6
|
Xiao YP, Tian FM, Dai MW, Wang WY, Shao LT, Zhang L. Are estrogen-related drugs new alternatives for the management of osteoarthritis? Arthritis Res Ther 2016; 18:151. [PMID: 27352621 PMCID: PMC4924302 DOI: 10.1186/s13075-016-1045-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative disease involving multiple physiopathological mechanisms. The increased prevalence of OA after menopause and the presence of estrogen receptors in joint tissues suggest that estrogen could help prevent development of OA. This review summarizes OA research with a focus on the effects of estrogen and selective estrogen receptor modulators (SERMs). Preclinical studies and clinical trials of estrogen therapy have reported inconsistent results. However, almost all studies assessing SERM treatment have obtained more consistent and favorable effects in OA with a relatively safety and tolerability profiles. At present, some SERMs including raloxifene and bazedoxifene have been approved for the treatment of osteoporosis. In summary, estrogen-related agents may exert both a direct effect on subchondral bone and direct and/or indirect effects upon the surrounding tissues, including the articular cartilage, synovium, and muscle, to name a few. Estrogen and SERMs may be particularly favorable for postmenopausal patients with early-stage OA or osteoporotic OA, a phenotype defined by reduced bone mineral density related to high remodeling in subchondral bone. At present, no single drug exists that can prevent OA progression. Although estrogen-related drugs provide insight into the continued work in the field of OA drug administration, further research is required before SERMs can become therapeutic alternatives for OA treatment.
Collapse
Affiliation(s)
- Ya-Ping Xiao
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, No. 73 Jianshe South Road, Tangshan, Hebei Province, China
| | - Fa-Ming Tian
- Medical Research Center, North China University of Science and Technology, Tangshan, China
| | - Mu-Wei Dai
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, China
| | - Wen-Ya Wang
- Department of Pathology, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Li-Tao Shao
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, No. 73 Jianshe South Road, Tangshan, Hebei Province, China
| | - Liu Zhang
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, No. 73 Jianshe South Road, Tangshan, Hebei Province, China.
| |
Collapse
|
7
|
Vinel A, Hay E, Valera MC, Buscato M, Adlanmerini M, Guillaume M, Cohen-Solal M, Ohlsson C, Lenfant F, Arnal JF, Fontaine C. Role of ERαMISS in the Effect of Estradiol on Cancellous and Cortical Femoral Bone in Growing Female Mice. Endocrinology 2016; 157:2533-44. [PMID: 27105385 DOI: 10.1210/en.2015-1994] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Estrogen receptor-α (ERα) acts primarily in the nucleus as a transcription factor involving two activation functions, AF1 and AF2, but it can also induce membrane-initiated steroid signaling (MISS) through the modulation of various kinase activities and/or secondary messenger levels. Previous work has demonstrated that nuclear ERα is required for the protective effect of the estrogen 17β-estradiol (E2), whereas the selective activation of ERαMISS is sufficient to confer protection in cortical but not cancellous bone. The aim of this study was to define whether ERαMISS is necessary for the beneficial actions of chronic E2 exposure on bone. We used a mouse model in which ERα membrane localization had been abrogated due to a point mutation of the palmitoylation site of ERα (ERα-C451A). Alterations of the sex hormones in ERα-C451A precluded the interpretation of bone parameters that were thus analyzed on ovariectomized and supplemented or not with E2 (8 μg/kg/d) to circumvent this bias. We found the beneficial action of E2 on femoral bone mineral density as well as in both cortical and cancellous bone was decreased in ERα-C451A mice compared with their wild-type littermates. Histological and biochemical approaches concurred with the results from bone marrow chimeras to demonstrate that ERαMISS signaling affects the osteoblast but not the osteoclast lineage in response to E2. Thus, in contrast to the uterine and endothelial effects of E2 that are specifically mediated by nuclear ERα and ERαMISS effects, respectively, bone protection is dependent on both, underlining the exquisite tissue-specific actions and interactions of membrane and nuclear ERα.
Collapse
Affiliation(s)
- Alexia Vinel
- INSERM Unité 1048 (A.V., M.C.V., M.B., M.A., M.G., F.L., J.F.A., C.F.), I2MC, University of Toulouse 3, F-31432 Toulouse, France; Unité Mixte de Recherche 1132 (E.H., M.C.-S.), Bone and Cartilage Biology, University of Paris 7, F-75006 Paris, France; and Centre for Bone and Arthritis Research (C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Eric Hay
- INSERM Unité 1048 (A.V., M.C.V., M.B., M.A., M.G., F.L., J.F.A., C.F.), I2MC, University of Toulouse 3, F-31432 Toulouse, France; Unité Mixte de Recherche 1132 (E.H., M.C.-S.), Bone and Cartilage Biology, University of Paris 7, F-75006 Paris, France; and Centre for Bone and Arthritis Research (C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Marie-Cécile Valera
- INSERM Unité 1048 (A.V., M.C.V., M.B., M.A., M.G., F.L., J.F.A., C.F.), I2MC, University of Toulouse 3, F-31432 Toulouse, France; Unité Mixte de Recherche 1132 (E.H., M.C.-S.), Bone and Cartilage Biology, University of Paris 7, F-75006 Paris, France; and Centre for Bone and Arthritis Research (C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Mélissa Buscato
- INSERM Unité 1048 (A.V., M.C.V., M.B., M.A., M.G., F.L., J.F.A., C.F.), I2MC, University of Toulouse 3, F-31432 Toulouse, France; Unité Mixte de Recherche 1132 (E.H., M.C.-S.), Bone and Cartilage Biology, University of Paris 7, F-75006 Paris, France; and Centre for Bone and Arthritis Research (C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Marine Adlanmerini
- INSERM Unité 1048 (A.V., M.C.V., M.B., M.A., M.G., F.L., J.F.A., C.F.), I2MC, University of Toulouse 3, F-31432 Toulouse, France; Unité Mixte de Recherche 1132 (E.H., M.C.-S.), Bone and Cartilage Biology, University of Paris 7, F-75006 Paris, France; and Centre for Bone and Arthritis Research (C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Maeva Guillaume
- INSERM Unité 1048 (A.V., M.C.V., M.B., M.A., M.G., F.L., J.F.A., C.F.), I2MC, University of Toulouse 3, F-31432 Toulouse, France; Unité Mixte de Recherche 1132 (E.H., M.C.-S.), Bone and Cartilage Biology, University of Paris 7, F-75006 Paris, France; and Centre for Bone and Arthritis Research (C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Martine Cohen-Solal
- INSERM Unité 1048 (A.V., M.C.V., M.B., M.A., M.G., F.L., J.F.A., C.F.), I2MC, University of Toulouse 3, F-31432 Toulouse, France; Unité Mixte de Recherche 1132 (E.H., M.C.-S.), Bone and Cartilage Biology, University of Paris 7, F-75006 Paris, France; and Centre for Bone and Arthritis Research (C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Claes Ohlsson
- INSERM Unité 1048 (A.V., M.C.V., M.B., M.A., M.G., F.L., J.F.A., C.F.), I2MC, University of Toulouse 3, F-31432 Toulouse, France; Unité Mixte de Recherche 1132 (E.H., M.C.-S.), Bone and Cartilage Biology, University of Paris 7, F-75006 Paris, France; and Centre for Bone and Arthritis Research (C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Françoise Lenfant
- INSERM Unité 1048 (A.V., M.C.V., M.B., M.A., M.G., F.L., J.F.A., C.F.), I2MC, University of Toulouse 3, F-31432 Toulouse, France; Unité Mixte de Recherche 1132 (E.H., M.C.-S.), Bone and Cartilage Biology, University of Paris 7, F-75006 Paris, France; and Centre for Bone and Arthritis Research (C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Jean-François Arnal
- INSERM Unité 1048 (A.V., M.C.V., M.B., M.A., M.G., F.L., J.F.A., C.F.), I2MC, University of Toulouse 3, F-31432 Toulouse, France; Unité Mixte de Recherche 1132 (E.H., M.C.-S.), Bone and Cartilage Biology, University of Paris 7, F-75006 Paris, France; and Centre for Bone and Arthritis Research (C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Coralie Fontaine
- INSERM Unité 1048 (A.V., M.C.V., M.B., M.A., M.G., F.L., J.F.A., C.F.), I2MC, University of Toulouse 3, F-31432 Toulouse, France; Unité Mixte de Recherche 1132 (E.H., M.C.-S.), Bone and Cartilage Biology, University of Paris 7, F-75006 Paris, France; and Centre for Bone and Arthritis Research (C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| |
Collapse
|