differentiation medium for three weeks. Alizarin red S staining and polymerase chain reaction (PCR) (alkaline phosphatase/osteocalcin) were performed for confirmation. The expression of Dkk 1, sFRP2, sFRP4, and Wif1 genes was evaluated at days 7, 14, and 21 using real-time PCR. Methylation-specific PCR (MSP) was performed to detect the methylation status of the promoters of the genes. RESULTS Data showed significant decreases (P < 0.05) during various days of BMSCs differentiation, while the promoters of the genes remained mostly un-methylated. CONCLUSIONS The down-regulation of Dkk 1, sFRP2, sFRP4, and Wif1 regulates various stages of human BMSCs during osteoblastic differentiation. DNA methylation does not interfere in the down-regulation of these genes, except for Wif1. We propose that the Wnt antagonist gene promoters should remain un-methylated during osteoblastic differentiation of BMSCs and that the down-regulation of these genes may contribute to other epigenetic mechanisms, other than DNA methylation, which implicitly indicates the role of DNA methylation in osteogenic cancers.
Collapse
Affiliation(s)
- Maedeh Mashhadikhan
- Department of Biology, Faculty of Sciences, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Hamidreza Kheiri
- Cancer Gene Therapy Research Center, Zanjan University of Medical Science, Zanjan, Iran.
| | - Ali Dehghanifard
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
10
|
Pulik Ł, Mierzejewski B, Ciemerych MA, Brzóska E, Łęgosz P. The Survey of Cells Responsible for Heterotopic Ossification Development in Skeletal Muscles-Human and Mouse Models. Cells 2020; 9:cells9061324. [PMID: 32466405 PMCID: PMC7349686 DOI: 10.3390/cells9061324] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/16/2020] [Accepted: 05/21/2020] [Indexed: 12/18/2022] Open
Abstract
Heterotopic ossification (HO) manifests as bone development in the skeletal muscles and surrounding soft tissues. It can be caused by injury, surgery, or may have a genetic background. In each case, its development might differ, and depending on the age, sex, and patient's conditions, it could lead to a more or a less severe outcome. In the case of the injury or surgery provoked ossification development, it could be, to some extent, prevented by treatments. As far as genetic disorders are concerned, such prevention approaches are highly limited. Many lines of evidence point to the inflammatory process and abnormalities in the bone morphogenetic factor signaling pathway as the molecular and cellular backgrounds for HO development. However, the clear targets allowing the design of treatments preventing or lowering HO have not been identified yet. In this review, we summarize current knowledge on HO types, its symptoms, and possible ways of prevention and treatment. We also describe the molecules and cells in which abnormal function could lead to HO development. We emphasize the studies involving animal models of HO as being of great importance for understanding and future designing of the tools to counteract this pathology.
Collapse
Affiliation(s)
- Łukasz Pulik
- Department of Orthopaedics and Traumatology, Medical University of Warsaw, Lindley 4 St, 02-005 Warsaw, Poland;
| | - Bartosz Mierzejewski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland; (B.M.); (M.A.C.)
| | - Maria A. Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland; (B.M.); (M.A.C.)
| | - Edyta Brzóska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland; (B.M.); (M.A.C.)
- Correspondence: (E.B.); (P.Ł.); Tel.: +48-22-5542-203 (E.B.); +48-22-5021-514 (P.Ł.)
| | - Paweł Łęgosz
- Department of Orthopaedics and Traumatology, Medical University of Warsaw, Lindley 4 St, 02-005 Warsaw, Poland;
- Correspondence: (E.B.); (P.Ł.); Tel.: +48-22-5542-203 (E.B.); +48-22-5021-514 (P.Ł.)
| |
Collapse
|
11
|
You C, Zhu K, Zhang Q, Yan J, Wang Y, Li J. ODNA: a manually curated database of noncoding RNAs associated with orthopedics. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2019; 2019:5641100. [PMID: 31781773 PMCID: PMC6882730 DOI: 10.1093/database/baz126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 04/04/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Changcheng You
- Department of Orthopedic Surgery, Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Kai Zhu
- Harbin Children's Hospital, Harbin, China
| | - Qiuhua Zhang
- Department of Orthopedic Surgery, Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jnglong Yan
- Department of Orthopedic Surgery, Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yufu Wang
- Department of Orthopedic Surgery, Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jing Li
- Department of Pathology and Centre of Electron Microscope, Faculty of Basic Science, Harbin Medical University, Harbin, China.,Laboratory Medicine and Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
12
|
Godfrey TC, Wildman BJ, Javed A, Lengner CJ, Hassan MQ. Epigenetic remodeling and modification to preserve skeletogenesis in vivo. Connect Tissue Res 2018; 59:52-54. [PMID: 29745807 PMCID: PMC6084779 DOI: 10.1080/03008207.2017.1408599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/01/2017] [Indexed: 02/03/2023]
Abstract
Current studies offer little insight on how epigenetic remodeling of bone-specific chromatin maintains bone mass in vivo. Understanding this gap and precise mechanism is pivotal for future therapeutic innovation to prevent bone loss. Recently, we found that low bone mass is associated with decreased H3K27 acetylation (activating histone modification) of bone specific gene promoters. Here, we aim to elucidate the epigenetic mechanisms by which a miRNA cluster controls bone synthesis and homeostasis by regulating chromatin accessibility and H3K27 acetylation. In order to decipher the epigenetic axis that regulates osteogenesis, we studied a drug inducible anti-miR-23a cluster (miR-23a ClZIP) knockdown mouse model. MiR-23a cluster knockdown (heterozygous) mice developed high bone mass. These mice displayed increased expression of Runx2 and Baf45a, essential factors for skeletogenesis; and decreased expression of Ezh2, a chromatin repressor indispensable for skeletogenesis. ChIP assays using miR-23a Cl knockdown calvarial cells revealed a BAF45A-EZH2 epigenetic antagonistic mechanism that maintains bone formation. Together, our findings support that the miR-23a Cl connection with tissue-specific RUNX2-BAF45A-EZH2 function is a novel molecular epigenetic axis through which a miRNA cluster orchestrates chromatin modification to elicit major effects on osteogenesis in vivo.
Collapse
Affiliation(s)
- Tanner C. Godfrey
- Department of Oral and Maxillofacial Surgery, RNA Biology and Epigenetics Laboratory, IOHR, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Benjamin J. Wildman
- Department of Oral and Maxillofacial Surgery, RNA Biology and Epigenetics Laboratory, IOHR, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amjad Javed
- Department of Oral and Maxillofacial Surgery, RNA Biology and Epigenetics Laboratory, IOHR, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christopher J. Lengner
- Department of Biomedical Science, School of Veterinary Medicine and Institute for Regenerative Medicine, University of Pennsylvania, USA
| | - Mohammad Quamarul Hassan
- Department of Oral and Maxillofacial Surgery, RNA Biology and Epigenetics Laboratory, IOHR, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
13
|
Role of nutritional vitamin D in osteoporosis treatment. Clin Chim Acta 2018; 484:179-191. [PMID: 29782843 DOI: 10.1016/j.cca.2018.05.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 01/02/2023]
Abstract
Osteoporosis is a systemic skeletal disorder characterized by a decrease in bone mass and microarchitectural deterioration of bone tissue. The World Health Organization has defined osteoporosis as a decrease in bone mass (50%) and bony quality (50%). Vitamin D, a steroid hormone, is crucial for skeletal health and in mineral metabolism. Its direct action on osteoblasts and osteoclasts and interaction with nonskeletal tissues help in maintaining a balance between bone turnover and bone growth. Vitamin D affects the activity of osteoblasts, osteoclasts, and osteocytes, suggesting that it affects bone formation, bone resorption, and bone quality. At physiological concentrations, active vitamin D maintains a normal rate of bone resorption and formation through the RANKL/OPG signal. However, active vitamin D at pharmacological concentration inhibits bone resorption at a higher rate than that of bone formation, which influences the bone quality and quantity. Nutritional vitamin D rather than active vitamin D activates osteoblasts and maintains serum 25(OH)D3 concentration. Despite many unanswered questions, much data support nutritional vitamin D use in osteoporosis patients. This article emphasizes the role of nutritional vitamin D replacement in different turnover status (high or low bone turnover disorders) of osteoporosis together with either anti-resorptive (Bisphosphonate, Denosumab et.) or anabolic (Teriparatide) agents when osteoporosis persists.
Collapse
|
14
|
Sepulveda H, Aguilar R, Prieto CP, Bustos F, Aedo S, Lattus J, van Zundert B, Palma V, Montecino M. Epigenetic Signatures at the RUNX2-P1 and Sp7 Gene Promoters Control Osteogenic Lineage Commitment of Umbilical Cord-Derived Mesenchymal Stem Cells. J Cell Physiol 2017; 232:2519-2527. [PMID: 27689934 DOI: 10.1002/jcp.25627] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 09/29/2016] [Indexed: 12/16/2023]
Abstract
Wharton's Jelly mesenchymal stem cells (WJ-MSCs) are an attractive potential source of multipotent stem cells for bone tissue replacement therapies. However, the molecular mechanisms involved in their osteogenic conversion are poorly understood. Particularly, epigenetic control operating at the promoter regions of the two master regulators of the osteogenic program, RUNX2/P57 and SP7 has not yet been described in WJ-MSCs. Via quantitative PCR profiling and chromatin immunoprecipitation (ChIP) studies, here we analyze the ability of WJ-MSCs to engage osteoblast lineage. In undifferentiated WJ-MSCs, RUNX2/P57 P1, and SP7 promoters are found deprived of significant levels of the histone post-translational marks that are normally associated with transcriptionally active genes (H3ac, H3K27ac, and H3K4me3). Moreover, the RUNX2 P1 promoter lacks two relevant histone repressive marks (H3K9me3 and H3K27me3). Importantly, RUNX2 P1 promoter is found highly enriched in the H3K4me1 mark, which has been shown recently to mediate gene repression of key regulatory genes. Upon induction of WJ-MSCs osteogenic differentiation, we found that RUNX2/P57, but not SP7 gene expression is strongly activated, in a process that is accompanied by enrichment of activating histone marks (H3K4me3, H3ac, and H3K27ac) at the P1 promoter region. Histone mark analysis showed that SP7 gene promoter is robustly enriched in epigenetic repressive marks that may explain its poor transcriptional response to osteoblast differentiating media. Together, these results point to critical regulatory steps during epigenetic control of WJ-MSCs osteogenic lineage commitment that are relevant for future applications in regenerative medicine. J. Cell. Physiol. 232: 2519-2527, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hugo Sepulveda
- Center for Biomedical Research, Universidad Andres Bello, Santiago, Chile
- FONDAP Center for Genome Regulation, Santiago, Chile
| | - Rodrigo Aguilar
- Center for Biomedical Research, Universidad Andres Bello, Santiago, Chile
- FONDAP Center for Genome Regulation, Santiago, Chile
| | - Catalina P Prieto
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Santiago, Chile
| | - Francisco Bustos
- FONDAP Center for Genome Regulation, Santiago, Chile
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Santiago, Chile
| | - Sócrates Aedo
- Faculty of Medicine, Department of Obstetrics and Gynecology, Campus Oriente, University of Chile, Santiago, Chile
| | - José Lattus
- Faculty of Medicine, Department of Obstetrics and Gynecology, Campus Oriente, University of Chile, Santiago, Chile
| | | | - Veronica Palma
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Santiago, Chile
| | - Martin Montecino
- Center for Biomedical Research, Universidad Andres Bello, Santiago, Chile
- FONDAP Center for Genome Regulation, Santiago, Chile
| |
Collapse
|
15
|
Zhou J, Hu Y, Chen Y, Yang L, Song J, Tang Y, Deng F, Zheng L. Dicer-dependent pathway contribute to the osteogenesis mediated by regulation of Runx2. Am J Transl Res 2016; 8:5354-5369. [PMID: 28078008 PMCID: PMC5209488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
Osteogenesis is mediated by sophisticated interactions of various molecular functions and biological processes, including post-transcriptional regulation. A range of miRNAs have been reported to regulate bone homeostasis and osteoblasts differentiation either positively or negatively through multiple signaling pathways. RNase III endonuclease Dicer is the key enzyme required for the biogenesis of miRNAs and small interfering RNAs. To determine the global influence of miRNAs on regulation of osteogenesis of pre-osteoblast cells, the transcriptional regulation of Dicer and the function of Dicer during osteoblast differentiation and mineralization were investigated. Runx2 binding directly to the Dicer promoter region was characterized in MC3T3-E1 cells by chromatin immunoprecipitation (ChIP) and luciferase promoter reporter assays. Overexpression or knockdown of Runx2 resulted in increase or decrease of Dicer expression, respectively. Furthermore, abatement of Dicer in MC3T3-E1 cells down-regulated the expression of osteogenic marker genes and mineralization ability, at least partly involving Dicer-dependent processing of the miR-21a-5p targeting PTEN via pAKT/pGSK3β/β-catenin signaling pathways. Taken together, the study demonstrates the role of Dicer in osteogenesis and suggests that Dicer is required, in part, for Runx2 regulation of osteoblast differentiation.
Collapse
Affiliation(s)
- Jie Zhou
- College of Stomatology, Chongqing Medical UniversityChongqing 401147, P. R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing 401147, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing 401147, P. R. China
| | - Yun Hu
- College of Stomatology, Chongqing Medical UniversityChongqing 401147, P. R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing 401147, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing 401147, P. R. China
| | - Yang Chen
- College of Stomatology, Chongqing Medical UniversityChongqing 401147, P. R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing 401147, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing 401147, P. R. China
| | - Lan Yang
- College of Stomatology, Chongqing Medical UniversityChongqing 401147, P. R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing 401147, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing 401147, P. R. China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical UniversityChongqing 401147, P. R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing 401147, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing 401147, P. R. China
| | - Yuying Tang
- College of Stomatology, Chongqing Medical UniversityChongqing 401147, P. R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing 401147, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing 401147, P. R. China
| | - Feng Deng
- College of Stomatology, Chongqing Medical UniversityChongqing 401147, P. R. China
| | - Leilei Zheng
- College of Stomatology, Chongqing Medical UniversityChongqing 401147, P. R. China
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing 401147, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing 401147, P. R. China
| |
Collapse
|
16
|
miR-203 inhibits the traumatic heterotopic ossification by targeting Runx2. Cell Death Dis 2016; 7:e2436. [PMID: 27787524 PMCID: PMC5133990 DOI: 10.1038/cddis.2016.325] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/09/2016] [Accepted: 09/13/2016] [Indexed: 12/25/2022]
Abstract
Emerging evidence has indicated that dysregulated microRNAs (miRNAs) have an important role in bone formation. However, the pathophysiological role of miRNAs in traumatic heterotopic ossification (HO) remains to be elucidated. Using gene expression profile analyses and subsequent confirmation with real-time PCR assays, we identified the decreased expression of miRNA-203 (miR-203) and increased expression of Runx2 as responses to the development of traumatic HO. We found that miR-203 expression was markedly higher in primary and recurrent HO tissues than in normal bones. The upregulation of miR-203 significantly decreased the level of Runx2 expression, whereas miR-203 downregulation increased Runx2 expression. Mutation of the putative miR-203-binding sites in Runx2 mRNA abolished miR-203-mediated repression of Runx2 3'-untranslated region luciferase reporter activity, indicating that Runx2 is an important target of miR-203 in osteoblasts. We also found that miR-203 is negatively correlated with osteoblast differentiation. Furthermore, in vitro osteoblast activity and matrix mineralization were promoted by antagomir-203 and decreased by agomir-203. We showed that miR-203 suppresses osteoblast activity by inhibiting the β-catenin and extracellular signal-regulated kinase pathways. Moreover, using a tenotomy mouse HO model, we found an inhibitory role of miR-203 in regulating HO in vivo; pretreatment with antagomiR-203 increased the development of HO. These data suggest that miR-203 has a crucial role in suppressing HO by directly targeting Runx2 and that the therapeutic overexpression of miR-203 may be a potential strategy for treating traumatic HO.
Collapse
|
17
|
Abstract
Epigenetic control of the genome involves a complex series of unique, physiologically responsive and integrated pathways, each with distinct mechanisms. Insight into epigenetic regulation has transformed understanding of inheritance, development and a broad spectrum of biological processes as well as advances in mechanistic and clinical characterization of tissues and disease states. The dynamics of bone tissue undergoing continuous remodeling during growth and turnover in the adult skeleton, involves epigenetic mechanisms that have emerged as an important component to maintaining skeletal homeostasis. A series of four reviews are presented in the journal BONE covering different aspects of epigenetic control mechanisms that have impacted on the skeleton. Authorship on each of the reviews is shared by investigators from different institutions to present a consensus of emerging concepts and future directions for understanding regulation of the bone epigenome and skeletal pathologies.
Collapse
Affiliation(s)
- Jane B Lian
- Department of Biochemistry, University of Vermont College of Medicine and Cancer Center, 89 Beaumont Ave, Burlington, VT 05405, USA.
| |
Collapse
|