1
|
Loh HY, Norman BP, Lai KS, Cheng WH, Nik Abd Rahman NMA, Mohamed Alitheen NB, Osman MA. Post-Transcriptional Regulatory Crosstalk between MicroRNAs and Canonical TGF-β/BMP Signalling Cascades on Osteoblast Lineage: A Comprehensive Review. Int J Mol Sci 2023; 24:ijms24076423. [PMID: 37047394 PMCID: PMC10094338 DOI: 10.3390/ijms24076423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 04/14/2023] Open
Abstract
MicroRNAs (miRNAs) are a family of small, single-stranded, and non-protein coding RNAs about 19 to 22 nucleotides in length, that have been reported to have important roles in the control of bone development. MiRNAs have a strong influence on osteoblast differentiation through stages of lineage commitment and maturation, as well as via controlling the activities of osteogenic signal transduction pathways. Generally, miRNAs may modulate cell stemness, proliferation, differentiation, and apoptosis by binding the 3'-untranslated regions (3'-UTRs) of the target genes, which then can subsequently undergo messenger RNA (mRNA) degradation or protein translational repression. MiRNAs manage the gene expression in osteogenic differentiation by regulating multiple signalling cascades and essential transcription factors, including the transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP), Wingless/Int-1(Wnt)/β-catenin, Notch, and Hedgehog signalling pathways; the Runt-related transcription factor 2 (RUNX2); and osterix (Osx). This shows that miRNAs are essential in regulating diverse osteoblast cell functions. TGF-βs and BMPs transduce signals and exert diverse functions in osteoblastogenesis, skeletal development and bone formation, bone homeostasis, and diseases. Herein, we highlighted the current state of in vitro and in vivo research describing miRNA regulation on the canonical TGF-β/BMP signalling, their effects on osteoblast linage, and understand their mechanism of action for the development of possible therapeutics. In this review, particular attention and comprehensive database searches are focused on related works published between the years 2000 to 2022, using the resources from PubMed, Google Scholar, Scopus, and Web of Science.
Collapse
Affiliation(s)
- Hui-Yi Loh
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Brendan P Norman
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Wan-Hee Cheng
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, Nilai 71800, Negeri Sembilan, Malaysia
| | - Nik Mohd Afizan Nik Abd Rahman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Noorjahan Banu Mohamed Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Azuraidi Osman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
2
|
Montemurro N, Ricciardi L, Scerrati A, Ippolito G, Lofrese G, Trungu S, Stoccoro A. The Potential Role of Dysregulated miRNAs in Adolescent Idiopathic Scoliosis and 22q11.2 Deletion Syndrome. J Pers Med 2022; 12:1925. [PMID: 36422101 PMCID: PMC9695868 DOI: 10.3390/jpm12111925] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 08/29/2023] Open
Abstract
Background: Adolescent idiopathic scoliosis (AIS), affecting 2-4% of adolescents, is a multifactorial spinal disease. Interactions between genetic and environmental factors can influence disease onset through epigenetic mechanisms, including DNA methylation, histone modifications and miRNA expression. Recent evidence reported that, among all clinical features in individuals with 22q11.2 deletion syndrome (DS), scoliosis can occur with a higher incidence than in the general population. Methods: A PubMed and Ovid Medline search was performed for idiopathic scoliosis in the setting of 22q11.2DS and miRNA according to PRISMA guidelines. Results: Four papers, accounting for 2841 individuals, reported clinical data about scoliosis in individuals with 22q11.2DS, showing that approximately 35.1% of the individuals with 22q11.2DS developed scoliosis. Conclusions: 22q11.2DS could be used as a model for the study of AIS. The DGCR8 gene seems to be essential for microRNA biogenesis, which is why we propose that a possible common pathological mechanism between scoliosis and 22q11.2DS could be the dysregulation of microRNA expression. In the current study, we identified two miRNAs that were altered in both 22q11.2DS and AIS, miR-93 and miR-1306, thus, corroborating the hypothesis that the two diseases share common molecular alterations.
Collapse
Affiliation(s)
- Nicola Montemurro
- Department of Neurosurgery, Azienda Ospedaliera Universitaria Pisana (AOUP), University of Pisa, 56100 Pisa, Italy
| | - Luca Ricciardi
- Department of NESMOS, Sapienza University of Rome, 00185 Roma, Italy
| | - Alba Scerrati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgio Ippolito
- Istituto Chirurgico Ortopedico Traumatologico (ICOT), DSBMC Sapienza Università di Roma-Polo Pontino, 04100 Latina, Italy
| | - Giorgio Lofrese
- Division of Neurosurgery, Ospedale Bufalini, 47023 Cesena, Italy
| | - Sokol Trungu
- Department of NESMOS, Sapienza University of Rome, 00185 Roma, Italy
| | - Andrea Stoccoro
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56100 Pisa, Italy
| |
Collapse
|
3
|
Guo S, Gu J, Ma J, Xu R, Wu Q, Meng L, Liu H, Li L, Xu Y. GATA4-driven miR-206-3p signatures control orofacial bone development by regulating osteogenic and osteoclastic activity. Theranostics 2021; 11:8379-8395. [PMID: 34373748 PMCID: PMC8344011 DOI: 10.7150/thno.58052] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022] Open
Abstract
Growth disorders in the orofacial bone development process may lead to orofacial deformities. The balance between bone matrix formation by mesenchymal lineage osteoblasts and bone resorption by osteoclasts is vital for orofacial bone development. Although the mechanisms of orofacial mesenchymal stem cells (OMSCs) in orofacial bone development have been studied intensively, the communication between OMSCs and osteoclasts remains largely unclear. Methods: We used a neural crest cell-specific knockout mouse model to investigate orofacial bone development in GATA-binding protein 4 (GATA4) morphants. We investigated the underlying mechanisms of OMSCs-derived exosomes (OMExos) on osteoclastogenesis and bone resorption activity in vitro. miRNAs were extracted from OMExos, and differences in miRNA abundances were determined using an Affymetrix miRNA array. Luciferase reporter assays were used to validate the binding between GATA4 and miR-206-3p in OMSCs and to confirm the putative binding of miR-206-3p and its target genes in OMSCs and osteoclasts. The regulatory mechanism of the GATA4-miR-206-3p axis in OMSC osteogenic differentiation and osteoclastogenesis was examined in vitro and in vivo. Results: Wnt1-Cre;Gata4fl/fl mice (cKO) not only presented inhibited bone formation but also showed active bone resorption. Osteoclasts cocultured in vitro with cKO OMSCs presented an increased capacity for osteoclastogenesis, which was exosome-dependent. Affymetrix miRNA array analysis showed that miR-206-3p was downregulated in exosomes from shGATA4 OMSCs. Moreover, the transcriptional activity of miR-206-3p was directly regulated by GATA4 in OMSCs. We further demonstrated that miR-206-3p played a key role in the regulation of orofacial bone development by directly targeting bone morphogenetic protein-3 (Bmp3) and nuclear factor of activated T -cells, cytoplasmic 1 (NFATc1). OMExos and agomiR-206-3p enhanced bone mass in Wnt1-cre;Gata4fl/fl mice by augmenting trabecular bone structure and decreasing osteoclast numbers. Conclusion: Our findings confirm that miR-206-3p is an important downstream factor of GATA4 that regulates the functions of OMSCs and osteoclasts. These results demonstrate the efficiency of OMExos and microRNA agomirs in promoting bone regeneration, which provide an ideal therapeutic tool for orofacial bone deformities in the future.
Collapse
|
4
|
Grillari J, Mäkitie RE, Kocijan R, Haschka J, Vázquez DC, Semmelrock E, Hackl M. Circulating miRNAs in bone health and disease. Bone 2021; 145:115787. [PMID: 33301964 DOI: 10.1016/j.bone.2020.115787] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022]
Abstract
microRNAs have evolved as important regulators of multiple biological pathways essential for bone homeostasis, and microRNA research has furthered our understanding of the mechanisms underlying bone health and disease. This knowledge, together with the finding that active or passive release of microRNAs from cells into the extracellular space enables minimal-invasive detection in biofluids (circulating miRNAs), motivated researchers to explore microRNAs as biomarkers in several pathologic conditions, including bone diseases. Thus, exploratory studies in cohorts representing different types of bone diseases have been performed. In this review, we first summarize important molecular basics of microRNA function and release and provide recommendations for best (pre-)analytical practices and documentation standards for circulating microRNA research required for generating high quality data and ensuring reproducibility of results. Secondly, we review how the genesis of bone-derived circulating microRNAs via release from osteoblasts and osteoclasts could contribute to the communication between these cells. Lastly, we summarize evidence from clinical research studies that have investigated the clinical utility of microRNAs as biomarkers in musculoskeletal disorders. While previous reviews have mainly focused on diagnosis of primary osteoporosis, we have also included studies exploring the utility of circulating microRNAs in monitoring anti-osteoporotic treatment and for diagnosis of other types of bone diseases, such as diabetic osteopathy, bone degradation in inflammatory diseases, and monogenetic bone diseases.
Collapse
Affiliation(s)
- Johannes Grillari
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria; Institute for Molecular Biotechnology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Austria
| | - Riikka E Mäkitie
- Folkhälsan Institute of Genetics and University of Helsinki, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Molecular Endocrinology Laboratory, Department of Medicine, Hammersmith Campus, Imperial College London, London, United Kingdom
| | - Roland Kocijan
- Hanusch Hospital of the WGKK and AUVA Trauma Center, 1st Medical Department at Hanusch Hospital, Ludwig Boltzmann Institute of Osteology, Vienna, Austria; Sigmund Freud University Vienna, School of Medicine, Metabolic Bone Diseases Unit, Austria
| | - Judith Haschka
- Hanusch Hospital of the WGKK and AUVA Trauma Center, 1st Medical Department at Hanusch Hospital, Ludwig Boltzmann Institute of Osteology, Vienna, Austria; Karl Landsteiner Institute for Rheumatology and Gastroenterology, Vienna, Austria
| | | | | | - Matthias Hackl
- Austrian Cluster for Tissue Regeneration, Austria; TAmiRNA GmbH, Vienna, Austria.
| |
Collapse
|
5
|
Hensley AP, McAlinden A. The role of microRNAs in bone development. Bone 2021; 143:115760. [PMID: 33220505 PMCID: PMC8019264 DOI: 10.1016/j.bone.2020.115760] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
Epigenetic regulation is critical for proper bone development. Evidence from a large body of published literature informs us that microRNAs (miRNAs) are important epigenetic factors that control many aspects of bone development, homeostasis, and repair processes. These small non-coding RNAs function at the post-transcriptional level to suppress expression of specific target genes. Many target genes may be affected by one miRNA resulting in alteration in cellular pathways and networks. Therefore, changes in levels or activity of a specific miRNA (e.g. via genetic mutations, disease scenarios, or by over-expression or inhibition strategies in vitro or in vivo) can lead to substantial changes in cell processes including proliferation, metabolism, apoptosis and differentiation. In this review, Section 1 briefly covers general background information on processes that control bone development as well as the biogenesis and function of miRNAs. In Section 2, we discuss the importance of miRNAs in skeletal development based on findings from in vivo mouse models and human clinical reports. Section 3 focuses on describing more recent data from the last three years related to miRNA regulation of osteoblast differentiation in vitro. Some of these studies also involve utilization of an in vivo rodent model to study the effects of miRNA modulation in scenarios of osteoporosis, bone repair or ectopic bone formation. In Section 4, we provide some recent information from studies analyzing the potential of miRNA-mediated crosstalk in bone and how exosomes containing miRNAs from one bone cell may affect the differentiation or function of another bone cell type. We then conclude by summarizing where the field currently stands with respect to miRNA-mediated regulation of osteogenesis and how information gained from developmental processes can be instructive in identifying potential therapeutic miRNA targets for the treatment of certain bone conditions.
Collapse
Affiliation(s)
- Austin P Hensley
- Department of Biomedical Engineering, Washington University School of Medicine, St Louis, MO, United States of America
| | - Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, United States of America; Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, United States of America; Shriners Hospital for Children - St Louis, St Louis, MO, United States of America.
| |
Collapse
|
6
|
Chen YS, Lian WS, Kuo CW, Ke HJ, Wang SY, Kuo PC, Jahr H, Wang FS. Epigenetic Regulation of Skeletal Tissue Integrity and Osteoporosis Development. Int J Mol Sci 2020; 21:ijms21144923. [PMID: 32664681 PMCID: PMC7404082 DOI: 10.3390/ijms21144923] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 12/22/2022] Open
Abstract
Bone turnover is sophisticatedly balanced by a dynamic coupling of bone formation and resorption at various rates. The orchestration of this continuous remodeling of the skeleton further affects other skeletal tissues through organ crosstalk. Chronic excessive bone resorption compromises bone mass and its porous microstructure as well as proper biomechanics. This accelerates the development of osteoporotic disorders, a leading cause of skeletal degeneration-associated disability and premature death. Bone-forming cells play important roles in maintaining bone deposit and osteoclastic resorption. A poor organelle machinery, such as mitochondrial dysfunction, endoplasmic reticulum stress, and defective autophagy, etc., dysregulates growth factor secretion, mineralization matrix production, or osteoclast-regulatory capacity in osteoblastic cells. A plethora of epigenetic pathways regulate bone formation, skeletal integrity, and the development of osteoporosis. MicroRNAs inhibit protein translation by binding the 3'-untranslated region of mRNAs or promote translation through post-transcriptional pathways. DNA methylation and post-translational modification of histones alter the chromatin structure, hindering histone enrichment in promoter regions. MicroRNA-processing enzymes and DNA as well as histone modification enzymes catalyze these modifying reactions. Gain and loss of these epigenetic modifiers in bone-forming cells affect their epigenetic landscapes, influencing bone homeostasis, microarchitectural integrity, and osteoporotic changes. This article conveys productive insights into biological roles of DNA methylation, microRNA, and histone modification and highlights their interactions during skeletal development and bone loss under physiological and pathological conditions.
Collapse
Affiliation(s)
- Yu-Shan Chen
- Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (Y.-S.C.); (W.-S.L.); (C.-W.K.); (H.-J.K.); (S.-Y.W.); (P.-C.K.)
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Wei-Shiung Lian
- Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (Y.-S.C.); (W.-S.L.); (C.-W.K.); (H.-J.K.); (S.-Y.W.); (P.-C.K.)
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Chung-Wen Kuo
- Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (Y.-S.C.); (W.-S.L.); (C.-W.K.); (H.-J.K.); (S.-Y.W.); (P.-C.K.)
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Huei-Jing Ke
- Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (Y.-S.C.); (W.-S.L.); (C.-W.K.); (H.-J.K.); (S.-Y.W.); (P.-C.K.)
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Shao-Yu Wang
- Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (Y.-S.C.); (W.-S.L.); (C.-W.K.); (H.-J.K.); (S.-Y.W.); (P.-C.K.)
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Pei-Chen Kuo
- Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (Y.-S.C.); (W.-S.L.); (C.-W.K.); (H.-J.K.); (S.-Y.W.); (P.-C.K.)
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Holger Jahr
- Department of Anatomy and Cell Biology, University Hospital RWTH Aachen, 52074 Aachen, Germany;
- Department of Orthopedic Surgery, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Feng-Sheng Wang
- Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (Y.-S.C.); (W.-S.L.); (C.-W.K.); (H.-J.K.); (S.-Y.W.); (P.-C.K.)
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Correspondence: ; Tel.: +886-7-7317123 (ext. 6404)
| |
Collapse
|
7
|
Gautvik KM, Günther CC, Prijatelj V, Medina-Gomez C, Shevroja E, Rad LH, Yazdani M, Lindalen E, Valland H, Gautvik VT, Olstad OK, Holden M, Rivadeneira F, Utheim TP, Reppe S. Distinct Subsets of Noncoding RNAs Are Strongly Associated With BMD and Fracture, Studied in Weight-Bearing and Non-Weight-Bearing Human Bone. J Bone Miner Res 2020; 35:1065-1076. [PMID: 32017184 DOI: 10.1002/jbmr.3974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/22/2020] [Accepted: 01/26/2020] [Indexed: 12/14/2022]
Abstract
We investigated mechanisms resulting in low bone mineral density (BMD) and susceptibility to fracture by comparing noncoding RNAs (ncRNAs) in biopsies of non-weight-bearing (NWB) iliac (n = 84) and weight bearing (WB) femoral (n = 18) postmenopausal bone across BMDs varying from normal (T-score > -1.0) to osteoporotic (T-score ≤ -2.5). Global bone ncRNA concentrations were determined by PCR and microchip analyses. Association with BMD or fracture, adjusted by age and body mass index, were calculated using linear and logistic regression and least absolute shrinkage and selection operator (Lasso) analysis. At 10% false discovery rate (FDR), 75 iliac bone ncRNAs and 94 femoral bone ncRNAs were associated with total hip BMD. Eight of the ncRNAs were common for the two sites, but five of them (miR-484, miR-328-3p, miR-27a-5p, miR-28-3p, and miR-409-3p) correlated positively to BMD in femoral bone, but negatively in iliac bone. Of predicted pathways recognized in bone metabolism, ECM-receptor interaction and proteoglycans in cancer emerged at both sites, whereas fatty acid metabolism and focal adhesion were only identified in iliac bone. Lasso analysis and cross-validations identified sets of nine bone ncRNAs correlating strongly with adjusted total hip BMD in both femoral and iliac bone. Twenty-eight iliac ncRNAs were associated with risk of fracture (FDR < 0.1). The small nucleolar RNAs, RNU44 and RNU48, have a function in stabilization of ribosomal RNAs (rRNAs), and their association with fracture and BMD suggest that aberrant processing of rRNAs may be involved in development of osteoporosis. Cis-eQTL (expressed quantitative trait loci) analysis of the iliac bone biopsies identified two loci associated with microRNAs (miRNAs), one previously identified in a heel-BMD genomewide association study (GWAS). In this comprehensive investigation of the skeletal genetic background in postmenopausal women, we identified functional bone ncRNAs associated to fracture and BMD, representing distinct subsets in WB and NWB skeletal sites. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Kaare M Gautvik
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway.,Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | | | - Vid Prijatelj
- Department of Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.,Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Enisa Shevroja
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Leila Heidary Rad
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Mazyar Yazdani
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Einar Lindalen
- Orthopaedic Department, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Haldor Valland
- Department of Surgery, Diakonhjemmet Hospital, Oslo, Norway
| | - Vigdis T Gautvik
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Ole K Olstad
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | | | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Tor P Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway.,Department of Ophthalmology, Stavanger University Hospital, Oslo, Norway.,Department of Ophthalmology, Sørlandet Hospital, Arendal, Norway
| | - Sjur Reppe
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway.,Department of Molecular Medicine, University of Oslo, Oslo, Norway.,Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
8
|
Chen G, Zhang X, Chen H, Lin H, Wu H, Lin H, Huang G. miR‐22 represses osteoblast viability with ESR1 presenting a direct target and indirectly inactivating p38 MAPK/JNK signaling. J Gene Med 2020; 22:e3174. [PMID: 32056303 DOI: 10.1002/jgm.3174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- Guang‐Hua Chen
- Department of OrthopedicsAffiliated Hospital of Guangdong Medical University Zhanjiang Guangdong China
| | - Xin‐Le Zhang
- Department of Pharmacology, School of PharmacyGuangdong Medical University Zhanjiang Guangdong China
| | - Hang Chen
- Department of OrthopedicsAffiliated Hospital of Guangdong Medical University Zhanjiang Guangdong China
| | - Hao Lin
- Department of OrthopedicsAffiliated Hospital of Guangdong Medical University Zhanjiang Guangdong China
| | - Hao‐Jun Wu
- Department of OrthopedicsAffiliated Hospital of Guangdong Medical University Zhanjiang Guangdong China
| | - Han Lin
- Department of OrthopedicsAffiliated Hospital of Guangdong Medical University Zhanjiang Guangdong China
| | - Gui‐Zhi Huang
- Department of OrthopedicsAffiliated Hospital of Guangdong Medical University Zhanjiang Guangdong China
| |
Collapse
|
9
|
Lin Z, He H, Wang M, Liang J. MicroRNA-130a controls bone marrow mesenchymal stem cell differentiation towards the osteoblastic and adipogenic fate. Cell Prolif 2019; 52:e12688. [PMID: 31557368 PMCID: PMC6869834 DOI: 10.1111/cpr.12688] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
Objectives With age, bone marrow mesenchymal stem cells (BMSC) have reduced ability of differentiating into osteoblasts but have increased ability of differentiating into adipocytes which leads to age‐related bone loss. MicroRNAs (miRNAs) play major roles in regulating BMSC differentiation. This paper explored the role of miRNAs in regulating BMSC differentiation swift fate in age‐related osteoporosis. Material and methods Mice and human BMSC were isolated from bone marrow, whose miR‐130a level was measured. The abilities of BMSC differentiate into osteoblast or fat cell under the transfected with agomiR‐130a or antagomiR‐130a were analysed by the level of ALP, osteocalcin, Runx2, osterix or peroxisome proliferator‐activated receptorγ (PPARγ), Fabp4. Related mechanism was verified via qT‐PCR, Western blotting (WB) and siRNA transfection. Animal phenotype intravenous injection with agomiR‐130a or agomiR‐NC was explored by Micro‐CT, immunochemistry and calcein double‐labelling. Results MiR‐130a was dramatically decreased in BMSC of advanced subjects. Overexpression of miR‐130a increased osteogenic differentiation of BMSC and attenuated adipogenic differentiation in BMSC, conversely, Inhibition of miR‐130a reduced osteogenic differentiation and facilitated lipid droplet formation. Consistently, overexpression of miR‐130a in elderly mice dropped off the bone loss. Furthermore, the protein levels of Smad regulatory factors 2 (Smurf2) and PPARγ were regulated by miR‐130a with an negative effect through directly combining the 3'UTR of Smurf2 and PPARγ. Conclusions The results indicated that miR‐130a promotes osteoblastic differentiation of BMSC by negatively regulating Smurf2 expression and suppresses adipogenic differentiation of BMSC by targeting the PPARγ, and supply a new target for clinical therapy of age‐related bone loss.
Collapse
Affiliation(s)
- Zhangyuan Lin
- Department of Orthopedic, Xiangya Hospital of Central South University, Changsha, China
| | - Hongbo He
- Department of Orthopedic, Xiangya Hospital of Central South University, Changsha, China
| | - Min Wang
- Department of Endocrinology, Xiangya Hospital of Central South University, Changsha, China
| | - Jieyu Liang
- Department of Orthopedic, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
10
|
Liu J, Dang L, Wu X, Li D, Ren Q, Lu A, Zhang G. microRNA-Mediated Regulation of Bone Remodeling: A Brief Review. JBMR Plus 2019; 3:e10213. [PMID: 31667459 PMCID: PMC6808222 DOI: 10.1002/jbm4.10213] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/27/2019] [Accepted: 06/05/2019] [Indexed: 12/20/2022] Open
Abstract
microRNA (miRNA)‐mediated regulation represents a highly efficient posttranscriptional mechanism for controlling intracellular protein expression. In the past decade, many studies have shown that various miRNAs are involved in regulating bone remodeling by affecting different stages of osteoblastogenesis, osteocytic differentiation, and osteoclastogenesis to govern osteoblastic bone formation and osteoclastic bone resorption. Moreover, miRNAs are recently implicated in mediating the cell‐cell communications among bone cells. This review concentrates on the miRNA‐mediated regulatory mechanisms of osteoblasts, osteoclasts, and osteocytes, and their contribution to bone remodeling. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jin Liu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases Hong Kong Baptist University, Hong Kong SAR China
| | - Lei Dang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases Hong Kong Baptist University, Hong Kong SAR China
| | - Xiaohao Wu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases Hong Kong Baptist University, Hong Kong SAR China
| | - Dijie Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases Hong Kong Baptist University, Hong Kong SAR China.,School of Life Sciences Northwestern Polytechnical University Xi'an China
| | - Qing Ren
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases Hong Kong Baptist University, Hong Kong SAR China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases Hong Kong Baptist University, Hong Kong SAR China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases Hong Kong Baptist University, Hong Kong SAR China
| |
Collapse
|
11
|
Guo WT, Wang Y. Dgcr8 knockout approaches to understand microRNA functions in vitro and in vivo. Cell Mol Life Sci 2019; 76:1697-1711. [PMID: 30694346 PMCID: PMC11105204 DOI: 10.1007/s00018-019-03020-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/11/2019] [Accepted: 01/17/2019] [Indexed: 01/07/2023]
Abstract
Biologic function of the majority of microRNAs (miRNAs) is still unknown. Uncovering the function of miRNAs is hurdled by redundancy among different miRNAs. The deletion of Dgcr8 leads to the deficiency in producing all canonical miRNAs, therefore, overcoming the redundancy issue. Dgcr8 knockout strategy has been instrumental in understanding the function of miRNAs in a variety of cells in vitro and in vivo. In this review, we will first give a brief introduction about miRNAs, miRNA biogenesis pathway and the role of Dgcr8 in miRNA biogenesis. We will then summarize studies performed with Dgcr8 knockout cell models with a focus on embryonic stem cells. After that, we will summarize results from various in vivo Dgcr8 knockout models. Given significant phenotypic differences in various tissues between Dgcr8 and Dicer knockout, we will also briefly review current progresses on understanding miRNA-independent functions of miRNA biogenesis factors. Finally, we will discuss the potential use of a new strategy to stably express miRNAs in Dgcr8 knockout cells. In future, Dgcr8 knockout approaches coupled with innovations in miRNA rescue strategy may provide further insights into miRNA functions in vitro and in vivo.
Collapse
Affiliation(s)
- Wen-Ting Guo
- Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, People's Republic of China
| | - Yangming Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, People's Republic of China.
| |
Collapse
|
12
|
Kim DW, Cho JY. NQO1 is Required for β-Lapachone-Mediated Downregulation of Breast-Cancer Stem-Cell Activity. Int J Mol Sci 2018; 19:ijms19123813. [PMID: 30513573 PMCID: PMC6321092 DOI: 10.3390/ijms19123813] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) exhibit self-renewal activity and give rise to other cell types in tumors. Due to the infinite proliferative potential of CSCs, drugs targeting these cells are necessary to completely inhibit cancer development. The β-lapachone (bL) compound is widely used to treat cancer development; however, its effect on cancer stem cells remain elusive. Thus, we investigated the effect of bL on mammosphere formation using breast-cancer stem-cell (BCSC) marker-positive cells, MDA-MB-231. MDA-MB-231 cells, which are negative for reduced nicotinamide adenine dinucleotide phosphate (NAD(P)H):quinone oxidoreductase (NQO1) expression, were constructed to stably express NQO1 (NQO1 stable cells). The effect of bL on these cells was evaluated by wound healing and Transwell cell-culture chambers, ALDEFLUOR assay, and mammosphere formation assay. Here, we show that bL inhibited the proliferative ability of mammospheres derived from BCSC marker-positive cells, MDA-MB-231, in an NQO1-dependent manner. The bL treatment efficiently downregulated the expression level of BCSC markers cluster of differentiation 44 (CD44), aldehyde dehydrogenase 1 family member A1 (ALDH1A1), and discs large (DLG)-associated protein 5 (DLGAP5) that was recently identified as a stem-cell proliferation marker in both cultured cells and mammosphered cells. Moreover, bL efficiently downregulated cell proliferation and migration activities. These results strongly suggest that bL could be a therapeutic agent for targeting breast-cancer stem-cells with proper NQO1 expression.
Collapse
Affiliation(s)
- Dong Wook Kim
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
13
|
Minamizaki T, Konishi Y, Sakurai K, Yoshioka H, Aubin JE, Kozai K, Yoshiko Y. Soluble Klotho causes hypomineralization in Klotho-deficient mice. J Endocrinol 2018; 237:285-300. [PMID: 29632215 DOI: 10.1530/joe-17-0683] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 04/09/2018] [Indexed: 12/12/2022]
Abstract
The type I transmembrane protein αKlotho (Klotho) serves as a coreceptor for the phosphaturic hormone fibroblast growth factor 23 (FGF23) in kidney, while a truncated form of Klotho (soluble Klotho, sKL) is thought to exhibit multiple activities, including acting as a hormone, but whose mode(s) of action in different organ systems remains to be fully elucidated. FGF23 is expressed primarily in osteoblasts/osteocytes and aberrantly high levels in the circulation acting via signaling through an FGF receptor (FGFR)-Klotho coreceptor complex cause renal phosphate wasting and osteomalacia. We assessed the effects of exogenously added sKL on osteoblasts and bone using Klotho-deficient (kl/kl) mice and cell and organ cultures. sKL induced FGF23 signaling in bone and exacerbated the hypomineralization without exacerbating the hyperphosphatemia, hypercalcemia and hypervitaminosis D in kl/kl mice. The same effects were seen in rodent bone models in vitro, in which we also detected formation of a sKL complex with FGF23-FGFR and decreased Phex (gene responsible for X-linked hypophosphatemic rickets (XLH)/osteomalacia) expression. Further, sKL-FGF23-dependent hypomineralization in vitro was rescued by soluble PHEX. These data suggest that exogenously added sKL directly participates in FGF23 signaling in bone and that PHEX is a downstream effector of the sKL-FGF23-FGFR axis in bone.
Collapse
Affiliation(s)
- Tomoko Minamizaki
- Department of Calcified Tissue Biology, School of Dentistry, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Yukiko Konishi
- Department of Calcified Tissue Biology, School of Dentistry, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
- Department of Pediatric Dentistry, School of Dentistry, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Kaoru Sakurai
- Department of Calcified Tissue Biology, School of Dentistry, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
- Department of Pediatric Dentistry, School of Dentistry, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Hirotaka Yoshioka
- Department of Calcified Tissue Biology, School of Dentistry, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Jane E Aubin
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Canada
| | - Katsuyuki Kozai
- Department of Pediatric Dentistry, School of Dentistry, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Yuji Yoshiko
- Department of Calcified Tissue Biology, School of Dentistry, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| |
Collapse
|
14
|
McAlinden A, Im GI. MicroRNAs in orthopaedic research: Disease associations, potential therapeutic applications, and perspectives. J Orthop Res 2018; 36:33-51. [PMID: 29194736 PMCID: PMC5840038 DOI: 10.1002/jor.23822] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/27/2017] [Indexed: 02/04/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that function to control many cellular processes by their ability to suppress expression of specific target genes. Tens to hundreds of target genes may be affected by one miRNA, thereby resulting in modulation of multiple pathways in any given cell type. Therefore, altered expression of miRNAs (i.e., during tissue development or in scenarios of disease or cellular stress) can have a profound impact on processes regulating cell differentiation, metabolism, proliferation, or apoptosis, for example. Over the past 5-10 years, thousands of reports have been published on miRNAs in cartilage and bone biology or disease, thus highlighting the significance of these non-coding RNAs in regulating skeletal development and homeostasis. For the purpose of this review, we will focus on miRNAs or miRNA families that have demonstrated function in vivo within the context of cartilage, bone or other orthopaedic-related tissues (excluding muscle). Specifically, we will discuss studies that have utilized miRNA transgenic mouse models or in vivo approaches to target a miRNA with the aim of altering conditions such as osteoarthritis, osteoporosis and bone fractures in rodents. We will not discuss miRNAs in the context skeletal cancers since this topic is worthy of a review of its own. Overall, we aim to provide a comprehensive description of where the field currently stands with respect to the therapeutic potential of specific miRNAs to treat orthopaedic conditions and current technologies to target and modify miRNA function in vivo. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:33-51, 2018.
Collapse
Affiliation(s)
- Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, Missouri 63110
| | - Gun-Il Im
- Department of Orthopaedic Surgery, Dongguk University Ilsan Hospital, 814 Siksa-Dong, Goyang, Korea
| |
Collapse
|