1
|
Brunkhorst M, Brunkhorst L, Martens H, Papizh S, Besouw M, Grasemann C, Turan S, Sikora P, Chromek M, Cornelissen E, Fila M, Lilien M, Allgrove J, Neuhaus TJ, Eltan M, Espinosa L, Schnabel D, Gokce I, González-Rodríguez JD, Khandelwal P, Keijzer-Veen MG, Lechner F, Szczepańska M, Zaniew M, Bacchetta J, Emma F, Haffner D. Presentation and outcome in carriers of pathogenic variants in SLC34A1 and SLC34A3 encoding sodium-phosphate transporter NPT 2a and 2c. Kidney Int 2024:S0085-2538(24)00727-0. [PMID: 39461557 DOI: 10.1016/j.kint.2024.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/15/2024] [Accepted: 08/30/2024] [Indexed: 10/29/2024]
Abstract
Pathogenic variants in SLC34A1 and SLC34A3 encoding sodium-phosphate transporter 2a and 2c are rare causes of phosphate wasting. Since data on presentation and outcomes are scarce, we collected clinical, biochemical and genetic data via an online questionnaire and the support of European professional organizations. One hundred thirteen patients (86% children) from 90 families and 17 countries with pathogenic or likely pathogenic variants in SLC34A1 or SLC34A3 and a median follow-up of three years were analyzed. Biallelic SLC34A1 variant carriers showed polyuria, failure to thrive, vomiting, constipation, hypercalcemia and nephrocalcinosis in infancy, while biallelic SLC34A3 carriers presented in childhood or even adulthood with rickets/osteomalacia and/or osteopenia/osteoporosis, hypophosphatemia and, less frequently, nephrocalcinosis, while the prevalences of kidney stones were comparable. Adult biallelic SLC34A3 carriers had a six-fold increase chronic kidney disease (CKD) prevalence compared to the general population. All biallelic variant carriers shared a common biochemical pattern including elevated 1,25(OH)2D and alkaline phosphatase levels, suppressed parathyroid hormone (PTH), and hypercalciuria. Heterozygous carriers showed similar but less pronounced phenotypes. In biallelic SLC34A1 carriers, an attenuation of clinical features was observed after infancy, independent of treatment. Phosphate treatment was given in 55% of patients, median duration two years, and resulted in significant reduction, although not normalization, of alkaline phosphatase and of hypercalciuria but an increase in PTH levels, while 1,25(OH)2D levels remained elevated. Thus, our study indicates that biallelic SLC34A1 and SLC34A3 carriers show distinct, albeit overlapping phenotypes, with the latter having an increased risk of CKD in adulthood. Phosphate treatment may promote kidney phosphate loss and enhance 1,25(OH)2D synthesis via increased PTH production.
Collapse
Affiliation(s)
- Max Brunkhorst
- Department of Pediatric Kidney, Liver, Metabolic and Neurological Diseases, Hannover Medical School, Hannover, Germany
| | - Lena Brunkhorst
- Department of Pediatric Kidney, Liver, Metabolic and Neurological Diseases, Hannover Medical School, Hannover, Germany
| | - Helge Martens
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Svetlana Papizh
- Veltishev Research and Clinical Institute for Pediatrics and Children Surgery of Pirogov Russian National Research Medical University, Moscow, Russia
| | - Martine Besouw
- Department of Pediatric Nephrology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Serap Turan
- Department of Pediatric Endocrinology, Marmara University School of Medicine, Istanbul, Turkey
| | - Przemyslaw Sikora
- Department of Pediatric Nephrology, Medical University of Lublin, Lublin, Poland
| | - Milan Chromek
- Division of Pediatrics, CLINTEC, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Elisabeth Cornelissen
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marc Fila
- Pediatric Nephrology Department, Hôpital Arnaud de Villeneuve, CHU of Montpellier, Montpellier, France
| | - Marc Lilien
- Department of Pediatric Nephrology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | - Mehmet Eltan
- Department of Pediatric Endocrinology, Marmara University School of Medicine, Istanbul, Turkey
| | | | - Dirk Schnabel
- Center for Chronically Sick Children, Pediatric Endocrinology, University Medicine, Charitè Berlin, Germany
| | - Ibrahim Gokce
- Department of Pediatric Nephrology, Marmara University School of Medicine, Istanbul, Turkey
| | | | | | - Mandy G Keijzer-Veen
- Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Maria Szczepańska
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, SUM in Katowice, Poland
| | - Marcin Zaniew
- Department of Pediatrics, University of Zielona Góra, Zielona Góra, Poland
| | | | - Francesco Emma
- Division of Nephrology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver, Metabolic and Neurological Diseases, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
2
|
Zhu Z, Bo-Ran Ho B, Chen A, Amrhein J, Apetrei A, Carpenter TO, Lazaretti-Castro M, Colazo JM, McCrystal Dahir K, Geßner M, Gurevich E, Heier CA, Simmons JH, Hunley TE, Hoppe B, Jacobsen C, Kouri A, Ma N, Majumdar S, Molin A, Nokoff N, Ott SM, Peña HG, Santos F, Tebben P, Topor LS, Deng Y, Bergwitz C. An update on clinical presentation and responses to therapy of patients with hereditary hypophosphatemic rickets with hypercalciuria (HHRH). Kidney Int 2024; 105:1058-1076. [PMID: 38364990 PMCID: PMC11106756 DOI: 10.1016/j.kint.2024.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/23/2023] [Accepted: 01/08/2024] [Indexed: 02/18/2024]
Abstract
Pathogenic variants in solute carrier family 34, member 3 (SLC34A3), the gene encoding the sodium-dependent phosphate cotransporter 2c (NPT2c), cause hereditary hypophosphatemic rickets with hypercalciuria (HHRH). Here, we report a pooled analysis of clinical and laboratory records of 304 individuals from 145 kindreds, including 20 previously unreported HHRH kindreds, in which two novel SLC34A3 pathogenic variants were identified. Compound heterozygous/homozygous carriers show above 90% penetrance for kidney and bone phenotypes. The biochemical phenotype for heterozygous carriers is intermediate with decreased serum phosphate, tubular reabsorption of phosphate (TRP (%)), fibroblast growth factor 23, and intact parathyroid hormone, but increased serum 1,25-dihydroxy vitamin D, and urine calcium excretion causing idiopathic hypercalciuria in 38%, with bone phenotypes still observed in 23% of patients. Oral phosphate supplementation is the current standard of care, which typically normalizes serum phosphate. However, although in more than half of individuals this therapy achieves correction of hypophosphatemia it fails to resolve the other outcomes. The American College of Medical Genetics and Genomics score correlated with functional analysis of frequent SLC34A3 pathogenic variants in vitro and baseline disease severity. The number of mutant alleles and baseline TRP (%) were identified as predictors for kidney and bone phenotypes, baseline TRP (%) furthermore predicted response to therapy. Certain SLC34A3/NPT2c pathogenic variants can be identified with partial responses to therapy, whereas with some overlap, others present only with kidney phenotypes and a third group present only with bone phenotypes. Thus, our report highlights important novel clinical aspects of HHRH and heterozygous carriers, raises awareness to this rare group of disorders and can be a foundation for future studies urgently needed to guide therapy of HHRH.
Collapse
Affiliation(s)
- Zewu Zhu
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bryan Bo-Ran Ho
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Alyssa Chen
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, USA
| | - James Amrhein
- Pediatric Endocrinology and Diabetes, School of Medicine Greenville Campus, University of South Carolina, Greenville, South Carolina, USA
| | - Andreea Apetrei
- Caen University Hospital, Department of Genetics, UR7450 Biotargen, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, OSCAR Network, Caen, France
| | - Thomas Oliver Carpenter
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marise Lazaretti-Castro
- Division of Endocrinology, Escola Paulista de Medicina-Universidade Federal de Sao Paulo (EPM-UNIFESP), Sao Paulo, Brazil
| | - Juan Manuel Colazo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Kathryn McCrystal Dahir
- Division of Endocrinology, Program for Metabolic Bone Disorders, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michaela Geßner
- Pediatric Nephrology, Children's and Adolescents' Hospital, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Evgenia Gurevich
- Schneider Children's Medical Center of Israel, Pediatric Nephrology Institute, Petach Tikva, Israel; Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | - Jill Hickman Simmons
- Department of Pediatrics, Division of Endocrinology and Diabetes, Vanderbilt University School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Tracy Earl Hunley
- Division of Pediatric Nephrology, Vanderbilt University Medical Center, Monroe Carell Jr Children's Hospital at Vanderbilt, Nashville, Tennessee, USA
| | - Bernd Hoppe
- Division of Pediatric Nephrology, Department of Pediatrics, University of Bonn, Bonn, Germany
| | - Christina Jacobsen
- Division of Endocrinology, Harvard Medical School, Boston, Massachusetts, USA
| | - Anne Kouri
- Pediatric Nephrology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nina Ma
- Section of Pediatric Endocrinology, Children's Hospital Colorado, Aurora, Colorado, USA; Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Sachin Majumdar
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Arnaud Molin
- Caen University Hospital, Department of Genetics, UR7450 Biotargen, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, OSCAR Network, Caen, France
| | - Natalie Nokoff
- Department of Pediatrics, Section of Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Susan M Ott
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Helena Gil Peña
- Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Fernando Santos
- Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Peter Tebben
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, USA; Division of Pediatric Endocrinology, Mayo Clinic, Rochester, Minnesota, USA
| | - Lisa Swartz Topor
- Division of Pediatric Endocrinology, Hasbro Children's Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Yanhong Deng
- Yale School of Public Health, New Haven, Connecticut, USA
| | - Clemens Bergwitz
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
3
|
Sadeghi-Alavijeh O, Chan MMY, Moochhala SH, Howles S, Gale DP, Böckenhauer D. Rare variants in the sodium-dependent phosphate transporter gene SLC34A3 explain missing heritability of urinary stone disease. Kidney Int 2023; 104:975-984. [PMID: 37414395 DOI: 10.1016/j.kint.2023.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 05/10/2023] [Accepted: 06/15/2023] [Indexed: 07/08/2023]
Abstract
Urinary stone disease (USD) is a major health burden affecting over 10% of the United Kingdom population. While stone disease is associated with lifestyle, genetic factors also strongly contribute. Common genetic variants at multiple loci from genome-wide association studies account for 5% of the estimated 45% heritability of the disorder. Here, we investigated the extent to which rare genetic variation contributes to the unexplained heritability of USD. Among participants of the United Kingdom 100,000-genome project, 374 unrelated individuals were identified and assigned diagnostic codes indicative of USD. Whole genome gene-based rare variant testing and polygenic risk scoring against a control population of 24,930 ancestry-matched controls was performed. We observed (and replicated in an independent dataset) exome-wide significant enrichment of monoallelic rare, predicted damaging variants in the SLC34A3 gene for a sodium-dependent phosphate transporter that were present in 5% cases compared with 1.6% of controls. This gene was previously associated with autosomal recessive disease. The effect on USD risk of having a qualifying SLC34A3 variant was greater than that of a standard deviation increase in polygenic risk derived from GWAS. Addition of the rare qualifying variants in SLC34A3 to a linear model including polygenic score increased the liability-adjusted heritability from 5.1% to 14.2% in the discovery cohort. We conclude that rare variants in SLC34A3 represent an important genetic risk factor for USD, with effect size intermediate between the fully penetrant rare variants linked with Mendelian disorders and common variants associated with USD. Thus, our findings explain some of the heritability unexplained by prior common variant genome-wide association studies.
Collapse
Affiliation(s)
| | - Melanie M Y Chan
- Department of Renal Medicine, University College London, London, UK
| | | | - Sarah Howles
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Daniel P Gale
- Department of Renal Medicine, University College London, London, UK.
| | | |
Collapse
|
4
|
Portales-Castillo I, Rieg T, Khalid SB, Nigwekar SU, Neyra JA. Physiopathology of Phosphate Disorders. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:177-188. [PMID: 36868732 PMCID: PMC10565570 DOI: 10.1053/j.akdh.2022.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 03/05/2023]
Abstract
Intracellular phosphate is critical for cellular processes such as signaling, nucleic acid synthesis, and membrane function. Extracellular phosphate (Pi) is an important component of the skeleton. Normal levels of serum phosphate are maintained by the coordinated actions of 1,25-dihydroxyvitamin D3, parathyroid hormone and fibroblast growth factor-23, which intersect in the proximal tubule to control the reabsorption of phosphate via the sodium-phosphate cotransporters Npt2a and Npt2c. Furthermore, 1,25-dihydroxyvitamin D3 participates in the regulation of dietary phosphate absorption in the small intestine. Clinical manifestations associated with abnormal serum phosphate levels are common and occur as a result of genetic or acquired conditions affecting phosphate homeostasis. For example, chronic hypophosphatemia leads to osteomalacia in adults and rickets in children. Acute severe hypophosphatemia can affect multiple organs leading to rhabdomyolysis, respiratory dysfunction, and hemolysis. Patients with impaired kidney function, such as those with advanced CKD, have high prevalence of hyperphosphatemia, with approximately two-thirds of patients on chronic hemodialysis in the United States having serum phosphate levels above the recommended goal of 5.5 mg/dL, a cutoff associated with excess risk of cardiovascular complications. Furthermore, patients with advanced kidney disease and hyperphosphatemia (>6.5 mg/dL) have almost one-third excess risk of death than those with phosphate levels between 2.4 and 6.5 mg/dL. Given the complex mechanisms that regulate phosphate levels, the interventions to treat the various diseases associated with hypophosphatemia or hyperphosphatemia rely on the understanding of the underlying pathobiological mechanisms governing each patient condition.
Collapse
Affiliation(s)
- Ignacio Portales-Castillo
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, MA; Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL; James A. Haley Veterans' Hospital, Tampa, FL; Center for Hypertension and Kidney Research, University of South Florida, Tampa, FL
| | - Sheikh B Khalid
- Department of Internal Medicine, The Indus Hospital, Lahore Pakistan
| | - Sagar U Nigwekar
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, MA
| | - Javier A Neyra
- Department of Internal Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL.
| |
Collapse
|
5
|
Stürznickel J, Heider F, Delsmann A, Gödel M, Grünhagen J, Huber TB, Kornak U, Amling M, Oheim R. Clinical Spectrum of Hereditary Hypophosphatemic Rickets With Hypercalciuria (HHRH). J Bone Miner Res 2022; 37:1580-1591. [PMID: 35689455 DOI: 10.1002/jbmr.4630] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/19/2022] [Accepted: 06/04/2022] [Indexed: 11/11/2022]
Abstract
Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) represents an FGF23-independent disease caused by biallelic variants in the solute carrier family 34-member 3 (SLC34A3) gene. HHRH is characterized by chronic hypophosphatemia and an increased risk for nephrocalcinosis and rickets/osteomalacia, muscular weakness, and secondary limb deformity. Biochemical changes, but no relevant skeletal changes, have been reported for heterozygous SLC34A3 carriers. Therefore, we assessed the characteristics of individuals with biallelic and monoallelic SLC34A3 variants. In 8 index patients and 5 family members, genetic analysis was performed using a custom gene panel. The skeletal assessment comprised biochemical parameters, areal bone mineral density (aBMD), and bone microarchitecture. Pathogenic SLC34A3 variants were revealed in 7 of 13 individuals (2 homozygous, 5 heterozygous), whereas 3 of 13 carried monoallelic variants of unknown significance. Whereas both homozygous individuals had nephrocalcinosis, only one displayed a skeletal phenotype consistent with HHRH. Reduced to low-normal phosphate levels, decreased tubular reabsorption of phosphate (TRP), and high-normal to elevated values of 1,25-OH2 -D3 accompanied by normal cFGF23 levels were revealed independently of mutational status. Interestingly, individuals with nephrocalcinosis showed significantly increased calcium excretion and 1,25-OH2 -D3 levels but normal phosphate reabsorption. Furthermore, aBMD Z-score <-2.0 was revealed in 4 of 8 heterozygous carriers, and HR-pQCT analysis showed a moderate decrease in structural parameters. Our findings highlight the clinical relevance also of monoallelic SLC34A3 variants, including their potential skeletal impairment. Calcium excretion and 1,25-OH2 -D3 levels, but not TRP, were associated with nephrocalcinosis. Future studies should investigate the effects of distinct SLC34A3 variants and optimize treatment and monitoring regimens to prevent nephrocalcinosis and skeletal deterioration. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Julian Stürznickel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fiona Heider
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alena Delsmann
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Gödel
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Grünhagen
- Labor Berlin Charité Vivantes GmbH-corporate member of Institute for Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Uwe Kornak
- Institute for Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
6
|
Singh Y, Bharti J, Chaoudhary G. ONCOCYTIC ADRENOCORTICAL CARCINOMA IN A YOUNG PATIENT. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2022; 18:383-386. [PMID: 36699174 PMCID: PMC9867804 DOI: 10.4183/aeb.2022.383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Context Adrenocortical carcinoma (ACC) is a rare neoplasm with an aggressive course and poor prognosis. The worldwide incidence is about 0.5 to 2 cases per million population per year. Oncocytic adrenocortical carcinoma is a rare histopathological variant of ACC with only a few reported cases in the literature. Case report We report a case of an oncocytic variant of adrenocortical carcinoma in a 21-year-old male patient who presented with a left adrenal mass. Imaging studies confirmed a large left adrenal mass with involvement of the left renal vein and inferior vena cava. Endocrine workup showed mildly elevated serum cortisol levels. Discussion Oncocytic AAC is a rare histopathological variant of ACC, as well as a rare subgroup of oncocytic adrenal neoplasms Hormonally active or functioning adrenocortical carcinomas most commonly secrete cortisol whereas co-secretion of multiple steroid hormones is a rare phenomenon. Conclusions Surgery remains the mainstay of treatment, but most of the patients present late with large masses and eventually become unsuitable for curative resection.
Collapse
Affiliation(s)
- Y. Singh
- Department of Pathology, All India Institute of Medical Sciences, Jodhpur, India
- Department of Urology, All India Institute of Medical Sciences, Jodhpur, India
| | - J.N. Bharti
- Correspondence to: Jyotsna Naresh Bharti, All India Institute of Medical Sciences, Department of Pathology, Mangalagiri, Guntur,India, E-mail:
| | - G.R. Chaoudhary
- Department of Pathology, All India Institute of Medical Sciences, Jodhpur, India
- Department of Urology, All India Institute of Medical Sciences, Jodhpur, India
| |
Collapse
|
7
|
Karakilic-Ozturan E, Ozturk A, Oney C, Kardelen Al A, Yildirim Z, Balci H, Poyrazoglu S, Bas F, Darendeliler F. SLC34A3 GENE MUTATION AS A RARE CAUSE OF HYPOPHOSPHATEMIA IN TWO SIBLINGS. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2022; 18:387-391. [PMID: 36699160 PMCID: PMC9867807 DOI: 10.4183/aeb.2022.387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Context Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is a rare autosomal recessive disorder, which is characterized by renal phosphate wasting, hypercalciuria, increased 1,25-dihydroxyvitamin D, and decreased parathormone (PTH) levels. Objective Here we report different clinical features of two siblings with HHRH, confirmed with molecular diagnosis. Subjects and methods 16.4 years old boy (P1), and 8.7 years old girl (P2) were referred to our outpatient clinic due to clinical suspicion of metabolic bone diseases. Results P1 had severe hypophosphatemia. Additionally, PTH concentration was near to the lower limit, 1,25-dihydroxyvitamin-D concentration was near to the upper limit. P2 had relatively milder clinical and laboratory findings. Bilateral renal calculi were detected on ultrasound in both of them. HHRH was suspected due to their described biochemistry and the presence of bilateral renal calculi. Molecular analysis of SLC34A3 gene revealed a homozygous variant c.756G>A (p.Gln252=) and a splice donor variant c.1335+2T>A. After oral phosphate treatment, clinical and biochemical improvements were observed. However treatment nonadherence of patients was a barrier to reach treatment goal. Conclusion The clinical phenotype due to the same mutation in the SLC34A3 gene may vary even among the members of the same family. An accurate diagnosis is important for the appropriate treatment.
Collapse
Affiliation(s)
- E. Karakilic-Ozturan
- Dept. of Pediatric Endocrinology and Diabetes, Istanbul
University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - A.P. Ozturk
- Dept. of Pediatric Endocrinology and Diabetes, Istanbul
University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - C. Oney
- Dept. of Pediatrics, Istanbul University, Istanbul Faculty of
Medicine Istanbul, Turkey
| | - A.D. Kardelen Al
- Dept. of Pediatric Endocrinology and Diabetes, Istanbul
University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Z.Y. Yildirim
- Dept. of Pediatric Nephrology, Istanbul University, Istanbul
Faculty of Medicine, Istanbul, Turkey
| | - H.I. Balci
- Dept. of Orthopedics and Traumatology, Istanbul University,
Istanbul Faculty of Medicine, Istanbul, Turkey
| | - S. Poyrazoglu
- Dept. of Pediatric Endocrinology and Diabetes, Istanbul
University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - F. Bas
- Dept. of Pediatric Endocrinology and Diabetes, Istanbul
University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - F. Darendeliler
- Dept. of Pediatric Endocrinology and Diabetes, Istanbul
University, Istanbul Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
8
|
Christensen S, Tebben PJ, Sas D, Creo AL. Variable Clinical Presentation of Children with Hereditary Hypophosphatemic Rickets with Hypercalciuria: A Case Series and Review of the Literature. Horm Res Paediatr 2022; 94:374-389. [PMID: 34666334 DOI: 10.1159/000520299] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/19/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is a rare condition of renal phosphate wasting due to SLC34A3 mutations [Am J Hum Genet. 2006;78(2):193-201]. Patients exhibit low serum phosphorus, high 1,25-dihydroxyvitamin D, and inappropriately high urine phosphate and calcium. However, symptoms vary, and little is known about specific phenotype-genotype correlations. METHODS We report 3 HHRH cases in unrelated 12-year-old, 9-year-old, and 14-year-old patients and perform a systematic literature review. RESULTS All 3 patients exhibited labs typical of HHRH. Yet, their presentations differed, and 2 novel SLC34A3 variants were identified. As found in the literature review, bone symptoms are most common (50%), followed by renal symptoms (17%), combined bone and renal symptoms (18%), and asymptomatic (9%). CONCLUSION These 3 cases highlight the variability of presenting signs and symptoms among individuals with HHRH. An accurate diagnosis is critical as treatment differs from other disorders of phosphate wasting, urinary stones, and mineralization defects.
Collapse
Affiliation(s)
- Stephanie Christensen
- Division of General Pediatrics, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Peter J Tebben
- Division of Pediatric Endocrinology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, USA
| | - David Sas
- Division of Pediatric Nephrology and Hypertension, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Ana L Creo
- Division of Pediatric Endocrinology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
9
|
Wang S, Ma Y, Li Y, Ge X, Lu C, Cai C, Yang Y, Zhao Y, Liang G, Guo X, Cao G, Li B, Gao P. Long non-coding RNAs in <i>Sus scrofa</i> ileum under starvation stress. Anim Biosci 2022; 35:975-988. [PMID: 35240026 PMCID: PMC9271390 DOI: 10.5713/ab.21.0483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/04/2022] [Indexed: 11/27/2022] Open
Abstract
Objective In this study, we aimed to identify long non-coding RNAs (lncRNAs) that play important roles in starvation stress, analyze their functions, and discover potential molecular targets to alleviate starvation stress to provide a theoretical reference for subsequent in-depth research. Methods We generated a piglet starvation stress animal model. Nine Yorkshire weaned piglets were randomly divided into a long-term starvation stress group (starved for 72 h), short-term starvation stress group (starved for 48 h), and the control group. LncRNA libraries were constructed using high-throughput sequencing of piglet ileums. Results We obtained 11,792 lncRNAs, among which, 2,500 lncRNAs were novel. In total, 509 differentially expressed (DE)lncRNAs were identified in this study. Target genes of DElncRNAs were predicted via cis and trans interactions, and functional and pathway analyses were performed. Gene ontology functions and Kyoto encyclopedia of genes and genomes analysis revealed that lncRNA-targeted genes mainly participated in metabolic pathways, cellular processes, immune system processes, digestive systems, and transport activities. To reveal the mechanism underlying starvation stress, the interaction network between lncRNAs and their targets was constructed based on 26 DElncRNAs and 72 DEmRNAs. We performed an interaction network analysis of 121 DElncRNA–DEmRNA pairs with a Pearson correlation coefficient greater than 0.99. Conclusion We found that MSTRG.19894.13, MSTRG.16726.3, and MSTRG.12176.1 might play important roles in starvation stress. This study not only generated a library of enriched lncRNAs in piglets, but its outcomes also provide a strong foundation to screen key lncRNAs involved in starvation stress and a reference for subsequent in-depth research.
Collapse
|
10
|
Butscheidt S, Tsourdi E, Rolvien T, Delsmann A, Stürznickel J, Barvencik F, Jakob F, Hofbauer LC, Mundlos S, Kornak U, Seefried L, Oheim R. Relevant genetic variants are common in women with pregnancy and lactation-associated osteoporosis (PLO) and predispose to more severe clinical manifestations. Bone 2021; 147:115911. [PMID: 33716164 DOI: 10.1016/j.bone.2021.115911] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/19/2021] [Accepted: 03/08/2021] [Indexed: 12/17/2022]
Abstract
Pregnancy and lactation-associated osteoporosis (PLO) is a rare skeletal disorder characterized by early-onset osteoporosis typically manifestating with vertebral compression fractures or transient osteoporosis of the hip. We hypothesized that genetic variants may play a role in the development of PLO. This study aimed to analyze the presence of genetic variants and a potential association with the clinical presentation in PLO. 42 women with PLO were included from 2013 to 2019 in a multicenter study in Germany. All cases underwent comprehensive genetic analysis based on a custom-designed gene panel including genes relevant for skeletal disorders. The skeletal status was assessed using dual-energy X-ray absorptiometry (DXA). Subgroups were further analyzed by serum bone turnover markers (n = 31) and high-resolution peripheral computed tomography (HR-pQCT; n = 23). We detected relevant genetic variants in 21 women (50%), with LRP5, WNT1 and COL1A1/A2 being the most commonly involved genes. The mean number of vertebral compression fractures was 3.3 ± 3.4 per case with a significantly higher occurrence in the subgroup with genetic variants (4.8 ± 3.7 vs. 1.8 ± 2.3, p = 0.02). Among the total cohort, DXA Z-scores were significantly lower at the lumbar spine compared to the femoral neck (p = 0.002). HR-pQCT revealed a pronounced reduction of trabecular and cortical thickness, while trabecular number was within the reference range. Eighteen women (43%) received a bone-specific therapy (primarily teriparatide). Overall, a steep increase in bone mass (+37.7%) was observed after 3 years. In conclusion, pregnancy and lactation represent skeletal risk factors, which may unmask hereditary bone disorders leading to PLO. These cases were affected more severely. Nevertheless, a timely diagnosis and adequate treatment can ensure a substantial recovery potential even without specific therapy. Patients with genetically induced low bone turnover (e.g.; LRP5, WNT1) may especially benefit from osteo-anabolic medication.
Collapse
Affiliation(s)
- Sebastian Butscheidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Division of Orthopaedics, Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elena Tsourdi
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany; Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Division of Orthopaedics, Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alena Delsmann
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julian Stürznickel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Barvencik
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franz Jakob
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany; Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Stefan Mundlos
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Uwe Kornak
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany; Institute of Human Genetics, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Lothar Seefried
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
11
|
Amlie-Wolf L, Baker L, Hiddemen O, Thomas M, Burke C, Gluck C, Zaritsky JJ, Gripp KW. Novel genetic testing model: A collaboration between genetic counselors and nephrology. Am J Med Genet A 2021; 185:1142-1150. [PMID: 33475249 DOI: 10.1002/ajmg.a.62088] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/09/2020] [Accepted: 01/09/2021] [Indexed: 11/08/2022]
Abstract
Many barriers to genetic testing currently exist which delay or prevent diagnosis. These barriers include wait times, staffing, education, and cost. Specialists are able to identify patients with disease that may need genetic testing, but lack the genetics support to facilitate that testing in the most cost, time, and medically effective manner. The Nephrology Division and the Genetic Testing Stewardship Program at Nemours A.I. duPont Hospital for Children created a novel service delivery model in which nephrologists and genetic counselors collaborate in order to highlight their complementary strengths (clinical expertise of nephrologists and genetics and counseling skills of genetic counselors). This collaboration has reduced many barriers to care for our patients. This workflow facilitated the offering of genetic testing to 76 patients, with 86 tests completed over a 20-month period. Thirty-two tests were deferred. Twenty-seven patients received a diagnosis, which lead to a change in their medical management, three of whom were diagnosed by cascade family testing. Forty-two patients had a negative result and 16 patients had one or more variants of uncertain significance on testing. The inclusion of genetic counselors in the workflow is integral toward choosing the most cost and time effective genetic testing strategy, as well as providing psychosocial support to families. The genetic counselors obtain informed consent, and review genetic test results and recommendations with the patient and their family. The availability of this program to our patients increased access to genetic testing and helps to provide diagnoses and supportive care.
Collapse
Affiliation(s)
- Louise Amlie-Wolf
- Precision Medicine/Genetic Testing Stewardship Program, Nemours A.I. duPont Hospital for Children Precision Medicine/Genetic Testing Stewardship Program, Wilmington, Delaware, USA
| | - Laura Baker
- Precision Medicine/Genetic Testing Stewardship Program, Nemours A.I. duPont Hospital for Children Precision Medicine/Genetic Testing Stewardship Program, Wilmington, Delaware, USA
| | - Olivia Hiddemen
- Precision Medicine/Genetic Testing Stewardship Program, Nemours A.I. duPont Hospital for Children Precision Medicine/Genetic Testing Stewardship Program, Wilmington, Delaware, USA
| | - Morgan Thomas
- Precision Medicine/Genetic Testing Stewardship Program, Nemours A.I. duPont Hospital for Children Precision Medicine/Genetic Testing Stewardship Program, Wilmington, Delaware, USA
| | - Christine Burke
- Division of Nephrology, Nemours A.I. duPont Hospital for Children, Wilmington, Delaware, USA
| | - Caroline Gluck
- Division of Nephrology, Nemours A.I. duPont Hospital for Children, Wilmington, Delaware, USA
| | - Joshua J Zaritsky
- Division of Nephrology, Nemours A.I. duPont Hospital for Children, Wilmington, Delaware, USA
| | - Karen W Gripp
- Precision Medicine/Genetic Testing Stewardship Program, Nemours A.I. duPont Hospital for Children Precision Medicine/Genetic Testing Stewardship Program, Wilmington, Delaware, USA
| |
Collapse
|
12
|
Abstract
Great strides over the past few decades have increased our understanding of the pathophysiology of hypophosphatemic disorders. Phosphate is critically important to a variety of physiologic processes, including skeletal growth, development and mineralization, as well as DNA, RNA, phospholipids, and signaling pathways. Consequently, hypophosphatemic disorders have effects on multiple systems, and may cause a variety of nonspecific signs and symptoms. The acute effects of hypophosphatemia include neuromuscular symptoms and compromise. However, the dominant effects of chronic hypophosphatemia are the effects on musculoskeletal function including rickets, osteomalacia and impaired growth during childhood. While the most common causes of chronic hypophosphatemia in children are congenital, some acquired conditions also result in hypophosphatemia during childhood through a variety of mechanisms. Improved understanding of the pathophysiology of these congenital conditions has led to novel therapeutic approaches. This article will review the pathophysiologic causes of congenital hypophosphatemia, their clinical consequences and medical therapy.
Collapse
Affiliation(s)
- Erik Allen Imel
- Division of Endocrinology, Departments of Medicine and Pediatrics, Indiana University School of Medicine, 1120 West Michigan Street, Gatch Building Room 365, Indianapolis, IN, 46112, USA.
| |
Collapse
|
13
|
Colazo JM, Reasoner SA, Holt G, Faugere MCM, Dahir KM. Hereditary Hypophosphatemic Rickets with Hypercalciuria (HHRH) Presenting with Genu Valgum Deformity: Treatment with Phosphate Supplementation and Surgical Correction. Case Rep Endocrinol 2020; 2020:1047327. [PMID: 32695531 PMCID: PMC7368196 DOI: 10.1155/2020/1047327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/18/2020] [Indexed: 11/17/2022] Open
Abstract
We describe a case of hereditary hypophosphatemic rickets with hypercalciuria (HHRH) in a 32-year-old female with short stature, chronic pathologic genu valgum deformity, and knee pain who was referred to endocrinology clinic after previous inconclusive workups. We present imaging spanning 10 years of untreated disease. Biochemical studies showed hypophosphatemia with undetectable fibroblast growth factor 23 (FGF23.) Renal ultrasound revealed bilateral medullary nephrocalcinosis despite no apparent hypercalciuria. Due to concern for HHRH, genetic testing was performed that determined this patient to be homozygous in the SLC34A3 gene for a previously described missense variant (c.1402C > T, p.Arg468Trp). There was no known family history of rickets. A bone biopsy with metabolic studies was performed for diagnostic and prognostic reasons. The histopathological findings along with tetracycline uptake studies were consistent with a diagnosis of HHRH. Treatment with phosphorous supplementation and surgical correction of her valgum deformity resulted in resolution of pain, but no change in bone histomorphometry.
Collapse
Affiliation(s)
- Juan M. Colazo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Seth A. Reasoner
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ginger Holt
- Department of Orthopedics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marie C. M. Faugere
- Division of Nephrology, Bone and Mineral Metabolism, University of Kentucky, Albert B. Chandler Medical Center, Lexington, KY, USA
| | - Kathryn M. Dahir
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
14
|
Gordon RJ, Li D, Doyle D, Zaritsky J, Levine MA. Digenic Heterozygous Mutations in SLC34A3 and SLC34A1 Cause Dominant Hypophosphatemic Rickets with Hypercalciuria. J Clin Endocrinol Metab 2020; 105:dgaa217. [PMID: 32311027 PMCID: PMC7448300 DOI: 10.1210/clinem/dgaa217] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022]
Abstract
CONTEXT Hypophosphatemia and metabolic bone disease are associated with hereditary hypophosphatemic rickets with hypercalciuria (HHRH) due to biallelic mutations of SLC34A3 encoding the NPT2C sodium-phosphate cotransporter and nephrolithiasis/osteoporosis, hypophosphatemic 1 (NPHLOP1) due to monoallelic mutations in SLC34A1 encoding the NPT2A sodium-phosphate cotransporter. OBJECTIVE To identify a genetic cause of apparent dominant transmission of HHRH. DESIGN AND SETTING Retrospective and prospective analysis of clinical and molecular characteristics of patients studied in 2 academic medical centers. METHODS We recruited 4 affected and 3 unaffected members of a 4-generation family in which the proband presented with apparent HHRH. We performed clinical examinations, biochemical and radiological analyses, and molecular studies of genomic DNA. RESULTS The proband and her affected sister and mother carried pathogenic heterozygous mutations in 2 related genes, SLC34A1 (exon 13, c.1535G>A; p.R512H) and SLC34A3 (exon 13, c.1561dupC; L521Pfs*72). The proband and her affected sister inherited both gene mutations from their mother, while their clinically less affected brother, father, and paternal grandmother carried only the SLC34A3 mutation. Renal phosphate-wasting exhibited both a gene dosage-effect and an age-dependent attenuation of severity. CONCLUSIONS We describe a kindred with autosomal dominant hypophosphatemic rickets in which whole exome analysis identified digenic heterozygous mutations in SLC34A1 and SLC34A3. Subjects with both mutations were more severely affected than subjects carrying only one mutation. These findings highlight the challenges of assigning causality to plausible genetic variants in the next generation sequencing era.
Collapse
Affiliation(s)
- Rebecca J Gordon
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- Division of Endocrinology and Diabetes and the Center for Bone Health, The Children’s Hospital of Philadelphia, and the Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Dong Li
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Daniel Doyle
- Division of Pediatric Endocrinology, Sidney Kimmel Medical College of Thomas Jefferson University and Nemours Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Joshua Zaritsky
- Division of Pediatric Nephrology, Sidney Kimmel Medical College of Thomas Jefferson University and Nemours Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Michael A Levine
- Division of Endocrinology and Diabetes and the Center for Bone Health, The Children’s Hospital of Philadelphia, and the Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Li B, Wang X, Hao X, Liu Y, Wang Y, Shan C, Ao X, Liu Y, Bao H, Li P. A novel c.2179T>C mutation blocked the intracellular transport of PHEX protein and caused X-linked hypophosphatemic rickets in a Chinese family. Mol Genet Genomic Med 2020; 8:e1262. [PMID: 32511895 PMCID: PMC7434742 DOI: 10.1002/mgg3.1262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/23/2020] [Indexed: 12/13/2022] Open
Abstract
Background X‐linked hypophosphatemic rickets (XLH) is a heterogeneous genetic phosphate wasting disorder that occupies the majority of inheritable hypophosphatemic rickets (HR). XLH is caused by loss‐of‐function mutations in the phosphate‐regulating endopeptidase gene (PHEX) located on the X chromosome. Method In this study, we performed whole‐exome sequencing (WES) on the proband to identify the causative gene. The mutations were analyzed by predictive online software, such as PolyPhen‐2. Plasmids containing the wild‐type (WT) and mutant cDNA of the candidate gene were transfected into HEK293, then, the expression, cellular localization, and glycosylation state of the candidate proteins were detected by western blot, immunostaining, and endoglycosidase H digestion. The expression and concentration of related factor were measured by RT‐PCR and ELISA. Results We identified a novel missense mutation c.2179T>C in the PHEX that results in the substitution of p.Phe727Leu (F727L). This mutation was predicted to be disease‐causing by all four predictive online software. In vitro studies demonstrated that the F727L substitution hindered the intracellular trafficking of the mutant PHEX, with ~59% of mutant PHEX protein retained in the endoplasmic reticulum (ER) and only ~16% of the mutant protein localized on the cell surface. Endoglycosidase H digestion assay showed that the mutant F727L PHEX protein was not fully glycosylated. The concentration of intact FGF23 in hFOB1.19 cell culture medium collected from the mutant PHEX group was the highest (62.9 pg/ml) compared to the WT group (32.1 pg/ml) and control group (23.5 pg/ml). Conclusion Our results confirmed that the mutant PHEX protein was lowly glycosylated and retarded within the ER, the intact FGF23 level in cell culture media caused by the mutant PHEX protein was significantly elevated compared to that of the WT group, which may explain why the single base mutation in the PHEX led to XLH syndrome in this family.
Collapse
Affiliation(s)
- Baowei Li
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Xiong Wang
- Department of Reproductive Medicine, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Xiaodan Hao
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Yanran Liu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Chan Shan
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Xiang Ao
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Ying Liu
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - HongChu Bao
- Department of Reproductive Medicine, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Peifeng Li
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
16
|
Bhadada SK, Sridhar S, Dhiman V, Wong K, Bennetts B, Naot D, Jayaraman S, Cundy T. HYPOPHOSPHATEMIC RICKETS WITH HYPERCALCIURIA: A NOVEL HOMOZYGOUS MUTATION IN SLC34A3 AND LITERATURE REVIEW. AACE Clin Case Rep 2020; 6:e105-e112. [PMID: 32524022 PMCID: PMC7282280 DOI: 10.4158/accr-2019-0456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 12/30/2019] [Indexed: 11/21/2023] Open
Abstract
OBJECTIVE Hypophosphatemic rickets with hypercalciuria (HHRH) is a rare, recessively-inherited form of rickets caused by homozygous or compound heterozygous mutations in the SLC34A3 gene that encodes the renal tubular phosphate transporter protein NaPi2c. The bone phenotype varies from severe rickets to no disease. Accurate diagnosis is important as the treatment differs from other forms of rickets. METHODS The patient was a 12-year-old boy from the Indian subcontinent with florid hypophosphatemic rickets. A targeted gene panel to search for mutations in genes associated with inherited forms of rickets was performed. We also completed a literature search of published cases of HHRH. RESULTS The targeted gene panel demonstrated a novel homozygous SLC34A3 mutation: c.1339 G>A (p.Ala447Thr). His parents were heterozygous for the mutation. In our literature review we found that people with homozygous SLC34A3 mutations were more likely to have rickets than those with compound heterozygous mutations (85% versus 45%, p<0.002) and that serum phosphate z scores were lower in those with rickets than those without (-3.3 with a standard deviation of 1.5 versus -2.1 with a standard deviation of 1.5, p<0.005). CONCLUSION The bone phenotype of HHRH is related to the nature of the mutation and serum phosphate levels. Targeted gene panels can aid in the accurate diagnosis of inherited forms of rickets, and facilitate correct treatment.
Collapse
|
17
|
Hanazaki A, Ikuta K, Sasaki S, Sasaki S, Koike M, Tanifuji K, Arima Y, Kaneko I, Shiozaki Y, Tatsumi S, Hasegawa T, Amizuka N, Miyamoto K, Segawa H. Role of sodium-dependent Pi transporter/Npt2c on Pi homeostasis in klotho knockout mice different properties between juvenile and adult stages. Physiol Rep 2020; 8:e14324. [PMID: 32026654 PMCID: PMC7002534 DOI: 10.14814/phy2.14324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
SLC34A3/NPT2c/NaPi-2c/Npt2c is a growth-related NaPi cotransporter that mediates the uptake of renal sodium-dependent phosphate (Pi). Mutation of human NPT2c causes hereditary hypophosphatemic rickets with hypercalciuria. Mice with Npt2c knockout, however, exhibit normal Pi metabolism. To investigate the role of Npt2c in Pi homeostasis, we generated α-klotho-/- /Npt2c-/- (KL2cDKO) mice and analyzed Pi homeostasis. α-Klotho-/- (KLKO) mice exhibit hyperphosphatemia and markedly increased kidney Npt2c protein levels. Genetic disruption of Npt2c extended the lifespan of KLKO mice similar to that of α-Klotho-/- /Npt2a-/- mice. Adult KL2cDKO mice had hyperphosphatemia, but analysis of Pi metabolism revealed significantly decreased intestinal and renal Pi (re)absorption compared with KLKO mice. The 1,25-dihydroxy vitamin D3 concentration was not reduced in KL2cDKO mice compared with that in KLKO mice. The KL2cDKO mice had less severe soft tissue and vascular calcification compared with KLKO mice. Juvenile KL2cDKO mice had significantly reduced plasma Pi levels, but Pi metabolism was not changed. In Npt2cKO mice, plasma Pi levels began to decrease around the age of 15 days and significant hypophosphatemia developed within 21 days. The findings of the present study suggest that Npt2c contributes to regulating plasma Pi levels in the juvenile stage and affects Pi retention in the soft and vascular tissues in KLKO mice.
Collapse
Affiliation(s)
- Ai Hanazaki
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Kayo Ikuta
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Shohei Sasaki
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Sumire Sasaki
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Megumi Koike
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Kazuya Tanifuji
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Yuki Arima
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Ichiro Kaneko
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Yuji Shiozaki
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Sawako Tatsumi
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Tomoka Hasegawa
- Developmental Biology of Hard TissueHokkaido University Graduate School of Dental MedicineSapporoJapan
| | - Norio Amizuka
- Developmental Biology of Hard TissueHokkaido University Graduate School of Dental MedicineSapporoJapan
| | - Ken‐ichi Miyamoto
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| | - Hiroko Segawa
- Department of Applied NutritionInstitute of Biomedical SciencesTokushima University Graduate School TokushimaTokushimaJapan
| |
Collapse
|
18
|
Tang A, Hinz L, Khan A, Kline G. Phosphate matters when investigating hypercalcemia: a mutation in SLC34A3 causing HHRH. Endocrinol Diabetes Metab Case Rep 2019; 2019:1-6. [PMID: 31352694 PMCID: PMC6685096 DOI: 10.1530/edm-19-0058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is a rare, autosomal recessive disorder caused by mutations in the SLC34A3 gene that encodes the renal sodium-dependent phosphate cotransporter 2c (NaPi-IIc). It may present as intermittent mild hypercalcemia which may attract initial diagnostic attention but appreciation of concomitant hypophosphatemia is critical for consideration of the necessary diagnostic approach. A 21-year-old woman was assessed by adult endocrinology for low bone mass. She initially presented age two with short stature, nephrocalcinosis and mild intermittent hypercalcemia with hypercalciuria. She had no evidence of medullary sponge kidney or Fanconi syndrome and no bone deformities, pain or fractures. She had recurrent episodes of nephrolithiasis. In childhood, she was treated with hydrochlorothiazide to reduce urinary calcium. Upon review of prior investigations, she had persistent hypophosphatemia with phosphaturia, low PTH and a high-normal calcitriol. A diagnosis of HHRH was suspected and genetic testing confirmed a homozygous c.1483G>A (p.G495R) missense mutation of the SLC34A3 gene. She was started on oral phosphate replacement which normalized her serum phosphate, serum calcium and urine calcium levels over the subsequent 5 years. HHRH is an autosomal recessive condition that causes decreased renal reabsorption of phosphate, leading to hyperphosphaturia, hypophosphatemia and PTH-independent hypercalcemia due to the physiologic increase in calcitriol which also promotes hypercalciuria. Classically, patients present in childhood with bone pain, vitamin D-independent rickets and growth delay. This case of a SLC34A3 mutation illustrates the importance of investigating chronic hypophosphatemia even in the presence of other more common electrolyte abnormalities.
Collapse
Affiliation(s)
- Andrew Tang
- Division of Endocrinology, Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Laura Hinz
- Division of Endocrinology, Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Aneal Khan
- Department of Medical Genetics and Pediatrics, University of Calgary, Alberta Children’s Hospital Research Institute, Calgary, Alberta, Canada
| | - Gregroy Kline
- Division of Endocrinology, Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
19
|
Srikanth K, Srivaths PR, Shah S. An 8-year-old with genu valgum: Answers. Pediatr Nephrol 2019; 34:621-624. [PMID: 30259113 DOI: 10.1007/s00467-018-4090-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 10/28/2022]
Affiliation(s)
| | - Poyyapakkam R Srivaths
- Renal Section, Department of Pediatrics, Baylor College of Medicine, 1102 Bates St, Suite 245, Houston, TX, 77030, USA
| | - Shweta Shah
- Renal Section, Department of Pediatrics, Baylor College of Medicine, 1102 Bates St, Suite 245, Houston, TX, 77030, USA.
| |
Collapse
|
20
|
Hasani-Ranjbar S, Ejtahed HS, Amoli MM, Bitarafan F, Qorbani M, Soltani A, Yarjoo B. SLC34A3 Intronic Deletion in an Iranian Kindred with Hereditary Hypophosphatemic Rickets with Hypercalciuria. J Clin Res Pediatr Endocrinol 2018; 10:343-349. [PMID: 29809158 PMCID: PMC6280320 DOI: 10.4274/jcrpe.0057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE To describe clinical findings, biochemical profile and genetic analysis in an Iranian kindred with hereditary hypophosphatemic rickets with hypercalciuria (HHRH). METHODS Clinical examination and biochemical profile results and gene analysis of 12 members of a family of a patient previously diagnosed with HHRH due to SLC34A3 mutation. Ten healthy controls were also evaluated. RESULTS Of the twelve family members three were homozygote and seven heterozygote for the same SLC34A3 variant found in the proband while two others were unaffected. All patients had significantly increased risk of kidney stone formation, bone deformities and short stature compared with unrelated healthy controls. The heterozygous patients displayed milder clinical symptoms compared with homozygous patients. In particular they had mild or no hypophosphatemia and they did not develop skeletal deformities. Recurrent renal stones and hypercalciuria were the main presentations of the heterozygous patients which may be confused with familial hypercalciuria. In addition, biochemical analysis showed significantly low serum sodium and elevated alkaline phosphatase levels in these patients. CONCLUSION Genetic counseling and screening for SLC34A3 mutations can be helpful in adult onset phenotype with unexplained osteoporosis, bone deformities and especial recurrent renal stones. In subjects with vitamin D deficiency the results should be interpreted cautiously.
Collapse
Affiliation(s)
- Shirin Hasani-Ranjbar
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran,* Address for Correspondence: Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran Phone: +982188220076 E-mail:
| | - Hanieh-Sadat Ejtahed
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa M. Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Bitarafan
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Qorbani
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Akbar Soltani
- Evidence-Based Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Yarjoo
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Bergwitz C, Miyamoto KI. Hereditary hypophosphatemic rickets with hypercalciuria: pathophysiology, clinical presentation, diagnosis and therapy. Pflugers Arch 2018; 471:149-163. [PMID: 30109410 DOI: 10.1007/s00424-018-2184-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 12/24/2022]
Abstract
Hereditary hypophosphatemic rickets with hypercalciuria (HHRH; OMIM: 241530) is a rare autosomal recessive disorder with an estimated prevalence of 1:250,000 that was originally described by Tieder et al. Individuals with HHRH carry compound-heterozygous or homozygous (comp/hom) loss-of-function mutations in the sodium-phosphate co-transporter NPT2c. These mutations result in the development of urinary phosphate (Pi) wasting and hypophosphatemic rickets, bowing, and short stature, as well as appropriately elevated 1,25(OH)2D levels, which sets this fibroblast growth factor 23 (FGF23)-independent disorder apart from the more common X-linked hypophosphatemia. The elevated 1,25(OH)2D levels in turn result in hypercalciuria due to enhanced intestinal calcium absorption and reduced parathyroid hormone (PTH)-dependent calcium-reabsorption in the distal renal tubules, leading to the development of kidney stones and/or nephrocalcinosis in approximately half of the individuals with HHRH. Even heterozygous NPT2c mutations are frequently associated with isolated hypercalciuria (IH), which increases the risk of kidney stones or nephrocalcinosis threefold in affected individuals compared with the general population. Bone disease is generally absent in individuals with IH, in contrast to those with HHRH. Treatment of HHRH and IH consists of monotherapy with oral Pi supplements, while active vitamin D analogs are contraindicated, mainly because the endogenous 1,25(OH)2D levels are already elevated but also to prevent further worsening of the hypercalciuria. Long-term studies to determine whether oral Pi supplementation alone is sufficient to prevent renal calcifications and bone loss, however, are lacking. It is also unknown how therapy should be monitored, whether secondary hyperparathyroidism can develop, and whether Pi requirements decrease with age, as observed in some FGF23-dependent hypophosphatemic disorders, or whether this can lead to osteoporosis.
Collapse
Affiliation(s)
- Clemens Bergwitz
- Section Endocrinology and Metabolism, Yale University School of Medicine, Anlyan Center, Office S117, Lab S110, 1 Gilbert Street, New Haven, CT 06519, USA.
| | - Ken-Ichi Miyamoto
- Department of Molecular Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
22
|
Day AL, Morgan SL, Saag KG. Hypophosphatemia in the setting of metabolic bone disease: case reports and diagnostic algorithm. Ther Adv Musculoskelet Dis 2018; 10:151-156. [PMID: 30023010 DOI: 10.1177/1759720x18779761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/08/2018] [Indexed: 12/14/2022] Open
Abstract
Osteoporosis is the most commonly encountered metabolic bone disease, and metabolic bone-disease clinics have been established to assist in the diagnosis and treatment of uncommon causes of low bone-mineral density. Hypophosphatemia leading to metabolic bone disease may be encountered, and an understanding of phosphate homeostasis can aid in the diagnosis. Two cases of hypophosphatemia leading to low bone-mineral densities were seen at the University of Alabama at Birmingham Osteoporosis Clinic. We developed a diagnostic algorithm, and the laboratory values of each patient were tested with the algorithm. The algorithm, incorporating the use of a spot urine phosphate and spot urine creatinine level at the time of initial serum metabolic profile evaluation, accurately determined the cause of hypophosphatemia in each case.
Collapse
Affiliation(s)
- Alvin Lee Day
- University of Alabama at Birmingham, Division of Clinical Immunology and Rheumatology, 1720 2nd Avenue South, FOT 839, Birmingham, AL 35294, USA
| | - Sarah L Morgan
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kenneth G Saag
- University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
23
|
Gu J, Wang C, Zhang H, Yue H, Hu W, He J, Fu W, Zhang Z. Targeted resequencing of phosphorus metabolism‑related genes in 86 patients with hypophosphatemic rickets/osteomalacia. Int J Mol Med 2018; 42:1603-1614. [PMID: 29901142 DOI: 10.3892/ijmm.2018.3730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/08/2018] [Indexed: 11/05/2022] Open
Abstract
Hypophosphatemic rickets/osteomalacia is characterized by defective renal phosphate reabsorption and abnormal bone mineralization. Hypophosphatemic rickets/osteomalacia consists of inherited and acquired forms, many of which have unknown aetiology. In the present study, next‑generation sequencing‑based resequencing was used on samples from Chinese subjects with hypophosphatemic rickets/osteomalacia, aiming to detect the spectrum of pathogenic genes in these patients. A total of 86 hypophosphatemic rickets/osteomalacia patients (ranging from 3 to 70 years old) were recruited. Patients with tumour‑induced osteomalacia (TIO), renal tubular acidosis, renal osteodystrophy, and adefovir‑induced Fanconi syndrome were excluded. Targeted massively parallel resequencing of 196 candidate genes for hypophosphatemic rickets/osteomalacia was performed in the 86 affected unrelated individuals (cases) and in 100 unrelated healthy controls to identify new genes and mutations in known genes that cause hypophosphatemic rickets/osteomalacia. The results identified seven phosphate‑regulating gene with homologies to endopeptidases on the X chromosome (PHEX) mutations (of which two were novel) and one novel dentin matrix protein 1 (DMP1) mutation in eight patients. Following targeted exome sequencing data analysis, 14 candidate disease‑related gene loci were selected, two of which were of most concern regarding disease severity. Further validation of the present results is warranted, with additional sequencing projects and functional tests. To our knowledge, the present study is the largest cohort of cases with hypophosphatemic rickets/osteomalacia to undergo targeted resequencing. The diagnosis and understanding of the molecular aetiologies of these disorders will be improved by this fast and efficient approach.
Collapse
Affiliation(s)
- Jiemei Gu
- Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Chun Wang
- Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Hao Zhang
- Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Hua Yue
- Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Weiwei Hu
- Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Jinwei He
- Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Wenzhen Fu
- Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Zhenlin Zhang
- Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
24
|
Misgar RA, Sahu D, Sehgal A, Malik SA, Mohsin M, Wani AI, Bashir MI, Masoodi SR. Tumor-Induced Osteomalacia due to Hitherto Undiagnosed Subcutaneous Phosphaturic Mesenchymal Tumor. AACE Clin Case Rep 2018. [DOI: 10.4158/accr-2017-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
25
|
Michałus I, Rusińska A. Rare, genetically conditioned forms of rickets: Differential diagnosis and advances in diagnostics and treatment. Clin Genet 2018; 94:103-114. [DOI: 10.1111/cge.13229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 12/21/2022]
Affiliation(s)
- I. Michałus
- Department of Propedeutics Pediatrics and Bone Metabolic Diseases; Medical University of Lodz; Lodz Poland
| | - A. Rusińska
- Department of Propedeutics Pediatrics and Bone Metabolic Diseases; Medical University of Lodz; Lodz Poland
| |
Collapse
|
26
|
Policastro LJ, Saggi SJ, Goldfarb DS, Weiss JP. Personalized Intervention in Monogenic Stone Formers. J Urol 2017; 199:623-632. [PMID: 29061541 DOI: 10.1016/j.juro.2017.09.143] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2017] [Indexed: 12/16/2022]
Abstract
PURPOSE Treatment of a first-time renal stone consists of acute management followed by medical efforts to prevent stone recurrence. Although nephrolithiasis is roughly 50% heritable, the presence of a family history usually does not affect treatment since most stone disease is regarded as polygenic, ie not attributable to a single gene. Recent evidence has suggested that single mutations could be responsible for a larger proportion of renal stones than previously thought. This intriguing possibility holds the potential to change the management paradigm in stone prevention from metabolically directed therapy to more specific approaches informed by genetic screening and testing. This review synthesizes new findings concerning monogenic kidney stone disease, and provides a concise and clinically useful reference for monogenic causes. It is expected that increased awareness of these etiologies will lead to increased use of genetic testing in recurrent stone formers and further research into the prevalence of monogenic stone disease. MATERIALS AND METHODS We assembled a complete list of genes known to cause or influence nephrolithiasis based on recent reviews and commentaries. We then comprehensively searched PubMed® and Google Scholar™ for all research on each gene having a pertinent role in nephrolithiasis. We determined which genes could be considered monogenic causes of nephrolithiasis. One gene, ALPL, was excluded since nephrolithiasis is a relatively minor aspect of the disorder associated with the gene (hypophosphatasia). We summarized selected studies and assembled clinically relevant details. RESULTS A total of 27 genes were reviewed in terms of recent findings, mode of inheritance of stone disease, known or supposed prevalence of mutations in the general population of stone patients and specific therapies or considerations. CONCLUSIONS There is a distinct opportunity for increased use of genetic testing to improve the lives of pediatric and adult stone patients. Several genes first reported in association with rare disease may be loci for novel mutations, heterozygous disease and forme frustes as causes of stones in the broader population. Cases of idiopathic nephrolithiasis should be considered as potentially having a monogenic basis.
Collapse
Affiliation(s)
- Lucas J Policastro
- Department of Medicine, SUNY Downstate Medical Center, Brooklyn, New York.
| | - Subodh J Saggi
- Department of Nephrology, SUNY Downstate Medical Center, Brooklyn, New York
| | - David S Goldfarb
- Nephrology Section, NY Harbor VA Medical Center, New York, New York; Nephrology Division, New York University School of Medicine, New York, New York
| | - Jeffrey P Weiss
- Department of Urology, SUNY Downstate Medical Center, Brooklyn, New York; Urology Service, NY Harbor VA Medical Center, New York, New York
| |
Collapse
|
27
|
Asadzadeh Manjili F, Bakhshi Aliabad MH, Kalantar SM, Sahebzamani A, Safa A. Molecular and Biochemical Aspects of Hypophosphatemic Rickets; an Updated Review. INTERNATIONAL JOURNAL OF BASIC SCIENCE IN MEDICINE 2017. [DOI: 10.15171/ijbsm.2017.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|