1
|
Jørgensen HS, Lloret MJ, Lalayiannis AD, Shroff R, Evenepoel P. Ten tips on how to assess bone health in patients with chronic kidney disease. Clin Kidney J 2024; 17:sfae093. [PMID: 38817914 PMCID: PMC11137676 DOI: 10.1093/ckj/sfae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Indexed: 06/01/2024] Open
Abstract
Patients with chronic kidney disease (CKD) experience a several-fold increased risk of fracture. Despite the high incidence and the associated excess morbidity and premature mortality, bone fragility in CKD, or CKD-associated osteoporosis, remains a blind spot in nephrology with an immense treatment gap. Defining the bone phenotype is a prerequisite for the appropriate therapy of CKD-associated osteoporosis at the patient level. In the present review, we suggest 10 practical 'tips and tricks' for the assessment of bone health in patients with CKD. We describe the clinical, biochemical, and radiological evaluation of bone health, alongside the benefits and limitations of the available diagnostics. A bone biopsy, the gold standard for diagnosing renal bone disease, is invasive and not widely available; although useful in complex cases, we do not consider it an essential component of bone assessment in patients with CKD-associated osteoporosis. Furthermore, we advocate for the deployment of multidisciplinary expert teams at local, national, and potentially international level. Finally, we address the knowledge gaps in the diagnosis, particularly early detection, appropriate "real-time" monitoring of bone health in this highly vulnerable population, and emerging diagnostic tools, currently primarily used in research, that may be on the horizon of clinical practice.
Collapse
Affiliation(s)
- Hanne Skou Jørgensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Nephrology, Aalborg University Hospital, Aalborg, Denmark
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Maria Jesús Lloret
- Department of Nephrology, Hospital Fundació Puigvert, Barcelona, Spain
- Institut de Recerca Sant-Pau (IR-Sant Pau), Barcelona, Spain
| | - Alexander D Lalayiannis
- Department of Pediatric Nephrology, Birmingham Women's and Children's Hospitals, Birmingham, UK
| | - Rukshana Shroff
- Renal Unit, UCL Great Ormond Street Hospital and Institute of Child Health, London, UK
| | - Pieter Evenepoel
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Panaite T, Savin C, Olteanu ND, Karvelas N, Romanec C, Vieriu RM, Balcos C, Baltatu MS, Benchea M, Achitei D, Zetu I. Heat Treatment's Vital Role: Elevating Orthodontic Mini-Implants for Superior Performance and Longevity-Pilot Study. Dent J (Basel) 2024; 12:103. [PMID: 38668015 PMCID: PMC11049007 DOI: 10.3390/dj12040103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Orthodontic mini-implants are devices used for anchorage in various orthodontic treatments. We conducted a pilot study which aimed to observe preliminary trends regarding the impact of heat treatment on the elastic modulus of Ti6Al4V alloy and stainless steel 316L mini-implants. The initial phase involved testing the impact of heat treatment on the mechanical properties of Ti6Al4V alloy and stainless steel 316L mini-implants. MATERIAL AND METHODS Ten self-drilling mini-implants sourced from two distinct manufacturers (Jeil Medical Corporation® and Leone®) with dimensions of 2.0 mm diameter and 10 mm length were tested. They were separated into two material groups: Ti6Al4V and 316L. Using the CETRUMT-2 microtribometer equipment, indentation testing was conducted employing a diamond-tipped Rockwell penetrator at a constant force of 4.5 N. RESULTS Slight differences were observed in the elastic modulus of the Ti6Al4V alloy (103.99 GPa) and stainless steel 316L (203.20 GPa) compared to natural bone. The higher elastic moduli of these materials indicate that they are stiffer, which could potentially lead to stress-shielding phenomena and bone resorption. Heat treatment resulted in significant changes in mechanical properties, including elastic modulus reductions of approximately 26.14% for Ti6Al4V and 24.82% for 316L, impacting their performance in orthodontic applications. CONCLUSION Understanding the effects of heat treatment on these alloys is crucial for optimizing their biomechanical compatibility and longevity in orthodontic treatment. To fully evaluate the effects of heat treatment on mini-implants and to refine their design and efficacy in clinical practice, further research is needed.
Collapse
Affiliation(s)
- Tinela Panaite
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 16 Universitatii Str., 700115 Iasi, Romania; (T.P.); (N.D.O.); (N.K.); (R.-M.V.); (C.B.); (I.Z.)
| | - Carmen Savin
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 16 Universitatii Str., 700115 Iasi, Romania; (T.P.); (N.D.O.); (N.K.); (R.-M.V.); (C.B.); (I.Z.)
| | - Nicolae Daniel Olteanu
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 16 Universitatii Str., 700115 Iasi, Romania; (T.P.); (N.D.O.); (N.K.); (R.-M.V.); (C.B.); (I.Z.)
| | - Nikolaos Karvelas
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 16 Universitatii Str., 700115 Iasi, Romania; (T.P.); (N.D.O.); (N.K.); (R.-M.V.); (C.B.); (I.Z.)
| | - Cristian Romanec
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 16 Universitatii Str., 700115 Iasi, Romania; (T.P.); (N.D.O.); (N.K.); (R.-M.V.); (C.B.); (I.Z.)
| | - Raluca-Maria Vieriu
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 16 Universitatii Str., 700115 Iasi, Romania; (T.P.); (N.D.O.); (N.K.); (R.-M.V.); (C.B.); (I.Z.)
| | - Carina Balcos
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 16 Universitatii Str., 700115 Iasi, Romania; (T.P.); (N.D.O.); (N.K.); (R.-M.V.); (C.B.); (I.Z.)
| | - Madalina Simona Baltatu
- Faculty of Materials Science and Engineering, “Gheorghe Asachi” Technical University of Iasi, 41 “D. Mangeron” Street, 700050 Iasi, Romania;
| | - Marcelin Benchea
- Faculty of Mechanical Engineering, “Gheorghe Asachi” Technical University of Iasi, Blvd. Dimitrie Mangeron, No. 61–63, 700050 Iasi, Romania;
| | - Dragos Achitei
- Department of Technologies and Equipments for Materials Processing, Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iaşi, Blvd. Mangeron, No. 51, 700050 Iasi, Romania;
| | - Irina Zetu
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 16 Universitatii Str., 700115 Iasi, Romania; (T.P.); (N.D.O.); (N.K.); (R.-M.V.); (C.B.); (I.Z.)
| |
Collapse
|
3
|
Lloret MJ, Fusaro M, Jørgensen HS, Haarhaus M, Gifre L, Alfieri CM, Massó E, D'Marco L, Evenepoel P, Bover J. Evaluating Osteoporosis in Chronic Kidney Disease: Both Bone Quantity and Quality Matter. J Clin Med 2024; 13:1010. [PMID: 38398323 PMCID: PMC10889712 DOI: 10.3390/jcm13041010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Bone strength is determined not only by bone quantity [bone mineral density (BMD)] but also by bone quality, including matrix composition, collagen fiber arrangement, microarchitecture, geometry, mineralization, and bone turnover, among others. These aspects influence elasticity, the load-bearing and repair capacity of bone, and microcrack propagation and are thus key to fractures and their avoidance. In chronic kidney disease (CKD)-associated osteoporosis, factors traditionally associated with a lower bone mass (advanced age or hypogonadism) often coexist with non-traditional factors specific to CKD (uremic toxins or renal osteodystrophy, among others), which will have an impact on bone quality. The gold standard for measuring BMD is dual-energy X-ray absorptiometry, which is widely accepted in the general population and is also capable of predicting fracture risk in CKD. Nevertheless, a significant number of fractures occur in the absence of densitometric World Health Organization (WHO) criteria for osteoporosis, suggesting that methods that also evaluate bone quality need to be considered in order to achieve a comprehensive assessment of fracture risk. The techniques for measuring bone quality are limited by their high cost or invasive nature, which has prevented their implementation in clinical practice. A bone biopsy, high-resolution peripheral quantitative computed tomography, and impact microindentation are some of the methods established to assess bone quality. Herein, we review the current evidence in the literature with the aim of exploring the factors that affect both bone quality and bone quantity in CKD and describing available techniques to assess them.
Collapse
Affiliation(s)
- Maria J Lloret
- Nephrology Department, Fundació Puigvert, Cartagena 340-350, 08025 Barcelona, Spain
- Institut de Recerca Sant Pau (IR-Sant-Pau), 08025 Barcelona, Spain
| | - Maria Fusaro
- National Research Council (CNR), Institute of Clinical Physiology, 56124 Pisa, Italy
- Department of Medicine, University of Padua, 35128 Padua, Italy
| | - Hanne S Jørgensen
- Institute of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
- Department of Nephrology, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Mathias Haarhaus
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital, Huddinge, 141 86 Stockholm, Sweden
- Diaverum AB, Hyllie Boulevard 53, 215 37 Malmö, Sweden
| | - Laia Gifre
- Rheumatology Department, University Hospital Germans Trias I Pujol, Universitat Autònoma de Barcelona, 08193 Badalona, Spain
| | - Carlo M Alfieri
- Unit of Nephrology Dialysis and Renal Transplantation Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Elisabet Massó
- Nephrology Department, University Hospital Germans Trias I Pujol, REMAR-IGTP Group, Research Institute Germans Trias I Pujol (IGTP), Universitat Autònoma de Barcelona, 08193 Badalona, Spain
| | - Luis D'Marco
- Grupo de Investigación en Enfermedades Cardiorenales y Metabólicas, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain
| | - Pieter Evenepoel
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Jordi Bover
- Nephrology Department, University Hospital Germans Trias I Pujol, REMAR-IGTP Group, Research Institute Germans Trias I Pujol (IGTP), Universitat Autònoma de Barcelona, 08193 Badalona, Spain
| |
Collapse
|
4
|
Chen R, Armamento-Villareal R. Obesity and Skeletal Fragility. J Clin Endocrinol Metab 2024; 109:e466-e477. [PMID: 37440585 PMCID: PMC10795939 DOI: 10.1210/clinem/dgad415] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/15/2023]
Abstract
Skeletal fracture has recently emerged as a complication of obesity. Given the normal or better than normal bone mineral density (BMD), the skeletal fragility of these patients appears to be a problem of bone quality rather than quantity. Type 2 diabetes mellitus (T2DM), the incidence of which increases with increasing body mass index, is also associated with an increased risk for fractures despite a normal or high BMD. With the additional bone pathology from diabetes itself, patients with both obesity and T2DM could have a worse skeletal profile. Clinically, however, there are no available methods for identifying those who are at higher risk for fractures or preventing fractures in this subgroup of patients. Weight loss, which is the cornerstone in the management of obesity (with or without T2DM), is also associated with an increased risk of bone loss. This review of the literature will focus on the skeletal manifestations associated with obesity, its interrelationship with the bone defects associated with T2DM, and the available approach to the bone health of patients suffering from obesity.
Collapse
Affiliation(s)
- Rui Chen
- Division of Endocrinology, Diabetes and Metabolism at Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
| | - Reina Armamento-Villareal
- Division of Endocrinology, Diabetes and Metabolism at Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
| |
Collapse
|
5
|
Visser N, Rezaie E, Ducharme A, Shin AY, Bishop AT. The effect of surgical revascularization on the mechanical properties of cryopreserved bone allograft in a porcine tibia model. J Orthop Res 2023; 41:815-822. [PMID: 35880353 DOI: 10.1002/jor.25422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/06/2022] [Accepted: 07/23/2022] [Indexed: 02/04/2023]
Abstract
Cryopreserved bone allografts(CBA) are susceptible to infection, nonunion, and late stress fracture. Although surgical revascularization by intramedullary implantation of an arteriovenous bundle (AV bundle) generates a neoangiogenic blood supply, there is potential for vascular ingrowth-mediated bone resorption to weaken the graft. For this reason, we have evaluated changes in CBA mechanical properties of structural tibial allografts with and without surgically induced angiogenesis. Cryopreserved tibia bone allografts were transplanted to reconstruct a 3.5 cm segmental tibial defect in 16 Yucatan mini pigs. Surgical revascularization was performed in half by implantation of a cranial tibial AV bundle, (revascularization group). A control group of identical size had a ligated AV bundle implanted, (ligated group). At 20 weeks micro-computed tomography (CT) measured bone mineral density (BMD) as well as bone union. Reference point indentation (RPI) compared cortex material properties, and axial compression determined the allotransplant compressive modulus. Seven of eight tibiae in the angiogenesis group were healed at both junction points at 20 weeks. Only four of eight tibiae healed in the ligated control group. There was no significant difference between the revascularization and ligated control groups in BMD and axial compression test. Similarly, RPI parameters were statistically equal. In paired comparisons with contralateral tibias, however, some RPI values were significantly worse in the ligated control group tibiae. This study demonstrates no adverse effect of surgical angiogenesis on cryopreserved structural bone allograft biomechanical properties in a large animal orthotopic segmental tibial defect model. These data suggest the potential value of surgical angiogenesis in clinical limb-sparing reconstructive surgery.
Collapse
Affiliation(s)
- Noortje Visser
- Microvascular Research Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA.,Department of Plastic and Reconstructive Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Elisa Rezaie
- Microvascular Research Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA.,Department of Plastic and Reconstructive Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Alexandra Ducharme
- Microvascular Research Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Alexander Y Shin
- Microvascular Research Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Allen T Bishop
- Microvascular Research Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
6
|
Takahata M, Shimizu T, Yamada S, Yamamoto T, Hasegawa T, Fujita R, Kobayashi H, Endo T, Koike Y, Amizuka N, Todoh M, Okumura JI, Kajino T, Iwasaki N. Bone biopsy findings in patients receiving long-term bisphosphonate therapy for glucocorticoid-induced osteoporosis. J Bone Miner Metab 2022; 40:613-622. [PMID: 35333984 DOI: 10.1007/s00774-022-01323-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/01/2022] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Bisphosphonates (BPs) have been shown to reduce the incidence of vertebral fractures during the first year or two of glucocorticoid (GC) treatments and are therefore recommended as a first-line treatment for GC-induced osteoporosis (GIO). However, there are theoretical concerns about the long-term use of BPs in low-turnover osteoporosis caused by chronic GC therapy. MATERIALS AND METHODS We analyzed the trabecular microarchitecture, bone metabolism, and material strength of iliac crest bone biopsy samples from 10 female patients with rheumatoid arthritis who received an average of 6.7 years of BP therapy for GIO (GIOBP group), compared with those of 10 age- and bone mineral density (BMD)-matched non-rheumatoid arthritis postmenopausal women (reference group). RESULTS Patients in the GIOBP group had a significantly greater fracture severity index, as calculated from the number and the extent of vertebral fractures compared with the reference patients. Micro-computed tomography analysis showed that the degree of mineralization and trabecular microarchitecture were significantly lower in the GIOBP group than in the reference patients. Patients in the GIOBP group exhibited lower bone contact stiffness, determined by micro-indentation testing, than in the reference group. The contact stiffness of the bone was negatively correlated with the fracture severity index and the daily prednisolone dosage. Immunohistochemistry and serum bone turnover markers showed decreased osteoclastic activity, impaired mineralization, and an increased fraction of empty lacunae in the GIOBP group. CONCLUSION Our findings indicate that patients receiving long-term BP for GIO are still at high risk for fragility fractures because of poor bone quality.
Collapse
Affiliation(s)
- Masahiko Takahata
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo, 060-8638, Japan.
| | - Tomohiro Shimizu
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Satoshi Yamada
- Division of Mechanical and Aerospace Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Tomomaya Yamamoto
- Division of Oral Health Science, Department of Developmental Biology of Hard Tissue, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Tomoka Hasegawa
- Division of Oral Health Science, Department of Developmental Biology of Hard Tissue, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Ryo Fujita
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Hideyuki Kobayashi
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Tsutomu Endo
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Yoshinao Koike
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Norio Amizuka
- Division of Mechanical and Aerospace Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Masahiro Todoh
- Division of Mechanical and Aerospace Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Jun-Ichiro Okumura
- Department of Orthopedic Surgery, Sapporo City General Hospital, Sapporo, Hokkaido, Japan
| | - Tomomichi Kajino
- Department of Orthopedic Surgery, Tonan Hospital, Sapporo, Hokkaido, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| |
Collapse
|
7
|
Hepp N, Folkestad L, Møllebæk S, Frederiksen AL, Duno M, Jørgensen NR, Hermann AP, Jensen JEB. Bone-microarchitecture and bone-strength in a sample of adults with hypophosphatasia and a matched reference population assessed by HR-pQCT and impact microindentation. Bone 2022; 160:116420. [PMID: 35421614 DOI: 10.1016/j.bone.2022.116420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/03/2022] [Accepted: 04/07/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Hypophosphatasia (HPP) is an autosomal recessive or dominate disease affecting bone mineralization, and adults with HPP are in risk to develop metatarsal stress fractures and femoral pseudofractures. Given to the scarce data on the bone quality and its association to the fracture risk in adults with HPP, this study aimed to evaluate bone turnover, bone strength and structure in adults with HPP. METHODS In this cross-sectional study, we included 14 adults with genetically verified HPP and 14 sex-, age-, BMI-, and menopausal status-matched reference individuals. We analyzed bone turnover markers, and measured bone material strength index (BMSi) by impact microindentation. Bone geometry, volumetric density and bone microarchitecture as well as failure load at the distal radius and tibia were evaluated using a second-generation high-resolution peripheral quantitative computed tomography system. RESULTS Bone turnover markers did not differ between patients with HPP and reference individuals. BMSi did not differ between the groups (67.90 [63.75-76.00] vs 65.45 [58.43-69.55], p = 0.149). Parameters of bone geometry and volumetric density did not differ between adults with HPP and the reference group. Patients with HPP had a tendency toward higher trabecular separation (0.664 [0.613-0.724] mm vs 0.620 [0.578-0.659] mm, p = 0.054) and inhomogeneity of trabecular network (0.253 [0.235-0.283] mm vs 0.229 [0.208-0.252] mm, p = 0.056) as well as lower trabecular bone volume fraction (18.8 [16.4-22.7] % vs 22.8 [20.6-24.7] %, p = 0.054) at the distal radius. In addition, compound heterozygous adults with HPP had a significantly higher cortical porosity at the distal radius than reference individuals (1.5 [0.9-2.2] % vs 0.7 [0.6-0.7] %, p = 0.041). CONCLUSIONS BMSi is not reduced in adults with HPP. Increased cortical porosity may contribute to the occurrence of femoral pseudofractures in compound heterozygous adults with HPP. However, further studies investigating larger cohorts of adults with HPP using methods of bone histomorphometry are recommended to adequately assess the bone quality in adults with HPP.
Collapse
Affiliation(s)
- Nicola Hepp
- Dept. of Endocrinology, Copenhagen University Hospital Hvidovre, Kettegaard Alle 30, 2650 Hvidovre, Denmark; Dept. of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3 B, 2200 Copenhagen, Denmark.
| | - Lars Folkestad
- Dept. of Endocrinology and Metabolism, Odense University Hospital, Kløvervænget 6, 5000 Odense C, Denmark; Dept. of Clinical Research, University of Southern Denmark, Winsløwparken 19, 5000 Odense C, Denmark
| | - Simone Møllebæk
- Dept. of Endocrinology and Metabolism, Odense University Hospital, Kløvervænget 6, 5000 Odense C, Denmark
| | - Anja Lisbeth Frederiksen
- Dept. of Clinical Genetics, Aalborg University Hospital, Ladegaardsgade 5, 9000 Aalborg C, Denmark; Dept. of Clinical Research, Aalborg University, Fredrik Bajers Vej 7K, 9220 Aalborg Ø, Denmark
| | - Morten Duno
- Dept. of Clinical Genetics, University Hospital Copenhagen Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Niklas Rye Jørgensen
- Dept. of Clinical Biochemistry, Rigshospitalet, Valdemar Hansens Vej 13, 2600 Glostrup, Denmark; Dept. of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3 B, 2200 Copenhagen, Denmark
| | - Anne Pernille Hermann
- Dept. of Endocrinology and Metabolism, Odense University Hospital, Kløvervænget 6, 5000 Odense C, Denmark
| | - Jens-Erik Beck Jensen
- Dept. of Endocrinology, Copenhagen University Hospital Hvidovre, Kettegaard Alle 30, 2650 Hvidovre, Denmark; Dept. of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3 B, 2200 Copenhagen, Denmark
| |
Collapse
|
8
|
Martínez-Montoro JI, García-Fontana B, García-Fontana C, Muñoz-Torres M. Evaluation of Quality and Bone Microstructure Alterations in Patients with Type 2 Diabetes: A Narrative Review. J Clin Med 2022; 11:2206. [PMID: 35456299 PMCID: PMC9024806 DOI: 10.3390/jcm11082206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/30/2022] [Accepted: 04/13/2022] [Indexed: 01/25/2023] Open
Abstract
Bone fragility is a common complication in subjects with type 2 diabetes mellitus (T2DM). However, traditional techniques for the evaluation of bone fragility, such as dual-energy X-ray absorptiometry (DXA), do not perform well in this population. Moreover, the Fracture Risk Assessment Tool (FRAX) usually underestimates fracture risk in T2DM. Importantly, novel technologies for the assessment of one microarchitecture in patients with T2DM, such as the trabecular bone score (TBS), high-resolution peripheral quantitative computed tomography (HR-pQCT), and microindentation, are emerging. Furthermore, different serum and urine bone biomarkers may also be useful for the evaluation of bone quality in T2DM. Hence, in this article, we summarize the limitations of conventional tools for the evaluation of bone fragility and review the current evidence on novel approaches for the assessment of quality and bone microstructure alterations in patients with T2DM.
Collapse
Affiliation(s)
- José Ignacio Martínez-Montoro
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Instituto de Investigación Biomédica de Málaga (IBIMA), Faculty of Medicine, University of Malaga, 29010 Malaga, Spain;
| | - Beatriz García-Fontana
- Bone Metabolic Unit, Endocrinology and Nutrition Division, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. GRANADA), 18012 Granada, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Cristina García-Fontana
- Bone Metabolic Unit, Endocrinology and Nutrition Division, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. GRANADA), 18012 Granada, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Manuel Muñoz-Torres
- Bone Metabolic Unit, Endocrinology and Nutrition Division, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. GRANADA), 18012 Granada, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Medicine, University of Granada, 18016 Granada, Spain
| |
Collapse
|
9
|
Adami G, Fassio A, Gatti D, Viapiana O, Benini C, Danila MI, Saag KG, Rossini M. Osteoporosis in 10 years time: a glimpse into the future of osteoporosis. Ther Adv Musculoskelet Dis 2022; 14:1759720X221083541. [PMID: 35342458 PMCID: PMC8941690 DOI: 10.1177/1759720x221083541] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/07/2022] [Indexed: 12/21/2022] Open
Abstract
Patients living with osteoporosis are projected to increase dramatically in the
next decade. Alongside the forecasted increased societal and economic burden, we
will live a crisis of fractures. However, we will have novel pharmacological
treatment to face this crisis and, more importantly, new optimized treatment
strategies. Fracture liaison services will be probably implemented on a large
scale worldwide, helping to prevent additional fractures in high-risk patients.
In the next decade, novel advances in the diagnostic tools will be largely
available. Moreover, new and more precise fracture risk assessment tools will
change our ability to detect patients at high risk of fractures. Finally, big
data and artificial intelligence will help us to move forward into the world of
precision medicine. In the present review, we will discuss the future
epidemiology and costs of osteoporosis, the advances in early and accurate
diagnosis of osteoporosis, with a special focus on biomarkers and imaging tools.
Then we will examine new and refined fracture risk assessment tools, the role of
fracture liaison services, and a future perspective on osteoporosis
treatment.
Collapse
Affiliation(s)
- Giovanni Adami
- Rheumatology Unit, University of Verona, Pz Scuro 10, 37134 Verona, Italy
| | - Angelo Fassio
- Rheumatology Unit, University of Verona, Verona, Italy
| | - Davide Gatti
- Rheumatology Unit, University of Verona, Verona, Italy
| | | | | | - Maria I. Danila
- Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kenneth G. Saag
- Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | | |
Collapse
|
10
|
Foessl I, Bassett JHD, Bjørnerem Å, Busse B, Calado Â, Chavassieux P, Christou M, Douni E, Fiedler IAK, Fonseca JE, Hassler E, Högler W, Kague E, Karasik D, Khashayar P, Langdahl BL, Leitch VD, Lopes P, Markozannes G, McGuigan FEA, Medina-Gomez C, Ntzani E, Oei L, Ohlsson C, Szulc P, Tobias JH, Trajanoska K, Tuzun Ş, Valjevac A, van Rietbergen B, Williams GR, Zekic T, Rivadeneira F, Obermayer-Pietsch B. Bone Phenotyping Approaches in Human, Mice and Zebrafish - Expert Overview of the EU Cost Action GEMSTONE ("GEnomics of MusculoSkeletal traits TranslatiOnal NEtwork"). Front Endocrinol (Lausanne) 2021; 12:720728. [PMID: 34925226 PMCID: PMC8672201 DOI: 10.3389/fendo.2021.720728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/21/2021] [Indexed: 12/16/2022] Open
Abstract
A synoptic overview of scientific methods applied in bone and associated research fields across species has yet to be published. Experts from the EU Cost Action GEMSTONE ("GEnomics of MusculoSkeletal Traits translational Network") Working Group 2 present an overview of the routine techniques as well as clinical and research approaches employed to characterize bone phenotypes in humans and selected animal models (mice and zebrafish) of health and disease. The goal is consolidation of knowledge and a map for future research. This expert paper provides a comprehensive overview of state-of-the-art technologies to investigate bone properties in humans and animals - including their strengths and weaknesses. New research methodologies are outlined and future strategies are discussed to combine phenotypic with rapidly developing -omics data in order to advance musculoskeletal research and move towards "personalised medicine".
Collapse
Affiliation(s)
- Ines Foessl
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Endocrine Lab Platform, Medical University of Graz, Graz, Austria
| | - J. H. Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Åshild Bjørnerem
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian Research Centre for Women’s Health, Oslo University Hospital, Oslo, Norway
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Ângelo Calado
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
| | | | - Maria Christou
- Department of Hygiene and Epidemiology, Medical School, University of Ioannina, Ioannina, Greece
| | - Eleni Douni
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, Vari, Greece
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Imke A. K. Fiedler
- Department of Osteology and Biomechanics, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - João Eurico Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisbon Academic Medical Centre, Lisbon, Portugal
| | - Eva Hassler
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University Graz, Graz, Austria
| | - Wolfgang Högler
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria
| | - Erika Kague
- The School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan, Israel
| | - Patricia Khashayar
- Center for Microsystems Technology, Imec and Ghent University, Ghent, Belgium
| | - Bente L. Langdahl
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Victoria D. Leitch
- Innovative Manufacturing Cooperative Research Centre, Royal Melbourne Institute of Technology, School of Engineering, Carlton, VIC, Australia
| | - Philippe Lopes
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Georgios Markozannes
- Department of Hygiene and Epidemiology, Medical School, University of Ioannina, Ioannina, Greece
| | | | | | - Evangelia Ntzani
- Department of Hygiene and Epidemiology, Medical School, University of Ioannina, Ioannina, Greece
- Department of Health Services, Policy and Practice, Center for Research Synthesis in Health, School of Public Health, Brown University, Providence, RI, United States
| | - Ling Oei
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Drug Treatment, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Pawel Szulc
- INSERM UMR 1033, University of Lyon, Lyon, France
| | - Jonathan H. Tobias
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- MRC Integrative Epidemiology Unit, Bristol Medical School, Bristol, University of Bristol, Bristol, United Kingdom
| | - Katerina Trajanoska
- Department of Internal Medicine, Erasmus MC Rotterdam, Rotterdam, Netherlands
| | - Şansın Tuzun
- Physical Medicine & Rehabilitation Department, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Amina Valjevac
- Department of Human Physiology, School of Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Bert van Rietbergen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Graham R. Williams
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Tatjana Zekic
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | | | - Barbara Obermayer-Pietsch
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Endocrine Lab Platform, Medical University of Graz, Graz, Austria
| |
Collapse
|
11
|
Wang HJ, Giambini H, Chen JW, Wang QS, Hou HG, Luo SM, Chen JY, Zhuang TF, Chen YF, Wu TT, Zha ZG, Liu YJ, Zheng XF. Diabetes mellitus accelerates the progression of osteoarthritis in streptozotocin-induced diabetic mice by deteriorating bone microarchitecture, bone mineral composition, and bone strength of subchondral bone. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:768. [PMID: 34268381 PMCID: PMC8246216 DOI: 10.21037/atm-20-6797] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/21/2021] [Indexed: 01/11/2023]
Abstract
Background The purpose of this study was to develop an optimal diabetes-osteoarthritis (DM-OA) mouse model to validate that diabetes aggravates osteoarthritis (OA) and to evaluate the microarchitecture, chemical composition, and biomechanical properties of subchondral bone (SB) as a consequence of the DM-OA-induced damage induced. Methods Mice were randomly divided into three groups: DM-OA group, OA group, and sham group. Blood glucose levels, body weight, and food intake of all animals were recorded. Serum calcium (Ca) and osteocalcin (OCN) levels were compared in the three groups. The messenger ribonucleic acid (mRNA) and protein expression of key regulators for bone metabolism were detected. A semi-quantitative grading system [Osteoarthritis Research Society International (OARSI)] was used to evaluate cartilage and SB degeneration. Microspectroscopy, microindentations, micro-computed tomography (CT) imaging, and fracture load of compression testing were also used to evaluate trabecular SB properties. Results Glycemic monitoring and pancreas pathological results indicated stable high blood glucose and massive destruction of pancreas and islet cells in the DM-OA group. Serum levels of bone specific alkaline phosphatase (ALP-B) and tartrate-resistant acid phosphatase 5b (TRACP-5b) in the DM-group were higher than those of the other two groups while levels of serum Ca and OCN were lower. Meanwhile, the protein and mRNA expression of osteoblast-specific biomarkers [osteoprotegerin/receptor activator of nuclear factor kappa-B ligand (OPG/RANKL) ratio, collagen type I (COL-I), Runt-related transcription factor 2 (RUNX-2), OCN] were suppressed, and osteoclast-specific biomarkers [sclerostin (SOST)] was elevated in the DM-OA group. The mineral-to-collagen ratio, microindentation elastic modulus, hardness, micro-architectural parameters, bone mineral density, and fracture load of SB trabecular bone of the DM-OA group joint were lower than those of the other two groups. On the other hand, The OARSI score, trabecular spacing, and structural model index of the DM-OA group joint were higher than those of the other two groups. Conclusions The glycemic and pancreatic pathological results indicated that the DM-OA model was a simple and reliable model induced by streptozotocin (STZ) and surgery. The results revealed the mechanisms through which diabetes accelerates OA; that is, by damaging and deteriorating the functions of SB, including its microarchitecture, chemical composition, and biomechanical properties.
Collapse
Affiliation(s)
- Hua-Jun Wang
- The First Clinical College, Jinan University & Department of Orthopedic Surgery and Sports Medicine Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Hugo Giambini
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Ji-Wen Chen
- The First Clinical College, Jinan University & Department of Orthopedic Surgery and Sports Medicine Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Qiu-Shi Wang
- The First Clinical College, Jinan University & Department of Orthopedic Surgery and Sports Medicine Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Hui-Ge Hou
- The First Clinical College, Jinan University & Department of Orthopedic Surgery and Sports Medicine Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Si-Min Luo
- The First Clinical College, Jinan University & Department of Orthopedic Surgery and Sports Medicine Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jun-Yuan Chen
- The First Clinical College, Jinan University & Department of Orthopedic Surgery and Sports Medicine Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Teng-Feng Zhuang
- The First Clinical College, Jinan University & Department of Orthopedic Surgery and Sports Medicine Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yuan-Feng Chen
- The First Clinical College, Jinan University & Department of Orthopedic Surgery and Sports Medicine Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Ting-Ting Wu
- The First Clinical College, Jinan University & Department of Orthopedic Surgery and Sports Medicine Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Zhen-Gang Zha
- The First Clinical College, Jinan University & Department of Orthopedic Surgery and Sports Medicine Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - You-Jie Liu
- The First Clinical College, Jinan University & Department of Orthopedic Surgery and Sports Medicine Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xiao-Fei Zheng
- The First Clinical College, Jinan University & Department of Orthopedic Surgery and Sports Medicine Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
12
|
Rufus‐Membere P, Holloway‐Kew KL, Kotowicz MA, Diez‐Perez A, Pasco JA. Normative Data for Impact Microindentation for Australian Men: Cross-Sectional Data From the Geelong Osteoporosis Study. JBMR Plus 2020; 4:e10384. [PMID: 32995688 PMCID: PMC7507064 DOI: 10.1002/jbm4.10384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 05/29/2020] [Accepted: 06/04/2020] [Indexed: 11/10/2022] Open
Abstract
Impact microindentation (IMI) is a novel technique for assessing the bone material strength index (BMSi) in vivo. However, no studies have presented normative data for BMSi. The aim of this study was to develop such normative data using a population-based sample of men, randomly selected from electoral rolls for the Barwon Statistical Division in southeastern Australia to participate in the Geelong Osteoporosis Study. BMSi was measured on the tibial plateau using an OsteoProbe in 405 men (ages 33 to 96 years) during the period 2016 to 2019. Associations between BMSi, age, and anthropometry were examined using linear regression models. BMSi values ranged from 49.0 to 100.5. BMSi was negatively correlated with age (r = -0.152, p = 0.002), weight (r = -0.103, p = 0.039), and BMI (r = -0.187, p < 0.001), and positively correlated with height (r = +0.107, p = 0.032). Mean ± SD BMSi was 82.6 ± 7.0 for the whole group, and ranged from 85.6 ± 6.0 for ages 30 to 39 years to 79.8 ± 6.6 for ages 80+ years. This study provides normative data that can be used to calculate T- and Z-scores for BMSi. These data will be useful for identifying men with low BMSi. Further research is warranted to derive optimal cut points for BMSi that discriminate fracture risk. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | | | - Mark A Kotowicz
- School of Medicine, Deakin UniversityGeelongVictoriaAustralia
- Department of Medicine‐Western HealthMelbourne Medical School, The University of MelbourneMelbourneVictoriaAustralia
- Barwon HealthGeelongVictoriaAustralia
| | - Adolfo Diez‐Perez
- Department of Internal MedicineHospital del Mar‐IMIM, Autonomous University of Barcelona and CIBERFES, Instituto Carlos IIIMadridSpain
| | - Julie A Pasco
- School of Medicine, Deakin UniversityGeelongVictoriaAustralia
- Department of Medicine‐Western HealthMelbourne Medical School, The University of MelbourneMelbourneVictoriaAustralia
- Barwon HealthGeelongVictoriaAustralia
| |
Collapse
|
13
|
Schoeb M, Malgo F, Peeters JJM, Winter EM, Papapoulos SE, Appelman-Dijkstra NM. Treatments of osteoporosis increase bone material strength index in patients with low bone mass. Osteoporos Int 2020; 31:1683-1690. [PMID: 32270252 PMCID: PMC7423791 DOI: 10.1007/s00198-020-05375-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/03/2020] [Indexed: 02/07/2023]
Abstract
UNLABELLED Effects on bone material properties of two-year antiosteoporotic treatment were assessed using in vivo impact microindentation (IMI) in patients with low bone mineral density (BMD) values. Antiresorptive treatment, in contrast to vitamin D ± calcium treatment alone, induced BMD-independent increases in bone material strength index, measured by IMI, the magnitude of which depended on pretreatment values. INTRODUCTION Bone material strength index (BMSi), measured by IMI in vivo, is reduced in patients with fragility fractures, but there is no information about changes in values during long-term therapy. In the present study, we assessed changes in BMSi in patients receiving antiosteoporotic treatments for periods longer than 12 months. METHODS We included treatment-naive patients with low bone mass who had a BMSi measurement with OsteoProbe® at presentation and consented to a repeat measurement after treatment. RESULTS We studied 54 patients (34 women), median age 58 years, of whom 30 were treated with bisphosphonates or denosumab (treatment group) and 24 with vitamin D ± calcium alone (control group). There were no differences in clinical characteristics between the two groups with the exception of a higher number of previous fragility fractures in the treatment group. Baseline hip BMD and BMSi values were lower in the treatment group. After 23.1 ± 6.6 months, BMSi increased significantly in the treatment group (82.4 ± 4.3 vs 79.3 ± 4.1; p < 0.001), but did not change in the control group (81.5 ± 5.2 vs 82.2 ± 4.1; p = 0.35). Changes in BMSi with antiresorptives were inversely related with baseline values (r = - 0.43; p = 0.02) but not with changes in BMD. Two patients in the control group with large decreases in BMSi values sustained incident fractures. CONCLUSION In patients at increased fracture risk, antiresorptive treatments induced BMD-independent increases in BMSi values, the magnitude of which depended on pretreatment values.
Collapse
Affiliation(s)
- M Schoeb
- Center for Bone Quality, Department of Medicine, Division Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - F Malgo
- Center for Bone Quality, Department of Medicine, Division Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - J J M Peeters
- Center for Bone Quality, Department of Medicine, Division Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - E M Winter
- Center for Bone Quality, Department of Medicine, Division Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - S E Papapoulos
- Center for Bone Quality, Department of Medicine, Division Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - N M Appelman-Dijkstra
- Center for Bone Quality, Department of Medicine, Division Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
14
|
Rokidi S, Bravenboer N, Gamsjaeger S, Chavassieux P, Zwerina J, Paschalis E, Papapoulos S, Appelman-Dijkstra N. Impact microindentation measurements correlate with cortical bone material properties measured by Fourier transform infrared imaging in humans. Bone 2020; 137:115437. [PMID: 32473316 DOI: 10.1016/j.bone.2020.115437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/28/2020] [Accepted: 05/15/2020] [Indexed: 11/27/2022]
Abstract
Bone Material Strength index (BMSi) measured by Impact Microindentation is generally lower in subjects with fragility fractures independently of BMD values. We recently reported that in humans, BMSi values are strongly associated with material properties of subperiosteal mineralized bone surface (local mineral content, nanoporosity, pyridinoline content). In the present study we investigated the relationship of BMSi with material properties of the whole bone cortex, by analyzing thin sections of iliac crest biopsies (N = 12) from patients with different skeletal disorders and a wide range of BMD with or without fractures, by Fourier transform infrared imaging (FTIRI). The calculated parameters were: i) mineral and organic matrix content and their ratio (MM), ii) mineral maturity/crystallinity (MMC) and iii) the ratio of pyridinoline (Pyd) and divalent collagen cross-links (XLR). Results were expressed as images, which were converted to histogram distributions. For each histogram the characteristics recorded were: mean value, mode (most often occurring value), skewness, and kurtosis and their association with BMSi values was examined by correlation analysis. BMSi values were significantly correlated only with MM mean and mode values (r = 0.736, p = 0.0063, and r = 0.855, p = 0.0004, respectively), and with XLR mode values (r = -0.632, p = 0.0274). The results of the present study demonstrate that BMSi values are strongly associated with MM, a metric that corrects the mineral content for the organic matrix content, and may also depend on organic matrix quality. These and our previous observations strongly suggest that BMSi assesses material properties of cortical bone.
Collapse
Affiliation(s)
- Stamatia Rokidi
- Ludwig Boltzmann Institute of Osteology at 1st Medical Department, Hanusch Hospital of Österreichische Gesundheitskasse (ÖGK) and Research Funds of the Austrian Workers Compensation Board (AUVA) Trauma Centre Meidling, Vienna, Austria
| | - Natalie Bravenboer
- Leiden Center for Bone Quality, Leiden University Medical Center, Leiden, the Netherlands
| | - Sonja Gamsjaeger
- Ludwig Boltzmann Institute of Osteology at 1st Medical Department, Hanusch Hospital of Österreichische Gesundheitskasse (ÖGK) and Research Funds of the Austrian Workers Compensation Board (AUVA) Trauma Centre Meidling, Vienna, Austria
| | | | - Jochen Zwerina
- Ludwig Boltzmann Institute of Osteology at 1st Medical Department, Hanusch Hospital of Österreichische Gesundheitskasse (ÖGK) and Research Funds of the Austrian Workers Compensation Board (AUVA) Trauma Centre Meidling, Vienna, Austria
| | - Eleftherios Paschalis
- Ludwig Boltzmann Institute of Osteology at 1st Medical Department, Hanusch Hospital of Österreichische Gesundheitskasse (ÖGK) and Research Funds of the Austrian Workers Compensation Board (AUVA) Trauma Centre Meidling, Vienna, Austria.
| | - Socrates Papapoulos
- Leiden Center for Bone Quality, Leiden University Medical Center, Leiden, the Netherlands
| | | |
Collapse
|
15
|
García Martín A, de la Higuera López-Frías M, Cortés Berdonces M, Jodar Gimeno E, Ávila Rubio V, Alhambra MR, Muñoz Torres M. New technologies in the evaluation of bone fragility and its application in Endocrinology. ACTA ACUST UNITED AC 2020; 67:602-610. [PMID: 32439320 DOI: 10.1016/j.endinu.2020.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 10/24/2022]
Abstract
Bone mineral density using dual-energy X-ray absorptiometry is the gold standard for the assessment of bone and an important predictor of fracture risk. However, most fragility fractures occur in people without densitometric osteoporosis, especially in endocrinological diseases. Fracture risk estimation tools such as FRAX have improved diagnostic sensitivity but do not include additional skeletal features. Bone microarchitecture research represents an improvement in the treatment of these patients. In this document members of the Mineral and Bone Metabolism Working Group of the Spanish Society of Endocrinology and Nutrition review new advances in dual-energy X-ray absorptiometry and other complex techniques for the study of bone microarchitecture as well as the available data on type 2 diabetes and parathyroid pathology.
Collapse
Affiliation(s)
- Antonia García Martín
- Unidad de Gestión Clínica (UGC) de Endocrinología y Nutrición, Hospital Universitario San Cecilio, CIBERFES, Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, España.
| | | | - María Cortés Berdonces
- Servicio de Endocrinología y Nutrición, Complejo Hospitalario Ruber Juan Bravo, Madrid, España
| | - Esteban Jodar Gimeno
- Departamento de Endocrinología y Nutrición Clínica, Hospital Universitario Quirón Salud Madrid y Hospital Ruber Juan Bravo, Universidad Europea de Madrid, Madrid, España
| | - Verónica Ávila Rubio
- Unidad de Gestión Clínica (UGC) de Endocrinología y Nutrición, Hospital Universitario San Cecilio, CIBERFES, Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, España
| | - María Rosa Alhambra
- UGC de Endocrinología y Nutrición, Hospital Universitario Reina Sofía, Córdoba, España
| | - Manuel Muñoz Torres
- Unidad de Gestión Clínica (UGC) de Endocrinología y Nutrición, Hospital Universitario San Cecilio, CIBERFES, Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, España; Departamento de Medicina, Universidad de Granada, Granada, España
| |
Collapse
|
16
|
Effects of carbamazepine, eslicarbazepine, valproic acid and levetiracetam on bone microarchitecture in rats. Pharmacol Rep 2020; 72:1323-1333. [DOI: 10.1007/s43440-020-00087-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/24/2020] [Accepted: 03/09/2020] [Indexed: 12/28/2022]
|
17
|
Rokidi S, Bravenboer N, Gamsjaeger S, Misof B, Blouin S, Chavassieux P, Klaushofer K, Paschalis E, Papapoulos S, Appelman-Dijkstra N. Impact microindentation assesses subperiosteal bone material properties in humans. Bone 2020; 131:115110. [PMID: 31655220 DOI: 10.1016/j.bone.2019.115110] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/14/2019] [Accepted: 10/14/2019] [Indexed: 11/19/2022]
Abstract
Impact microindentation (IMI) is a Reference Point Indentation technique measuring tissue-level properties of cortical bone in humans in vivo. The nature, however, of the properties that can affect bone strength is incompletely understood. In the present study we examined bone material properties in transiliac bone biopsies obtained concurrently with measurements of Bone Material Strength index (BMSi) by IMI in 12 patients with different skeletal disorders and a wide range of BMD, with or without fractures (8 males, 4 females, mean age 48±12.2 (SD) years, range 15-60 years). IMI was performed in the mid-shaft of the right tibia with a hand-held microindenter (OsteoProbe). Cancellous and cortical bone mineralization density distributions (BMDD) were measured in the entire biopsy bone area by quantitative backscattered electron imaging. Raman measurements were obtained right at the outer edge of the cortex, and 5, 50, 100, 500μm inwards. The calculated parameters were: i) Mineral and organic matrix content as well as the mineral / matrix ratio. ii) Nanoporosity. iii) Glycosaminoglycan content. iv) Pyridinoline content. v) Maturity/crystallinity of the apatite crystallites. There was no relationship between BMSi values with any measurement of mineral content of whole bone tissue (BMD, BMDD) or maturity/crystallinity of bone mineral. On the other hand, a positive correlation between BMSi and local mineral content, and an inverse correlation between BMSi and nanoporosity at the mineralized subperiosteal edge of the sample and at 5μm inwards was found. A positive correlation was also observed between BMSi and pyridinoline content at the same locations. These results indicate that local mineral content, nanoporosity and pyridinoline content at the subperiosteal site in the transiliac bone biopsy are linked to the BMSi values measured in the tibia. As both high porosity at the nano level and low pyridinoline content of the bone matrix can negatively impact bone strength, our findings suggest that BMSi most likely assesses subperiosteal bone material properties.
Collapse
Affiliation(s)
- Stamatia Rokidi
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of Viennese sickness insurance funds (WGKK) and Research funds of the Austrian workers compensation board (AUVA) Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital Vienna, Austria
| | - Natalie Bravenboer
- Leiden Center for Bone Quality, Leiden University Medical Center, Leiden, the Netherlands
| | - Sonja Gamsjaeger
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of Viennese sickness insurance funds (WGKK) and Research funds of the Austrian workers compensation board (AUVA) Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital Vienna, Austria
| | - Barbara Misof
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of Viennese sickness insurance funds (WGKK) and Research funds of the Austrian workers compensation board (AUVA) Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital Vienna, Austria
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of Viennese sickness insurance funds (WGKK) and Research funds of the Austrian workers compensation board (AUVA) Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital Vienna, Austria
| | | | - Klaus Klaushofer
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of Viennese sickness insurance funds (WGKK) and Research funds of the Austrian workers compensation board (AUVA) Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital Vienna, Austria
| | - Eleftherios Paschalis
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of Viennese sickness insurance funds (WGKK) and Research funds of the Austrian workers compensation board (AUVA) Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital Vienna, Austria.
| | - Socrates Papapoulos
- Leiden Center for Bone Quality, Leiden University Medical Center, Leiden, the Netherlands
| | | |
Collapse
|
18
|
Schoeb M, Hamdy NAT, Malgo F, Winter EM, Appelman-Dijkstra NM. Added Value of Impact Microindentation in the Evaluation of Bone Fragility: A Systematic Review of the Literature. Front Endocrinol (Lausanne) 2020; 11:15. [PMID: 32117052 PMCID: PMC7020781 DOI: 10.3389/fendo.2020.00015] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/09/2020] [Indexed: 12/22/2022] Open
Abstract
The current gold standard for the diagnosis of osteoporosis and the prediction of fracture risk is the measurement of bone mineral density (BMD) using dual energy x-ray absorptiometry (DXA). A low BMD is clearly associated with increased fracture risk, but BMD is not the only determinant of bone strength, particularly in secondary osteoporosis and metabolic bone disorders in which components other than BMD are affected and DXA often underestimates true fracture risk. Material properties of bone which significantly contribute to bone strength have become evaluable in vivo with the impact microindentation (IMI) technique using the OsteoProbe® device. The question arises whether this new tool is of added value in the evaluation of bone fragility. To this effect, we conducted a systematic review of all clinical studies using IMI in vivo in humans also addressing practical aspects of the technique and differences in study design, which may impact outcome. Search data generated 38 studies showing that IMI can identify patients with primary osteoporosis and fractures, patients with secondary osteoporosis due to various underlying systemic disorders, and scarce longitudinal data also show that this tool can detect changes in bone material strength index (BMSi), following bone-modifying therapy including use of corticosteroids. However, this main outcome parameter was not always concordant between studies. This systematic review also identified a number of factors that impact on BMSi outcome. These include subject- and disease-related factors such as the relationship between BMSi and age, geographical region and the presence of fractures, and technique- and operator-related factors. Taken together, findings from this systematic review confirm the added value of IMI for the evaluation and follow-up of elements of bone fragility, particularly in secondary osteoporosis. Notwithstanding, the high variability of BMSi outcome between studies calls for age-dependent reference values, and for the harmonization of study protocols. Prospective multicenter trials using standard operating procedures are required to establish the value of IMI in the prediction of future fracture risk, before this technique is introduced in routine clinical practice.
Collapse
|
19
|
Treurniet S, Eekhoff EMW, Schmidt FN, Micha D, Busse B, Bravenboer N. A Clinical Perspective on Advanced Developments in Bone Biopsy Assessment in Rare Bone Disorders. Front Endocrinol (Lausanne) 2020; 11:399. [PMID: 32714279 PMCID: PMC7344330 DOI: 10.3389/fendo.2020.00399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/18/2020] [Indexed: 01/22/2023] Open
Abstract
Introduction: Bone biopsies have been obtained for many centuries and are one of the oldest known medical procedures in history. Despite the introduction of new noninvasive radiographic imaging techniques and genetic analyses, bone biopsies are still valuable in the diagnosis of bone diseases. Advanced techniques for the assessment of bone quality in bone biopsies, which have emerged during the last decades, allows in-depth tissue analyses beyond structural changes visible in bone histology. In this review, we give an overview of the application and advantages of the advanced techniques for the analysis of bone biopsies in the clinical setting of various rare metabolic bone diseases. Method: A systematic literature search on rare metabolic bone diseases and analyzing techniques of bone biopsies was performed in PubMed up to 2019 week 34. Results: Advanced techniques for the analysis of bone biopsies were described for rare metabolic bone disorders including Paget's disease of bone, osteogenesis imperfecta, fibrous dysplasia, Fibrodysplasia ossificans progressiva, PLS3 X-linked osteoporosis, Loeys-Diets syndrome, osteopetrosis, Erdheim-Chester disease, and Cherubism. A variety of advanced available analytical techniques were identified that may help to provide additional detail on cellular, structural, and compositional characteristics in rare bone diseases complementing classical histopathology. Discussion: To date, these techniques have only been used in research and not in daily clinical practice. Clinical application of bone quality assessment techniques depends upon several aspects such as availability of the technique in hospitals, the existence of reference data, and a cooperative network of researchers and clinicians. The evaluation of rare metabolic bone disorders requires a repertoire of different methods, owing to their distinct bone tissue characteristics. The broader use of bone material obtained from biopsies could provide much more information about pathophysiology or treatment options and establish bone biopsies as a valuable tool in rare metabolic bone diseases.
Collapse
Affiliation(s)
- Sanne Treurniet
- Department of Internal Medicine, Amsterdam University Medical Center, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Elisabeth M. W. Eekhoff
- Department of Internal Medicine, Amsterdam University Medical Center, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Felix N. Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dimitra Micha
- Department of Clinical Genetics, Amsterdam University Medical Center, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nathalie Bravenboer
- Bone and Calcium Metabolism Lab, Department of Clinical Chemistry, Amsterdam University Medical Center, Amsterdam Movement Sciences, Amsterdam, Netherlands
- *Correspondence: Nathalie Bravenboer
| |
Collapse
|
20
|
Narla RR, Ott SM. Structural and Metabolic Assessment of Bone. Handb Exp Pharmacol 2020; 262:369-396. [PMID: 32885312 DOI: 10.1007/164_2020_376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The assessment of bone structure and metabolism should focus on the bone strength. Many factors are involved, and although bone density is an important component, it is not the same as bone strength. Other aspects of bone quality include bone volume, micro-architecture, material composition, and ability to repair damage. This chapter briefly reviews some of the methods that can be used to assess both density and quality of bone. Non-invasive measurements of density or structure include dual X-ray absorptiometry (DXA), quantitative computed tomography, ultrasound, and magnetic resonance imaging. DXA is most widely used and has advantages of safety and accessibility, but there are limitations in the interpretation of the results, and in clinical practice positioning errors are frequently seen. Invasive methods are used primarily for research. Samples of bone can be used to measure structure by histology as well as micro-computed tomography and infra-red spectroscopy or backscattered electron microscopy. Force can be directly applied to bone samples to measure the bones strength. Impact microindentation is a new minimally invasive technique that measures bone hardness. Metabolic assessment includes blood and urine tests that reflect diseases that cause bone loss, particularly problems with mineral metabolism. Tetracycline-labelled bone biopsies are the standard for measuring bone formation. Non-invasive biochemical tests of bone formation and resorption can evaluate a patient's skeletal physiology.
Collapse
Affiliation(s)
- Radhika R Narla
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Susan M Ott
- Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
21
|
Diez-Perez A, Brandi ML, Al-Daghri N, Branco JC, Bruyère O, Cavalli L, Cooper C, Cortet B, Dawson-Hughes B, Dimai HP, Gonnelli S, Hadji P, Halbout P, Kaufman JM, Kurth A, Locquet M, Maggi S, Matijevic R, Reginster JY, Rizzoli R, Thierry T. Radiofrequency echographic multi-spectrometry for the in-vivo assessment of bone strength: state of the art-outcomes of an expert consensus meeting organized by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). Aging Clin Exp Res 2019; 31:1375-1389. [PMID: 31422565 PMCID: PMC6763416 DOI: 10.1007/s40520-019-01294-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/24/2019] [Indexed: 01/19/2023]
Abstract
PURPOSE The purpose of this paper was to review the available approaches for bone strength assessment, osteoporosis diagnosis and fracture risk prediction, and to provide insights into radiofrequency echographic multi spectrometry (REMS), a non-ionizing axial skeleton technique. METHODS A working group convened by the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis met to review the current image-based methods for bone strength assessment and fracture risk estimation, and to discuss the clinical perspectives of REMS. RESULTS Areal bone mineral density (BMD) measured by dual-energy X-ray absorptiometry (DXA) is the consolidated indicator for osteoporosis diagnosis and fracture risk assessment. A more reliable fracture risk estimation would actually require an improved assessment of bone strength, integrating also bone quality information. Several different approaches have been proposed, including additional DXA-based parameters, quantitative computed tomography, and quantitative ultrasound. Although each of them showed a somewhat improved clinical performance, none satisfied all the requirements for a widespread routine employment, which was typically hindered by unclear clinical usefulness, radiation doses, limited accessibility, or inapplicability to spine and hip, therefore leaving several clinical needs still unmet. REMS is a clinically available technology for osteoporosis diagnosis and fracture risk assessment through the estimation of BMD on the axial skeleton reference sites. Its automatic processing of unfiltered ultrasound signals provides accurate BMD values in view of fracture risk assessment. CONCLUSIONS New approaches for improved bone strength and fracture risk estimations are needed for a better management of osteoporotic patients. In this context, REMS represents a valuable approach for osteoporosis diagnosis and fracture risk prediction.
Collapse
Affiliation(s)
- Adolfo Diez-Perez
- Department of Internal Medicine, Hospital del Mar/IMIM and CIBERFES, Autonomous University of Barcelona, Passeig Maritim 25-29, 08003, Barcelona, Spain.
| | - Maria Luisa Brandi
- FirmoLab Fondazione F.I.R.M.O., Florence, Italy
- Department of Biological, Experimental and Clinical Science, University of Florence, Florence, Italy
| | - Nasser Al-Daghri
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Jaime C Branco
- NOVA Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Olivier Bruyère
- WHO Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, University of Liège, Liège, Belgium
| | - Loredana Cavalli
- FirmoLab Fondazione F.I.R.M.O., Florence, Italy
- Department of Biological, Experimental and Clinical Science, University of Florence, Florence, Italy
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Bernard Cortet
- Department of Rheumatology and EA 4490, University-Hospital of Lille, Lille, France
| | - Bess Dawson-Hughes
- Bone Metabolism Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Hans Peter Dimai
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Stefano Gonnelli
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Peyman Hadji
- Frankfurter Hormon und Osteoporose Zentrum, Frankfurt, Germany
| | | | - Jean-Marc Kaufman
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Andreas Kurth
- Department of Orthopaedic Surgery and Osteology, Klinikum Frankfurt, Frankfurt, Germany
- Mayor Teaching Hospital, Charite Medical School, Berlin, Germany
| | - Medea Locquet
- Department of Public Health, Epidemiology and Health Economics, University of Liège, Liège, Belgium
| | - Stefania Maggi
- National Research Council, Aging Program, Institute of Neuroscience, Padua, Italy
| | - Radmila Matijevic
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
- Clinical Center of Vojvodina, Clinic for Orthopedic Surgery, Novi Sad, Serbia
| | - Jean-Yves Reginster
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
- WHO Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, University of Liège, Liège, Belgium
| | - René Rizzoli
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Thomas Thierry
- Department of Rheumatology, Hospital Nord, CHU St Etienne, St Etienne, France
- INSERM 1059, University of Lyon, St Etienne, France
| |
Collapse
|
22
|
Modeling of Osteoprobe indentation on bone. J Mech Behav Biomed Mater 2019; 90:365-373. [DOI: 10.1016/j.jmbbm.2018.09.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/02/2018] [Accepted: 09/24/2018] [Indexed: 12/27/2022]
|
23
|
Chang A, Easson GW, Tang SY. Clinical measurements of bone tissue mechanical behavior using reference point indentation. Clin Rev Bone Miner Metab 2018; 16:87-94. [PMID: 30983912 DOI: 10.1007/s12018-018-9249-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Over the last thirty years, it has become increasingly clear the amount of bone (e.g. 'bone quantity') and the quality of the bone matrix (e.g. 'bone quality') both critically contribute to bone's tissue-level mechanical behavior and the subsequent ability of bone to resist fracture. Although determining the tissue-level mechanical behavior of bone through mechanical testing is relatively straightforward in the laboratory, the destructive nature of such testing is unfeasible in humans and in animal models requiring longitudinal observation. Therefore, surrogate measurements are necessary for quantifying tissue-level mechanical behavior for the pre-clinical and clinical evaluation of bone strength and fracture risk in vivo. A specific implementation of indentation known as reference point indentation (RPI) enables the mechanical testing of bone tissue without the need to excise and prepare the bone surface. However, this compromises the ability to carefully control the specimen geometry that is required to define the bone tissue material properties. Yet the versatility of such measurements in clinical populations is provocative, and to date there are a number of promising studies that have utilized this tool to discern bone pathologies and to monitor the effects of therapeutics on bone quality. Concurrently, on-going efforts continue to investigate the aspects of bone material behavior measured by RPI, and the compositional factors that contribute to these measurements. There are currently two variants, cyclic- and impact- RPI, that have been utilized in pre-clinical and clinical studies. This review surveys clinical studies that utilize RPI, with particular emphasis on the clinical instrument, as well as the endeavors to understand the fundamental mechanisms of such measurements. Ultimately, an improved awareness in the tradeoffs and limitations of in vivo RPI is critical towards the effective and successful utilization of this tool for the overall improvement of fragility determination in the clinic.
Collapse
Affiliation(s)
- Andrew Chang
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO
| | - Garrett W Easson
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO
| | - Simon Y Tang
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
24
|
Rozental TD, Walley KC, Demissie S, Caksa S, Martinez-Betancourt A, Parker AM, Tsai JN, Yu EW, Bouxsein ML. Bone Material Strength Index as Measured by Impact Microindentation in Postmenopausal Women With Distal Radius and Hip Fractures. J Bone Miner Res 2018; 33:621-626. [PMID: 29115684 DOI: 10.1002/jbmr.3338] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/02/2017] [Accepted: 11/07/2017] [Indexed: 01/17/2023]
Abstract
We tested whether cortical bone tissue properties assessed by in vivo impact microindentation would distinguish postmenopausal women with recent distal radius (DRF) or hip fracture (HF) from nonfracture controls (CONT). We enrolled postmenopausal women with recent DRF (n = 57), HF (n = 41), or CONT (n = 93), and used impact microindentation to assess bone material strength index (BMSi) at the anterior surface of the mid-tibia diaphysis. Areal bone mineral density (aBMD) (g/cm2 ) of the femoral neck (FN), total hip (TH), and lumbar spine (LS) were measured by dual-energy X-ray absorptiometry (DXA). HF and DRF subjects had significantly lower BMD than CONT at all sites (-5.6% to -8.2%, p < 0.001 for all). BMSi was 4% lower in DRF compared to CONT (74.36 ± 8.77 versus 77.41 ± 8.79, p = 0.04). BMSi was similarly lower in HF versus CONT, but the difference did not reach statistical significance (74.62 ± 8.47 versus 77.41 ± 8.79, p = 0.09). Lower BMSi was associated with increased risk of DRF (unadjusted OR, 1.43; 95% CI, 1.02 to 2.00, per SD decrease, p = 0.04), and remained statistically significant after adjustment for age, age and BMI, and age, BMI, and FN BMD (OR = 1.48 to 1.55). Lower BMSi tended to be associated with HF, but only reached borderline significance (unadjusted OR = 1.39; 95% CI, 0.96 to 2.01, p = 0.08). These results provide strong rationale for future investigations aimed at assessing whether BMSi can predict fracture in prospective studies and improve identification of women at risk for fragility fractures. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Tamara D Rozental
- Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA
| | - Kempland C Walley
- Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Serkalem Demissie
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Signe Caksa
- Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
| | | | - Amber M Parker
- Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Joy N Tsai
- Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Elaine W Yu
- Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Mary L Bouxsein
- Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA.,Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
25
|
Malgo F, Hamdy NA, Papapoulos SE, Appelman-Dijkstra NM. Impact Microindentation: Consistency of Serial Measurements and Alterations in Patients With Paget's Disease of the Tibia. J Bone Miner Res 2017; 32:2375-2380. [PMID: 28815760 DOI: 10.1002/jbmr.3239] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/27/2017] [Accepted: 08/11/2017] [Indexed: 11/08/2022]
Abstract
Impact microindentation (IMI) is a new technique for the in vivo measurement of tissue-level properties of cortical bone in humans. To address issues related to the proper application of IMI in clinical practice and to directly examine cortical bone properties in patients with tibia pathology, we studied 11 subjects without tibia pathology and nine patients with Paget's disease of the tibia in biochemical remission after bisphosphonate treatment. Serial indentations in the tibias of both legs were performed in all subjects by a single operator until 10 adequate measurements were obtained in each tibia. In patients without Paget's disease (7 men and 4 women; mean age, 61.9 years; range, 51 to 72 years), there was no difference in mean bone material strength index (BMSi) between the dominant and nondominant leg (82.1 ± 1.3 and 81.4 ± 1.3, respectively; p = 0.606). In each individual subject studied, sequential indentations in both legs showed no trends for higher or lower values with time. The standard deviation of unnormalized bone material strength (BMSu) was also comparable between the dominant and nondominant tibia (5.3 and 4.5, respectively; p = 0.657). In patients with Paget's disease (4 men and 5 women; mean age, 69.5 years; range, 55 to 87 years), mean BMSi of the Pagetic tibia was lower, albeit nonsignificantly, than that of the contralateral nonaffected tibia (74.7 ± 1.7 and 78.7 ± 1.3, respectively; p = 0.120). In contrast to subjects without Paget's disease, the SD of adequate BMSu values was significantly larger in the Pagetic tibia compared to that of the non-Pagetic tibia (7.6 versus 5.0, respectively, p = 0.008). These results highlight the consistency of serial IMI measurements as performed by a single operator in the presence as well as absence of tibia pathology and illustrate that the method is able to capture alterations of tissue-level cortical bone properties in patients with Paget's disease of the tibia. © 2017 The Authors.Journal of Bone and Mineral Research Published by Wiley Periodicals Inc.
Collapse
Affiliation(s)
- Frank Malgo
- Center for Bone Quality, Leiden University Medical Center, Leiden, The Netherlands
| | - Neveen At Hamdy
- Center for Bone Quality, Leiden University Medical Center, Leiden, The Netherlands
| | | | | |
Collapse
|
26
|
Malgo F, Hamdy NAT, Papapoulos SE, Appelman-Dijkstra NM. Bone material strength index as measured by impact microindentation is low in patients with fractures irrespective of fracture site. Osteoporos Int 2017; 28:2433-2437. [PMID: 28466137 PMCID: PMC5524858 DOI: 10.1007/s00198-017-4054-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 04/12/2017] [Indexed: 02/07/2023]
Abstract
UNLABELLED We evaluated the relationship between bone material strength index (BMSi) and fragility fractures, including vertebral fractures. Our data showed that BMSi is low in all fracture patients with low bone mass, independently of whether patients sustained a vertebral or a non-vertebral fracture. INTRODUCTION Impact microindentation (IMI) is a new technique for the measurement of tissue level properties of cortical bone in vivo. Previous studies showed an association between BMSi and non-vertebral fractures, but an association with vertebral fractures is still being debated. The objective of this paper was to evaluate the relationship between BMSi and different types of fragility fractures, including vertebral fractures. METHODS In this cross-sectional study, we measured BMSi in patients of both sexes with different types of fragility fractures and low bone mass with the IMI method using the Osteoprobe®. Vertebral fractures were diagnosed and graded on lateral spine radiographs. RESULTS A total of 132 patients were included in the study, of whom 101 patients (65 women) had sustained a low energy fracture and 31 (mean age 57.7 ± 9.9 years) had no history or radiological evidence for a fracture. Of the fracture patients, 53 (mean age 62.8 ± 8.3 years) had only non-vertebral fractures (VF-/Fx+), 34 (mean age 62.8 ± 9.9 years) had vertebral and non-vertebral fractures (VF+/Fx+), and 14 (mean age 64.7 ± 9.3 years) had only vertebral fractures (VF+/Fx-). BMSi values, adjusted for age and BMD, were similar for all three groups of fracture patients (78.9 ± 0.7, 78.3 ± 0.9, and 78.4 ± 1.4, respectively; p = 0.866). BMSi values were not associated with number or severity of vertebral fractures. CONCLUSION Our data demonstrate that BMSi is low in fracture patients with low bone mass, irrespective of whether they sustained a vertebral fracture or a non-vertebral fracture.
Collapse
Affiliation(s)
- F Malgo
- Center for Bone Quality and Department of Medicine, Division Endocrinology, Leiden University Medical Center, P.O. Box 9600, 2300, RC, Leiden, The Netherlands
| | - N A T Hamdy
- Center for Bone Quality and Department of Medicine, Division Endocrinology, Leiden University Medical Center, P.O. Box 9600, 2300, RC, Leiden, The Netherlands
| | - S E Papapoulos
- Center for Bone Quality and Department of Medicine, Division Endocrinology, Leiden University Medical Center, P.O. Box 9600, 2300, RC, Leiden, The Netherlands
| | - N M Appelman-Dijkstra
- Center for Bone Quality and Department of Medicine, Division Endocrinology, Leiden University Medical Center, P.O. Box 9600, 2300, RC, Leiden, The Netherlands.
| |
Collapse
|